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Abstract

We consider balanced truncation model order reduction for symmetric second
order systems. The occurring large-scale generalized and structured Lyapunov
equations are solved with a specially adapted low-rank ADI type method. Stop-
ping criteria for this iteration are investigated and a new result concerning the
Lyapunov residual within the low-rank ADI method is established. We also pro-
pose a goal oriented stopping criterion which tries to incorporate the balanced
truncation approach already during the ADI iteration. The model reduction ap-
proach using the ADI method with different stopping criteria is evaluated on
several test systems.

Keywords model order reduction; balanced truncation; alternating directions
implicit; Lyapunov equations; second-order systems

AMS subject classification 15A18, 15A24, 93A15, 93C, 93D20

1 Introduction

This work is an extension of [1] which appeared in the proceedings of the 2012 Math-
Mod conference in Vienna 2012. It is concerned with model reduction for linear,
time-invariant control systems in second order form:

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t), (1a)

y(t) = Cvẋ(t) + Cpx(t) (1b)

∗Research Group Computational Methods in Systems and Control Theory (CSC), Max Planck In-
stitute for Dynamics of Complex Technical Systems Magdeburg, Sandtorstr. 1, 39106 Magdeburg,
Germany, {benner, kuerschner, saak}@mpi-magdeburg.mpg.de.
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with large and sparse coefficient matrices M, D, K ∈ Rn×n, an input matrix B ∈
Rn×m position and, respectively, velocity output matrices and Cp, Cv ∈ Rp×n. The
time dependent vectors x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are usually referred to
as state, input and output vector. We mainly consider a special class of (1), namely
symmetric second order systems which arise, e.g., in elastic mechanical multibody
systems [2] or circuit simulation [3]. In modern computer simulations of such systems
the demand for a highly accurate description of realistic phenomena leads, in one way
or another, to a very large state space dimension. For a numerically efficient time-
domain solution, model order reduction approaches are employed which drastically
reduce the dimension of the state space.
Here we focus on the balanced truncation [4] model order reduction method as a system
theoretic approach. Some more recent adaptions take the second order structure of
(1) into account [3, 5, 6]. Balanced truncation requires the solution of large-scale
Lyapunov equation. For this purpose we discuss a specially tailored version of the
low-rank ADI (LR-ADI) iteration [7, 8]. We strongly focus on termination criteria of
this iterative method.

This paper is organized as follows: The next section defines symmetric second order
systems and gives some applications where they naturally arise. In Section 3 the main
ideas behind balanced truncation for first and second order systems are recalled. The
approximate solution of the occurring large-scale Lyapunov equation within the LR-
ADI method is investigated in Section 4. There we give a novel expression for the
Lyapunov residual in the ADI method in general. We also apply another stopping
criterion proposed in [9]. We further review a modification of the LR-ADI which
exploits the structure introduced by (1). Some perspectives on the handling of non-
standard coefficients D in (1), e.g., the case when D is given by D = D̃ + uuT , are
also discussed. The balanced truncation approaches as well as the ADI type methods
for solving the Lyapunov equations are evaluated with some test examples in Section
5 and Section 6 concludes.

Notation used in this paper: R and C denote the real and complex numbers, and
R−, C− refer to the set of strictly negative numbers and the open left half plane.
Rn×m, Cn×m are n × m real and complex matrices, respectively. For a complex
quantity X = Re (X) +  Im (X), Re (X), Im (X) denote its real and imaginary part,
where  is the imaginary unit. The complex conjugate of a complex quantity X is
denoted by X = Re (X) −  Im (X). The absolute value of ξ ∈ C is denoted by |ξ|.
The matrix AT is the transpose of a real n×m matrix, and AH = A

T
is the complex

conjugate transpose of a complex matrix. The inverse of A is denoted by A−1 and
expressions of the form x = A−1b should always be understood as solving the linear
system of equations Ax = b for x. The identity matrix of dimension n is indicated by
In. If not stated otherwise ‖ · ‖ is the Euclidean vector, or subordinate matrix norm.
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2 Symmetric Second Order Systems

In the remainder we restrict ourselves to the case when M, D, K in (1) are symmet-
ric. If they are in addition positive definite the matrix polynomial λ2M + λD + K
has eigenvalues only in C− which implies that the second order system is asymptoti-
cally stable. This is a sufficient condition for the applicability of balanced truncation
approaches and is hence assumed in the following.

Definition 2.1. A system of the form (1) with symmetric M, D, K is called sym-
metric second order system of the first kind if

Cp = ±BT , Cv = 0,

and of the second kind if

Cp = 0, Cv = ±BT .

2.1 Applications

One important application, where symmetric second order systems of the first kind
frequently occur, is vibration analysis of elastic mechanical structures. There M, D, K
refer to mass, damping and stiffness of a finite element model of the structure under
consideration. The states in x(t) are usually the nodal displacements of the finite
element model. The condition Cp = BT occurs, e.g., in elastic multibody systems [2].

The second kind appears in the simulation of RLCK circuits [3], where M, D, K
are conductance, capacitance and susceptance matrices, and x(t), u(t), y(t) contain
nodal voltages, input currents and output voltages, respectively. For example, in the
design of microchips, the high dimension of the dynamical system comes from the
sheer high number of resistors, conductors and inductors in modern circuit designs, or
because nonlinear circuit elements such as diodes and transistors are replaced by large
sub-networks of linear elements.

2.2 Transformations to First Order Systems

In order to apply most modern model order reduction techniques, including balanced
truncation, the starting point is to rewrite (1) formally into an equivalent generalized
state space system of first order

Eż(t) = Az(t) +Gu(t),

y(t) = Lz(t),
(2)

with E,A ∈ R2n×2n, G ∈ R2n×m, L ∈ Rp×2n and the augmented generalized state vec-
tor z(t) = [x(t)T , ẋ(t)T ]T . This is closely related to rewriting the associated quadratic
matrix polynomial λ2M + λD + K into a linear pencil λE − A [10]. Hence we will
refer to this transformation as linearization. The two most standard linearizations are
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the first companion linearization

E1 =

[
N 0
0 M

]
, A1 =

[
0 N
−K −D

]
, G1 =

[
0
B

]
, L1 =

[
Cp Cv

]
(3a)

and the second companion linearization

E2 =

[
D M
F 0

]
, A2 =

[
−K 0

0 F

]
, G2 =

[
B
0

]
, L2 =

[
Cp Cv

]
, (3b)

where F , N are arbitrary nonsingular n× n matrices. Common choices for those are
N = In or N = −K in (3a) and F = In or F = M in (3b). Note that it is possible to
transform (3b) into (3a) and vice versa via a generalized state-space transformation

UlA2Ur = A1, UlE2Ur = E1, UlG2 = G1, L2Ur = L1 (4)

with

Ul =

[
0 NF−1

In −DF−1
]
, Ur = I2n, (5)

see also [6, Section 3.1].

For symmetric second order systems, a reasonable choice is to use (3b) with F = M
for the first kind, since then E2, A2 are symmetric and G2 = ±LT2 such that (2) is
a symmetric first order system. Similarly, for the second kind a good choice is to
take (3a) with N = −K, since again E1, A1 are symmetric and G1 = ±LT1 . These
symmetric linearizations will play an important role later.

2.3 Reachability and Observability Gramians

Under the assumption that the generalized first order state-space system (2) is asymp-
totically stable, the generalized Lyapunov equations

APET + EPAT = −GGT , (6a)

ATQE + ETQA = −LTL. (6b)

have unique, positive semidefinite solutions P and Q. There, P is the reachability
Gramian, whereas ETQE is referred to as observability Gramian. These quantities will
be the main ingredients for the balanced truncation model order reduction approaches
described in Section 3. The magnitudes of the square roots of the eigenvalues of
PETQE are system invariants and referred to as Hankel singular values (HSVs). They
give a measurement of how good states can be observed and controlled (see, e.g., [11]).

Let us briefly discuss the relation of these Gramians, respectively the HSVs, to
different linearizations of (1) and implications to symmetric second order systems.
Note that due to (4) we have that (6) with E1, A1, G1, L1 is equivalent to

A2UrP1U
T
r E

T
2 + E2UrP1U

T
r A

T
2 = −G2G

T
2 ,

AT2 U
T
l Q1UlE2 + ET2 U

T
l Q1UlA2 = −LT2 L2,
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such that the solutions P1, Q1 of the first companion linearization are related to P2, Q2

of the second companion linearization via

P2 = P1, Q2 = UTl Q1Ul. (7)

This implies for the observability Gramians that it holds

ET2 Q2E2 = E2Ur = UrE
T
1 U
−T
l UTl Q1UlU

−1
l E1Ur = ET1 Q1E1,

and hence the HSVs of both linearizations are identical as already proved in (4).
Now for a symmetric second order system of the first kind with F = M , we have

in the second companion form E2 = ET2 , A2 = AT2 and L2 = ±GT2 such that it
holds additionally P1 = P2 = Q2. A similar result holds for the second kind in first
companion form with N = −K. To conclude, for symmetric second order systems
the knowledge of either the reachability or the observability Gramian is sufficient to
determine the HSVs, provided the symmetry and the relations (7) are exploited.

3 Balanced truncation

3.1 First order systems

Here we briefly discuss the main ideas to carry out balanced truncation for asymptot-
ically stable first order systems (2) with invertible E. Note that balanced truncation
was originally designed for the case E = In [4], but the modification to the generalized
case is straightforward [12, 13]. Balanced truncation is guided by the identification
of those states requiring the most energy to control, and which yield the least energy
through observation. This energy interpretation is equivalent to asking for states which
are hard to control and to observe. This information is revealed by the HSVs, such
that the solutions P and Q of (6) are the main requirements for balanced truncation.
In practice, balanced truncation is often carried out with Cholesky-like factorizations
of P, Q or, as it is usually the case for large-scale systems, use low-rank representa-
tions P ≈ Z̃cZ̃

T
c and Q ≈ Z̃oZ̃

T
o with rank(Z̃c), rank(Z̃o) � n. The computation

of such low-rank factors Z̃c, Z̃o is studied in Section 4. In any case, a singular value
decomposition with decreasingly ordered singular values

Z̃To EZ̃c = XΣY T = [X1, X2] diag (Σ1, Σ2) [Y1, Y2]T , (8)

reveals the r � n dominant singular values σ1 ≥ . . . ≥ σr > 0 in the block Σ1 ∈ Rr×r.
The left and right truncation matrices are then computed by

Tl = Z̃oX1Σ
− 1

2
1 and Tr = Z̃cY1Σ

− 1
2

1 (9)

and the reduced system of order r is given by

˙̃z(t) = Ãz̃(t) + G̃u(t),

ỹ(t) = L̃z̃(t),
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where Ã := TTl ATr ∈ Rr×r, G̃ := TlG ∈ Rr×m and L̃ := LTr ∈ Rp×r. Note that
TTl ETr = Ir holds by construction (e.g., [13]). The most important features of bal-
anced truncation are the guaranteed stability preservation and the readily available
error bound

‖y − ỹ‖/‖u‖ ≤ 2

n∑
j=r+1

σj =: ρ, (10)

where the σj are the singular values from the neglected block Σ2. One can easily
monitor when ρ drops below a specified tolerance to adaptively determine the reduced
order model dimension.

The disadvantage of this approach is that if (2) is a first order representation of a
second order system, the second order structure will be lost in the reduced order model.
This especially means that the reduced states no longer have physical interpretations.
In the next section we investigate how the second order structure can be preserved.

3.2 Symmetric Second Order systems

Balanced truncation can be modified in order to generate a reduced order model which
is also in second order form, see e.g., [6, 3, 5]. Consider the partition of the Gramians
P and Q according to the structure present in the equivalent generalized first order
system:

P =

[
Pp P1,2

PT1,2 Pv

]
, Q =

[
Qp Q1,2

QT1,2 Qv

]
,

where Pp, Qp ∈ Rn×n and Pv, Qv ∈ Rn×n are called position, velocity reachability
and observability Gramians, respectively.

For symmetric systems it is enough to consider only Pp and Pv [2, 1], or respectively
their Cholesky factorizations Pp = ZpZ

T
p , Pv = ZvZ

T
v . As for first order systems, low-

rank representations are usually used in a large-scale setting. Following the approach
in [6], one can choose between four possible singular value decompositions

ZTαMZβ=XαβΣαβY
T
αβ

=[Xαβ,1, Xαβ,2]

[
Σαβ,1 0

0 Σαβ,2

]
[Yαβ,1, Yαβ,2]T ,

(11)

where the subscripts α, β ∈ {p, v} denote whether the position or velocity blocks of
P are used. Similar to the first order case, the Σαβ,1 ∈ Rr×r block contains the largest
singular values. Depending on the choice of α, β, they are referred to as

• position-position (PP) if α = β = p,

• velocity-velocity (VV) if α = β = v,

• velocity-position (VP) if α = v, β = p, and
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• position-velocity (PV) singular-values if α = p, β = v.

This yields four different pairs of matrices which perform the reduction:

T̃r,αβ := ZαYαβ,1Σ
− 1

2

αβ,1,

T̃l,αβ := ZβXαβ,1Σ
− 1

2

αβ,1.
(12)

For α = β = p the approach is called position-position, for α = β = v velocity-velocity,
for α = v, β = p velocity-position, and for α = p, β = v position-velocity second order
balanced truncation, respectively. All four pairs of these transformation matrices are
summarized in Table 1. The four different possible reduced order models in second
order form are then consequently given by

M̃αβ
¨̃x(t) + D̃αβ

˙̃x(t) + K̃αβ x̃(t) = B̃αβu(t),

ỹ(t) = C̃p
αβ x̃(t) + C̃v

αβ
˙̃x(t),

with

M̃αβ := T̃Tl,αβMT̃r,αβ , D̃αβ := T̃Tl,αβDT̃r,αβ , K̃αβ := T̃Tl,αβKT̃r,αβ ∈ Rr×r,
B̃αβ := T̃Tl,αβB ∈ Rr×m, C̃

p
αβ := BT T̃r,αβ , C̃

v
αβ := BT T̃r,αβ ∈ Rm×r.

(13)

It can easily be shown that the reduced mass matrices are always equal to the identity.
The preservation of the second order structure comes at the price of the absence of
an error bound like (10). However, as an alternative one may monitor the ratio of the
entries in Σαβ and determine the reduced dimension once

σj,αβ
σ1,αβ

≤ ε (14)

is fulfilled [13]. Stability is preserved in the position-position and velocity-velocity
approaches [2, 1] which also preserve the symmetry of the system, i.e., all reduced
coefficient matrices remain symmetric and positive definite and the reduced input

Table 1: Left and right transformations matrices of balanced truncation for second
order systems.

Type right transformation left transformation

PP T̃r,pp := RpYpp,1Σ
− 1

2
pp,1 T̃l,pp := RpXpp,1Σ

− 1
2

pp,1

PV T̃r,pv := RpYpv,1Σ
− 1

2
pv,1 T̃l,pv := RvXpv,1Σ

− 1
2

pv,1

VP T̃r,vp := RvYvp,1Σ
− 1

2
vp,1 T̃l,vp := RpXvp,1Σ

− 1
2

vp,1

VV T̃r,vv := RvYvv,1Σ
− 1

2
vv,1 T̃l,vv := RvXvv,1Σ

− 1
2

vv,1
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matrix is still the transpose of the reduced (position or velocity) output matrix. It can
also be shown that the velocity-position and position-velocity reduced order models
are adjoint to each other. Hence, they show the same frequency response plot in the
spectral or Frobenius norm [2].

4 Solving Large-Scale Lyapunov Equations

Since balanced truncation approaches rely on the reachability and observability Grami-
ans, they require the numerical solution of the large-scale generalized Lyapunov equa-
tions (6), where for the symmetric second order systems of interest (6a) and (6b) can
be made identical by certain linearizations. Hence it is sufficient to consider one single
matrix equation

AXET + EXAT +GGT = 0. (15)

Since direct methods [14, 15, 16] for solving (15) have a cubic computational complexity
and quadratic memory demands for finding the solution X, their usage is limited to
small or moderately large n. In large-scale settings, the numerical rank of the solution
X is, however, often very small [17, 18], such that it appears reasonable to approximate
X via low-rank factors ZZT ≈ X with Z ∈ Rn×t, rank (Z) = t, t � n. Note that
the balanced truncation approaches can be carried out with low-rank factors instead
of full Cholesky factors in (8),(9). Algorithms for computing such low-rank factors
mainly divide into two classes: projection methods using Krylov subspaces and low-
rank Smith or ADI type iterations, where we focus on the latter one in this work. In
the next subsection we review the generalized low-rank ADI iteration for solving (15)
and give a brief motivation why we prefer ADI methods over Krylov subspace methods.
Since in the context of second order systems, the occurring coefficient matrices E,A,G
are structured, a modified structure exploiting version of the low-rank ADI iterations
is discussed in Subsection 4.2. Some remarks on non-standard choices for the matrix
D in (1) are given in Subsection 4.3. Stopping criteria are discussed in the subsequent
subsection, where we give a new result for the Lyapunov residual in low-rank ADI
methods, but also consider an approach based on the (Hankel) singular values which
represents a goal oriented termination [9] in balanced truncation.

4.1 The low-rank ADI iteration

For standard Lyapunov equations (E = In), the alternating directions implicit (ADI)
method [19, 20] iteratively computes approximations Xj , j ≥ 1, of the solution X.
Introducing the low-rank representations Xj = ZjZ

H
j into this iteration leads, after a

couple of clever basic manipulations, to the low-rank ADI iteration (LR-ADI) [8, 21, 7].
It can easily be adapted to the general case (15) which yields the generalized LR-
ADI (G-LR-ADI) [13, 12] given in Algorithm 1. In the remainder we always assume
X0 = ZjZ

H
j = 0. The shift parameters {µ1, . . . , µjmax

} ⊂ C− steer the convergence of

the algorithm and are tightly related to the spectrum Λ(A,E) = Λ(λ2M + λD + K)
via a rational optimization problem [20]. For large-scale matrices, the whole spectrum
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Algorithm 1 Generalized Low-rank ADI iteration (G-LR-ADI)

Input: A, E and G as in (15) and shift parameters {µ1, . . . , µjmax
}.

Output: Z = Zkmax
∈ Cn×mjmax , such that ZZH ≈ P

1: for k = 1, 2, . . . , kmax do
2: if k = 1 then
3: Solve (A+ µ1E)V1 = G for V1.
4: Z1 =

√
−2 Re (µ1)V1.

5: else
6: Solve (A+ µkE)Ṽ = EVk−1 for Ṽ .
7: Vk = Vk−1 − (µk + µk−1)Ṽ .
8: Update low-rank factor Zk = [Zk−1,

√
−2 Re (µk)Vk].

9: end if
10: end for

is usually unknown and therefore one uses, e.g., a small number of Ritz values which
are used to solve the optimization problem in an approximate sense to get so called
heuristic shift parameters [7]. Clearly, the linear systems in steps 3 and 7 cause the
largest amount of computational work in the whole algorithm. We assume that we are
able to solve them with either sparse direct [22, 23] or iterative solvers [24, 25].

The other large class of numerical methods for large Lyapunov equations are Krylov
subspace projection methods, see e.g. [26] and the references therein. There, the large
Lyapunov equation is projected onto a low-dimensional subspace Y = colspan (Y ) ⊂
Rn, Y ∈ Rn×k, and the resulting Lyapunov equation of small dimension is solved with
direct methods for its solution X̂ ∈ Rk×k. The approximate solution of (15) is then
obtained by X ≈ Y X̂Y T . The various methods belonging to this class usually differ
in the way Y is constructed. However, in order to ensure the unique solvability of the
small matrix equation, one has to assume in the case E = In that A is dissipative, i.e.,
A+AT is negative definite. For the generalized case this amounts to AET +EAT < 0.
In our case A,E, are block structured matrices representing a linearization of a second
order system and it can be shown that, except for unnatural cases [27], the dissipativity
condition is not fulfilled. Consider for instance the system with M = 1, D = α > 0,
K = β > 0. The matrix AET + EAT is indefinite for all β 6= 1. Thus, Krylov
subspace methods may break down. ADI type methods do not require dissipative
matrices, or matrix pairs, which makes them adequate for solving the generalized
Lyapunov equation encountered in balanced truncation for second order systems.

4.2 Handling the Second Order Structure and Complex Shift
Parameters

The main computational effort in Algorithm 1 lies in the solution of the linear systems
in steps 3 and 7, where E, A, G are structured as in (3a) or (3b). As shown in
[13, 27, 2, 1], G-LR-ADI can be rearranged to obtain the solution without explicitly
forming the matrices of the linearization. By partitioning the increments of Algorithm
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1 into an upper and a lower part according to the structure in the first order system
(2),

Vk =

[
V

(p)
k

V
(v)
k

]
,

the linear system

(A+ µE)Vk = EVk−1

of dimension 2n × 2n, where E,A are as in the second companion linearization (3b)
with F = M , is equivalent to

(µ2
kM − µkD +K)V

(p)
k = (µkM −D)V

(p)
k−1 −MV

(v)
k−1 (16)

V
(v)
k = V

(p)
k−1 − µkV

(p)
k (17)

and similarly for (3), see e.g., [1, 2]. Clearly, solving the linear systems of dimension
n × n is more efficient than using the blocked versions of dimension 2n × 2n. The
rearrangement is usually referred to as second order LR-ADI (SO-LR-ADI) [13, 27].
SO-LR-ADI is illustrated in Algorithm 2, where the n×n linear systems involving the
quadratic matrix polynomial in µ can be found in steps 3 and 6. By using the relations
(4), it is immediately evident that another choice for the linearization will lead to the
same expressions as above, such that symmetric second order systems of the second
kind can be handled without any change of the core steps of Algorithm 2, but some
differences occur for the Lyapunov residual.

The Steps 10 to 17 append the increment Vk to the previous low-rank solution factor
such that it is a real matrix even if the current shift µk was complex. In the first
case this is the same as in Algorithm 1. However, in the latter case it is assumed that
µk, µk+1 := µk holds, and Z is augmented by 2m new real columns. This construction
is possible due to a result in [28] which allows the computation of real low-rank factors
even if complex shift parameters are used. The main result there is that the increment
with respect to µk+1 can be constructed by

Vk+1 = Re (Vk)−  Im (Vk) + 2Re (µk)
Im (µk)

Im (Vk)

such that one implicitly carries out a double iteration step with respect to µk, µk
without explicitly solving the complex linear system for µk. This does not only reduce
the amount of complex arithmetic operations and storage, but also always enables the
generation of real low-rank factors which is beneficial for carrying out balanced trun-
cation model order reduction. Note that the remaining complex arithmetic operations,
which are mainly the remaining complex linear systems, can be avoided by working
entirely on Re (Vk) and Im (Vk) which involves equivalent 2n× 2n real linear systems
[29]. However, it is often faster to solve the remaining n × n complex systems. If an
iterative Krylov subspace method is used, one can exploit that due to the symmetry
of M,D,K, the linear system in (16) is complex symmetric and employ solvers which
make use of this property [30].
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Algorithm 2 Second-Order Low-rank ADI iteration (SO-LR-ADI)

Input: M , D, K, B defining (1) and shift parameters {µ1, . . . , µkmax
}.

Output: Real low-rank solution factor Ẑ ∈ R2n×mkmax , such that ẐẐT ≈ X in (15).
1: for k = 1, 2, . . . , kmax do
2: if k = 1 then
3: Solve (µ2

kM − µkD +K)V
(p)
k = −B for V

(p)
k .

4: Set V
(v)
k = −µkV (p)

k .
5: else
6: Solve (µ2

kM − µkD +K)V̂ (p) = (µkM −D)V
(p)
k−1 −MV

(v)
k−1 for V̂ (p).

7: Set V̂ (v) = V
(p)
k−1 − µkV̂ (p).

8: Construct iterate

Vk =

[
V

(p)
k

V
(v)
k

]
= Vk−1 − (µk + µk−1)

[
V̂ (p)

V̂ (v)

]
.

9: end if
10: if Im (µk) = 0 then
11: Ẑ = [Ẑ,

√
−2µk Re (Vk)].

12: else
13: γ =

√
−2 Re (µk), δ = Re (µk)

Im (µk)
.

14: Vk+1 = Vk + 2δ Im (Vk).
15: Update low-rank solution factor

Ẑ =
[
Ẑ, γ(Re (Vk) + δ Im (Vk)), γ

√
(δ2 + 1) · Im (Vk)

]
.

16: Set k = k + 1.
17: end if
18: end for

4.3 Some Remarks on more General Damping Models

In this section we briefly point out some ideas regarding the treatment of the linear
systems in Algorithm 2 for different constructions for the matrix D which we shall
refer to in the following as damping matrix. A common choice to construct damping
matrices is proportional damping given by the Caughey series [31]

Dprop =

f∑
j=0

ξjM(M−1K)j = ξ0M + ξ1K + ξ2KM
−1K + . . . , (18)

where Rayleigh damping, i.e., ξi = 0, i ≥ 2, is a common choice. For this easy case the
damping matrix is sparse, the linear system can be handled without any particular
care. Difficulties arise when some of the higher terms in (18) are kept. Forming the
matrix M−1K is not feasible for large and sparse matrices. Except for some easy cases,
e.g. when M is diagonal, this would deliver a large and dense matrix, such that the
linear systems can not be solved rapidly by both direct or iterative solvers. If linear
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systems with M can be solved efficiently, one could suggest to employ iterative solvers
which only require one or a few matrix vector products with the coefficient matrix
µ2M −µD+K in each iteration step, so that linear systems with M have to be solved
in each step of the iterative solver. This, however, might easily become too expensive.
Even more general variants of proportional damping of the form

Dprop = Mf1(M−1K) +Kf2(M−1K)

are considered in [32], where f1, f2 are analytic function in the neighborhood of
Λ(M−1K). Another class of damping matrices leading to similar or even severe prob-
lems are given by critical damping [33]

Dcrit = 2M
1
2

√
M−

1
2KM−

1
2M

1
2 . (19)

Of course, construction of this matrix is out of the question since it will also be
large and dense. Moreover, in addition to the required linear systems for the above
construction, computing the square root of a large sparse matrix might not be possible.
One way out could be to consider these damping matrices as a matrix function f(M) or
f(M−1K), e.g., f(x) = 1/x would formally correspond to M−1. There are approaches
in the literature which approximate a product f(M)t, t ∈ Rn for large and sparse
matrices [34]. Since only matrix vector products are needed to run an iterative solver
for linear systems it might be possible that this approach enables the efficient solution
of (16). However, since an extensive study on how to treat these difficult damping
versions is beyond the scope of this paper we restrict ourselves to cases where D can
still be employed without the requirement to approximate matrix functions.

It is also possible to combine one or more of the above damping approaches with
external or small-rank damping [35, 36]

Dext = FFT ≥ 0, F ∈ Rn×h, h� n, (20)

for instance,

D = Dprop +Dext. (21)

If Dprop can still be handled by sparse techniques, then the linear systems (16) can be
solved by utilizing the Sherman-Morrison-Woodbury formula [37]:

Q(−µ)−1 = Q̂(µ)−1 + µQ̂(−µ)−1F
[
Ig − µFT Q̂(−µ)−1F

]
FT Q̂−1(−µ), (22)

where Q(µ) := µ2M + µD +K and Q̂(µ) := µ2M + µDprop +K.

4.4 Termination Criteria

Now we discuss when to stop Algorithms 1 or 2. At first we investigate the Lyapunov
residual and afterwards the singular values of ZHα MZβ , α, β ∈ {p, v}. We do not
consider alternative stopping criteria based on, e.g., the relative change in the low-
rank factor Z [21, 13].
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4.4.1 Computing the Lyapunov Residual

A common termination criterion for algorithms solving particular equations is to stop
when the residual, i.e., its norm, is sufficiently small. For large-scale Lyapunov equa-
tions this is difficult, since the residual

Rk = AXkE
T + EXkA

T +GGT

is a large and dense matrix, such that even constructing and storing it is infeasible
and computing, e.g., the spectral norm is expensive. Since Rk is a symmetric matrix,
‖Rk‖2 coincides with the spectral radius of Rk. Taking the low-rank structure Xk =
ZkZ

T
k provided by G-LR-ADI into account, one could use a power iteration or a

Lanczos process (see, e.g., [37]) to retrieve this eigenvalue [7]. This would require
only matrix vector products with A,E,G,Z and their transposes. Unless the power
iteration or Lanczos process converge in very few steps, this can still lead to a high
portion of computational effort in a run of G-LR-ADI. Especially the power iteration
tends to converge increasingly slow when the residual gets smaller. The next theorem
gives a novel result on the structure of Rk within G-LR-ADI and enables a much
cheaper computation of ‖Rk‖2. Note that it also applies to SO-LR-ADI since it is
mathematically equivalent to G-LR-ADI. However, to ease the representation further
up, we consider LR-ADI and the standard Lyapunov equation

ÂX +XÂT + ĜĜT = 0, Â := E−1A, Ĝ := E−1G (23)

which is equivalent to G-LR-ADI and the generalized matrix equation (15). We also
work on the complex version of the algorithm.

Theorem 4.1. The residual at step k of LR-ADI is of rank at most m and given by

R̂k = ÂZkZ
H
k + ZkZ

H
k Â

T + ĜĜT = ŴkŴ
H
k , Ŵk := (Â− µkIn)Vk ∈ Cn×m.

If µk 6∈ Λ(A) for all k then the rank is exactly m.

Proof. It can be easily shown that for all µ /∈ Λ(Â) (23) is equivalent to the Stein
equation (discrete-time Lyapunov equation)

X = C(Â, µ)XC(Â, µ)H +X1, (24)

with X1 = Z1Z
H
1 being the first approximate solution of (23) obtained with Algorithm

1 and the complex Cayley type transformation

C(Â, µ) := (Â− µIn)(Â+ µIn)−1. (25)

Using this and [38, Lemma 5.2-3], [39, Lemma 3.5.1-2] one can show that the residual
with respect to Algorithm 1 and (23) can be written as

R̂k = ÂXk +XkÂ
T + G̃G̃T = Â(Xk −X) + (Xk −X)ÂT = ŴŴH (26)
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with

Ŵ :=

k∏
j=1

C(Â, µj)Ĝ. (27)

There, we used that X0 = 0 in our setting. This already shows that rank (Rk) = m.
Now note that the increment Vk in step 7 can be expressed as

Vk = (Â− µk−1In)(Â+ µkIn)−1Vk−1

= (Â− µk−1In)(Â+ µkIn)−1(Â− µk−2In)(Â+ µk−1In)−1Vk−2

= (Â+ µkIn)−1(Â− µk−1In)(Â+ µk−1In)−1(Â− µk−2In)Vk−2

= . . . = (Â+ µkIn)−1
k−1∏
j=1

C(Â, µj)Ĝ, (28)

where we exploited that Â ± µIn and (Â ± ξIn)−1 commute for all µ and ξ /∈ Λ(Â).
Comparing (27) and (28) yields the desired result. Now if any shift µk is an eigenvalue
of Â, then the inverse in (25) still exists, but the matrix Â− µIn has rank deficiency
and thus the rank of Rk may drop below m.

This novel result enables the computation of the spectral or Frobenius norm of
the Lyapunov residual via ‖R̂k‖ = ‖ŴkŴ

H
k ‖ = ‖ŴH

k Ŵk‖ = ‖Ŵk‖2 which is much
cheaper than the other approaches mentioned above. The only requirement is an
extra product of Â with Vk and the computation of the norm of a thin rectangular
matrix. The result is exact compared to the approximate results obtained with power
iteration and Lanczos. Moreover, the computational effort to compute ‖R̂‖2 via this
new approach stays essentially constant whereas using power or Lanczos iteration gets
increasingly expensive since the number of columns in Z is growing. For generalized
Lyapunov equations one has

Rk = ER̂kE
T = EŴŴHET = WkW

H
k , Wk := (A− µkE)Vk.

By taking the block structure of A,E of our particular application into account this
becomes

Wk,1 :=

[
−µkNV (p)

k +NV
(v)
k

−KV (p)
k −DV (v)

k − µkMV
(v)
k

]
,

Wk,2 :=

[
−KV (p)

k − µkDV (p)
k − µkMV

(v)
k

−µkFV (p)
k + FV

(v)
k

]
,

(29)

for SO-LR-ADI and the first (Wk,1) and second (Wk,2) companion linearizations (3a),
(3b).
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4.4.2 Monitoring the Hankel Singular Values

Although the theorem above reveals an elegant and cheap way to compute the Lya-
punov residual norm, it is not always the proper measure for stopping the iteration.
It has been observed frequently that this quantity is not necessarily related to the
accuracy of the reduced order model one wishes to compute using balanced trunca-
tion. For instance, even if the Lyapunov residual is still large, the reduced order model
constructed with this low-rank factor Z can nevertheless be accurate.

In [9] a more problem oriented stopping criterion for (G-)LR-ADI was proposed
which we are going to adapt to second order balanced truncation here. In balanced
truncation, the quantities of interest are the dominant Hankel singular values which are
revealed by the SVD (8). If both Gramians are identical, the data needed to compute
this SVD are given in each step of G-LR-ADI and one can monitor the leading, say
r � n, Hankel singular values with respect to their relative change compared to the
previous ADI iteration. This suggests to stop the algorithm, e.g., when

‖σ(k) − σ(k−1)‖∞ < θσσ
(k)
1 , (30)

where σ(j) = [σ
(j)
1 , . . . , σ

(j)
r ] is the vector containing the leading r singular values

at step j of G-LR-ADI and 0 < θσ � 1 a small constant. Of course, the above
relative change can only be computed once the low-rank factor Z has at least r linearly
independent columns which determines a startup phase for G-LR-ADI. Note that for
the case P 6= Q this approach can still be employed when both generalized Lyapunov
equations are solved simultaneously with the dual G-LR-ADI [9, Algorithm 1].

Of course, this approach is also applicable for second order balanced truncation for
symmetric systems, where according to (11) one has to monitor the singular values of
Sk := ZHk,αMZk,β , where α, β ∈ {p, v} determine if the first or last n rows of Z are
used, depending on the chosen second order balanced truncation type (see Section 3).
The matrix Sk can be accumulated efficiently via

Sk = ZHα MZβ = [Zk−1,α, γV
(α)
k ]HM [Zk−1,β , γV

(β)
k ]

=

[
Sk−1 γZk−1,αMV

(β)
k

γ(V
(α)
k )HMZk−1,β γ2(V

(α)
k )HMV

(β)
k

]
,

where further savings are possible if α = β.
In any case, computing the km × km SVD in every step can easily become more

expensive than the computation of the residual norm. One way to reduce the cost of
this step, but also of the whole iteration, is to employ column compression techniques

on Z [13]. Alternatively, since Sk is obtained by adding new columns γZk−1,αMV
(β)
k

and new rows [γ(V
(α)
k )HMZk−1,β , γ

2(V
(α)
k )HMV

(β)
k ] to Sk−1, updating strategies for

the SVD [40, 41] can be employed to reduce to cost for computing the SVD of Sk.
There, either new rows or column are added to a matrix with an already known SVD
and not both as it is the situation here, such that the proposed updating strategies
might have to be modified. For most of our Examples the encountered SVDs were
quite small and only minor savings were expected from this ideas such that we did not
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pursue them further. Once the SO-LR-ADI terminates using this stopping criterion,
the SVD of Sk can be directly used for constructing T̃l,αβ , T̃r,αβ in (12).

5 Numerical Examples

Now we shall evaluate the second order balanced truncation approach and the SO-LR-
ADI method as discussed in the two prevailing sections numerically. All experiments
were carried out in MATLAB R© 7.11.0 on a compute server using 4 Intel R©Xeon R©@2.67
GHz CPUs with 8 cores per CPU and 1 TB RAM.

We compare the accuracy of the balanced truncation approach by using the fre-
quency response plots of the transfer function matrices of the original and reduced
systems

H(s) = (Cp + sCv)(s2M + sD +K)−1B,

H̃(s) = (C̃p + sC̃v)(s2M̃ + sD̃ + K̃)−1B̃,

H̃f (s) = L̃(sẼ − Ã)−1G̃,

where in our situation depending on the kind of symmetric second order system, either
Cp or Cv is used and H̃f (s) denotes the transfer function matrix of the reduced system
of first order. The value of s is chosen from an interval [ωmin, ωmax] along the
imaginary axis for frequencies ωmin < ωmax ∈ R. The relative errors of the reduction
approaches

e(s) := ‖H(s)− H̃(s)‖�‖H(s)‖ and ef (s) := ‖H(s)− H̃f (s)‖�‖H(s)‖

are considered as well.
The following test systems are used:

Example 5.1. The first model∗ constitutes a Bernoulli beam, where a finite element
discretization leads to a symmetric second order system of the first kind with dimension
n = 3000 and m = 1.

Example 5.2. The next test system is taken from [42] and models a cantilever Tim-
oshenko beam. Choosing 500 elements leads to n = 3000. It belongs to the first kind
as well with m = 1 and Cp = −BT .

Example 5.3. The Butterfly Gyro is also taken from the Oberwolfach Model Reduction
Benchmark Collection† and models a vibrating mechanical gyroscope for the use in an
inertia sensor. The original matrices arise from a finite element discretization and
are of dimension n = 17361. The damping matrix is D = ξ0M + ξ1K, ξ0 = 10−5,
ξ1 = 10−6. The system as such is not a symmetric one but comes with an output
matrix Cp ∈ R12×n and we just take B = CTp as input matrix.

∗Provided by C. Nowakowski, Institute of Engineering and Computational Mechanics, University
Stuttgart.

†Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark.
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Example 5.4. The scalable triple chain oscillator [35] describes three coupled chains
of masses interlinked with springs and dampers. The mass and stiffness matrices M
and K are symmetric and of dimension n = 150001, whereas the damping matrix D
is modeled as proportional plus small rank damping

D = ξ0M + ξ1K + ξ2KM
−1K + ξ3K(M−1K)2 + UUT ,

where ξ0 = 0.2, ξi = 0.1 (i = 2, 3, 4) and U ∈ Rn×10 contains 10 randomly selected
columns of In. Since M is only a diagonal matrix the above Caughey series of length
4 can be computed explicitly. The result is a multidiagonal matrix of bandwidth 7 with
a low-rank update. We also set CTv = B ∈ Rn×5 random to make this a system of the
second kind.

We employ the SO-LR-ADI method for solving the Lyapunov equations and test the
different stopping criteria discussed in the previous section. On the one hand when the
normalized residual norm is small enough, i.e. ‖R‖/‖BBT ‖ < θres, 0 < θres < 1 and
on the other hand when (30) is satisfied. The residual norm is computed via the low-
rank structure of Rk proposed above and for comparison also via the older approach
using a Lanczos iteration. Note that the SVDs or residuals norms are only computed
after a complex pair of shifts has been processed completely since then the low-rank
factor can be augmented with real columns according to Algorithm 2. For the shift
parameter computations we use the heuristic approach [7], where J shifts are generated
from k+ and k− Ritz values of E−1A and A−1E, respectively. The values n,m and
for later use the considered frequency interval [ωmin,ωmax], all relevant parameters for
SO-LR-ADI, as well as the results for all examples are summarized in Table 2. In the
upper part of Table 2 the normalized residual norm (‖Rk‖/‖R0‖) was used as stopping
criterion. There, θres denotes the tolerance used for the normalized residual, kiter are
the number of required SO-LR-ADI iterations, tADI denotes the time spent in the SO-
LR-ADI without the computations regarding stopping criteria. The timings tres and
tLan give the times needed to compute ‖Rk‖ with the novel relation (29) and via a
Lanczos iteration, respectively, where we also give the average times over the complete
run in brackets. The lower part of this table is devoted to the experiments when the
singular value based criterion (30) is used. The quantities tADI and kiter are as above,
tSVD denotes the time needed for computing the SVDs. The numbers in brackets are
again the averages over all iterations, where the SVD computation was performed.
The values θσ, rmin, αβ refer to the threshold used in (30), the minimum number of
columns in Z, and the corresponding second order balanced truncation type.

From the timings it is evident that SO-LR-ADI is capable of solving the large-
scale, sparse and structured generalized Lyapunov equations to the desired accuracy
in a reasonable amount of time. Note that solving the Lyapunov equation of, for
instance, Example 5.1 of dimension 6000 directly with the Bartels-Stewart algorithm
[16] (lyap(A,B*B’,[],E) command in MATLAB R©) or with Hammarlings method [15]
(lyapchol(A,B,E) command in MATLAB R©) was not possible.

The timings tres, tLan for the computations of ‖R‖ clearly shows the superiority of
our novel approach (29) over the older, traditional approach using a Lanczos itera-
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Table 2: Specifications of the used examples as well as parameters and results of the
SO-LR-ADI runs. All timings are given in seconds.

Example 5.1 5.2 5.3 5.4

n, m 3000, 1 3000, 1 17361, 12 150001, 5

ωmin,ωmax [Hz] 1, 104 10−1, 104 1, 105 10−3, 10

J, k+, k− 30, 45, 45 60, 50, 80 40, 60, 50 60, 100, 80

θres 10−8 10−8 10−6 10−6

kiter 57 354 102 429

tADI 0.46 2.96 149.54 1998.6

tres (avg.) 0.064 (0.0015) 0.19 (0.001) 6.49 (0.12) 53.05 (0.126)

tLan (avg.) 0.45 (0.011) 2.93 (0.015) 94.39 (1.78) 6094.8 (1.5)

θσ 10−8 10−8 10−8 10−8

rmin 20 35 50 400

αβ PP VV PP PV

kiter 28 63 33 202

tADI 0.25 0.61 50.38 449.54

tSVD (avg.) 0.013 (0.0016) 0.057 (0.0034) 2.65 (0.17) 864.37 (7.14)

tion. With the latter one, a significantly large portion of CPU time tLan is spent on
computing the Lyapunov residual norm. In some cases this is almost equal to the SO-
LR-ADI execution time tADI (Examples 5.1 and 5.2) or even greater (Example 5.4).
The average time when exploiting the symmetric low-rank structure of R is always
much smaller than using Lanczos.

Using these approximate solutions of the Lyapunov equations within balanced trun-
cation model order reduction still leads to very accurate reduced order models. Exem-
plary for Example 5.1, Figure 1 shows the Bode and relative error plots of the reduced
systems of order r = 20 with respect to all four second order balanced truncations ap-
proaches, as well as, of the reduction to a first order system of twice the order rf = 40.
Apparently, there is no visible difference of exact and reduced models in the Bode
plot. See [29] for a similar experiment. Next we investigate the singular value based
termination criterion, i.e., the lower part of Table 2. Obviously, this criterion leads to
a much lower number of required SO-LR-ADI steps compared to the residual based
criterion for all examples. Clearly this also yields less time needed for SO-LR-ADI.
This is especially outstanding for Example 5.2, where using the singular value based
criterion required only 63 iteration which is much smaller than the 354 iterations when
using the residual. The large number of iterations in the latter case can be explained
by the fact that this system has a lot of eigenvalues very close to the imaginary axis
which can deteriorate the convergence speed of ADI type methods. In Figure 2(a) the
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Figure 1: Reduction results for the Bernoulli beam model resulting from the resid-
ual based stopping criterion.
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Figure 2: (a) History of normalized residual norm and relative change of singular
change (30) of singular values for Example 5.2. The black dashed line refers
to the tolerance of 10−8. (b) Relative errors obtained from both approaches
using VV second order balanced truncation.

residual norm and the relative singular value change are plotted against the iteration
number k. Note that when the singular values stop the algorithm, the normalized
residual is just of order 10−3, such that the solution of the Lyapunov equation might
be considered as very inexact. The question arises how this much earlier termination
affects the accuracy of the model order reduction. The relative errors of the VV-
reduced order models of order 35 obtained with both termination criteria are plotted
in Figure 2(b). As before, the Bode plots of original and reduced order models were
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Table 3: Largest relative errors of the reduced order models resulting from residual
and singular value based termination of SO-LR-ADI.

Example

5.1 5.2 5.3 5.4

residual based 1.213 · 10−10 1.696 · 10−6 9.513 · 10−7 3.96 · 10−4

σαβ based 1.216 · 10−10 1.641 · 10−5 1.033 · 10−6 2.2 · 10−3

not distinguishable. Astonishingly, both approaches yield reduced order models of a
comparable, satisfactory accuracy.

Table 3 summarizes the maximum relative errors from both termination approaches
for the other examples using the second order balanced truncation type and a reduced
order rmin as given in Table 2. For Example 5.2 the relative error of the model from
the residual based stopping is only slightly better. However, the singular value based
stopping approach gives this accuracy by requiring much less SO-LR-ADI iterations
and hence, much less computational effort. This can also be observed for the other
three test systems. It is therefore tempting to conclude that using (30) as stopping
criterion is always more efficient than using the residual.

However, as it can already been conjectured from Figure 2(a), the relative change
in the singular values shows an irregular behavior. Additionally, it depends on the
values rmin and α, β. Which choice will lead to the best results is in general not known
in advance. Figure 3 illustrates the irregular progress of (30) for all four possible
choices of α, β for Examples 5.3 and 5.4. For Example 5.3 the history of (30) is similar
for different choices of α, β corresponding to the designated second order balanced
truncation variant. In contrast, all four choices yield a considerably different progress
for Example 5.4. The PP, VV and PV settings lead to 82, 90 and 202 iterations of SO-
LR-ADI, respectively. The irregular convergence is apparent for both examples. For
all four test examples, however, using the singular value based termination lead always
to a lower number of SO-LR-ADI iterations then the residual based termination. In
similar experiments, the other way around occurred in a few cases when the threshold
θσ was chosen too small. In Example 5.4 the computational costs for the SVD based
criterion exceeded the costs of the main ADI iteration, so that using SVD updating
strategies [40, 41] might be appropriate. We leave their actual implementation in this
context for further work.

6 Conclusion and Outlook

We reviewed structure preserving balanced truncation for symmetric second order sys-
tems. As in [13, 27, 2, 28] the occurring large-scale generalized Lyapunov equations
were solved approximately with the SO-LR-ADI iterations. A new result showing the
low-rank structure of the Lyapunov residual in low-rank ADI methods was given. It
enables an efficient computation of the spectral norm of the residual which is much
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Figure 3: History of relative change (30) of different singular values for Example 5.3
(a) and 5.4 (b). The black dashed line refers to the tolerance of 10−8.

cheaper than existing approaches. Motivated by [9], another stopping criterion for
the SO-LR-ADI was proposed which inhibits a stronger emphasis on the sought re-
duced order model. It is based on monitoring the relevant singular values during the
SO-LR-ADI iteration. Numerical experiments with selected test systems confirm the
superiority of the novel approach for computing the spectral norm of the Lyapunov
residual over existing approaches. Using the singular value based stopping criterion
lead in most cases to a significantly reduced number of required ADI iterations and
still maintained a comparable accuracy of the reduced second order system in the end.
Although this approach is more dependent on several additional parameters in con-
trast to the Lyapunov residual, it seems to be more efficient in the majority of cases
for carrying out second order balanced truncation. The novel result on the Lyapunov
residual might nevertheless still be very useful in applications apart from balanced
truncation model order reduction, for instance solving large-scale algebraic Riccati
equation with low-rank Newton-ADI type algorithms [21, 13, 39, 38].
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[36] P. Benner, Z. Tomljanović, and N. Truhar, Optimal damping of selected eigenfre-
quencies using dimension reduction, Numerical Linear Algebra with Applications
(2011).

[37] G. Golub and C. Van Loan Matrix Computations, third Johns Hopkins University
Press, Baltimore, 1996.

[38] F. Feitzinger, T. Hylla, and E.W. Sachs, Inexact Kleinman-Newton Method for
Riccati Equations, SIAM J. Matrix Anal. Appl. 31 (2009), pp. 272–288.

[39] T. Hylla, Extension of inexact Kleinman-Newton methods to a general monotonic-
ity preserving convergence theory, PhD thesis, Universität Trier, 2011.

[40] M. Gu and S.C. Eisenstat, A Stable And Fast Algorithm For Updating The Sin-
gular Value Decomposition, Technical report, Department of Computer Science,
Yale University, 1994.

[41] M. Brand, Fast online SVD revisions for lightweight recommender systems, in
SIAM International Conference on Data Mining, 2003.

[42] H. Panzer, J. Hubele, R. Eid, and B. Lohmann, Generating a Parametric Finite
Element Model of a 3D Cantilever Timoshenko Beam Using MATLAB R©, Tech-
nical reports on automatic control, Institute of Automatic Control, Technische
Universität München, 2009.

24


	Introduction
	Symmetric Second Order Systems
	Applications
	Transformations to First Order Systems
	Reachability and Observability Gramians

	Balanced truncation
	First order systems
	Symmetric Second Order systems

	Solving Large-Scale Lyapunov Equations
	The low-rank ADI iteration
	Handling the Second Order Structure and Complex Shift Parameters
	Some Remarks on more General Damping Models
	Termination Criteria
	Computing the Lyapunov Residual
	Monitoring the Hankel Singular Values


	Numerical Examples
	Conclusion and Outlook

