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1 Introduction

Subdivision is a way to construct smooth surfaces out of polygonal meshes used in a variety of computer
graphics and geometric modeling applications. Two features of subdivision algorithms are particularly
important for applications. The first is the ability to handle a large variety of input meshes, including
meshes with boundary. The second is the ease of modification of subdivision rules, which makes it possible
to generate different surfaces (e.g. surfaces with sharp or soft creases) out of the same input mesh.

Importance of special boundary and crease rules was recognized for some time [12, 13, 8, 19]. However,
most of the theoretical analysis of subdivision [18, 16, 26, 25] focused on the case of surfaces without
boundaries and schemes invariant with respect to rotations. The goal of this paper is to develop the necessary
theoretical foundations for analysis of subdivision rules for meshes with boundary, and present analysis for
boundary rules extending several well-known subdivision schemes, described in [1].

In this paper, we consider surfaces with piecewise-smooth boundary. This class readily extends to a
broader class of piecewise-smooth surfaces with crease curves and corner points. We demonstrate how the
standard constructions of subdivision theory (subdivision matrices, characteristic maps etc.) generalize
to surfaces with piecewise-smooth boundary. We demonstrate that convex and concave boundary corners
inherenty require separate subdivision rules for the surfaces to have well-defined normals in both cases.

We proceed to extend the techniques for analysis of C1-continuity developed in [25] to the case of
piecewise-smooth surfaces with boundary. While we briefly consider Ck-continuity, we focus on C1-continuity
conditions.

The result allowing one to analyze C1-continuity of most subdivision schemes for surfaces without bound-
aries is the sufficient condition of Reif [18]. This condition reduces the analysis of stationary subdivision to
the analysis of a single map, called the characteristic map, uniquely defined for each valence of vertices in
the mesh. The analysis of C1-continuity is performed in three steps for each valence:

1. compute the control net of the characteristic map;

2. prove that the characteristic map is regular;

3. prove that the characteristic map is injective.

We show that similar conditions hold for surfaces with boundary, and under commonly satisfied assumptions
injectivity of the characteristic map for surfaces with boundary can be inferred from regularity.

Finally, we use the theory that we have developed to derive and analyze several specific boundary sub-
division rules, initially proposed in [1].

∗An incomplete version of this work was a part of the first author’s PhD thesis, which was unfinished at the time of his

untimely passing from cancer
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Previous work The theory presented in this paper is based on the theory developed for closed surfaces
in [18, 26, 25], which was recently extended to subdivision on manifolds in [22, 21, 23]. Subdivision schemes
for closed surfaces were analyzed in [16, 25]. Most of the standard theory is also summarized in the Book
by Reif and Peters [17].

As far as we know, analysis of C1-continuity of subdivision rules for surfaces with boundary was performed
only in [19], where a particular choice of rules extending Loop subdivision was analyzed.

At the same time, substantial number of papers proposed various boundary rules starting with the first
papers on subdivision by Doo and Sabin, and Catmull and Clark [2, 6, 12, 14, 8]. Most recently, a method
for generating soft creases was proposed in [5] and a complexity analysis was done in [15]

2 Surfaces with Piecewise-smooth Boundary

2.1 Definitions

In this section we define surfaces with piecewise-smooth boundaries. Unlike the case of open surfaces, there
is no commonly accepted definition that would be suitable for our purposes. We consider several definitions
of surfaces with boundaries and motivate the choice that we make (Definition 2.3).

The least restrictive definition of a closed surface with boundary is a closed part of an open surface. This
definition is too general for our purposes but provides a useful starting point.

Definition 2.1. Let M be a closed topological space with boundary, and f a map from M to Rp. We say
that (M,f) is a closed Ck surface with boundary, if there is an open Ck-continuous surface (M ′, f ′)
and an injective inclusion map ι : M →M ′, such that f ′ ◦ ι = f .

The boundary is often restricted to be a union of nonintersecting Ck-continuous curves (cf. [11],[7])
Assuming that the domains of these curves are separated in M ′, this type of surfaces can be defined using
two local charts, the open unit disk D and the half-disk Q2 = H ∩D, where H is the closed halfplane defined
by H = {(x, y)|y ≥ 0}.

This definition is too narrow for geometric modeling applications, as surfaces with corners (e.g. surfaces
obtained by smooth deformations of a rectangle) are quite common. To include corners, we have to allow
isolated singularities for the boundary curves. We consider a broader class of surfaces, which we call Ck-
continuous surfaces with piecewise Ck-continuous boundary.

Definition 2.2. Let (M,f), f :M → Rp be a closed Ck-continuous surface with boundary as defined above,
Let γi : [0, 1] →M , i ∈ I, where I is finite, be a set of curve segments, such that each endpoint is shared by
exactly 2 segments, and the curve segments intersect only at endpoints. Suppose the boundary of M coincides
with the intersection of the images of the curve segments ∩iImγi, the curves f ◦ γi are C

k-continuous. Then
we call (M,f) a Ck-continuous surface with piecewise Ck-continuous boundary.

The definition implies existence of the tangents to the boundary curves at the endpoints. If the tangents
are collinear, two adjacent curves, may either meet in a cusp or a Cm-continuous joint for 0 < m ≤ k. In
either case, k different charts are required to parametrize the surface to distinguish the different types, as
two curves with a contact point of order m are clearly not Ck-diffeomorphic to two curves with a contact
point of order n 6= m, for n,m ≤ k.

Transversality assumption. We assume that the adjacent boundary curve segments intersect trans-
versely, that is, their tangents are different at the shared endpoint. We call such endpoints of boundary
curve segments nondegenerate corners. Thus, the surfaces that we consider do not contain cusps or
Cm-continuous joints for 0 < m < k,

Once we exclude the higher-order contact cases, we can use a more constructive equivalent definition of
surfaces with piecewise Ck-continuous boundary with nondegenerate corners. We use four charts, for all
possible types of points of the surface (Figure 1). In addition to the disk D and the halfdisk Q2, we use a
quarter of the disk Q1 and three quarters of the disk Q3. The domains Qi i = 1, 3 are defined as follows:
Q1 = {(x, y)|y ≥ 0 and x ≥ 0} ∩D, Q3 = {(x, y)|y ≥ 0 or x ≥ 0} ∩D.

Now we can give an alternative definition of a Ck-continuous surface with piecewise smooth boundary
with nondegenerate corners:
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(A) (B) (C) (D)

Figure 1: Types of local chart (A) is the disk D, (B) is he quarter disk Q1, (C) is the half disk Q2 and (D)
is the three-quarter disk Q3

Definition 2.3. Consider a surface (M,f) where M is a topological space, and f is a map f : M →
Rp. The surface (M,f) is called Ck-continuous with piecewise Ck-continuous boundary with non-

degenerate corners if for any x there is a neighborhood Ux and a regular Ck-continuous parametrization
of f(Ux) over one of the domains Qi, i = 1, . . . 3, or over the disk D. In the first case, we call the point x a
boundary point, in the second case an interior point. We distinguish two main types of boundary points: if
Ux is diffeomorphic to Q2, the boundary point is called smooth; otherwise it is called a corner. There are 2
types of corners:

• convex corners (Ux is diffeomorphic to Q1);

• concave corners (Ux is diffeomorphic to Q3);

For brevity, we will also use the term Ck-continuous surface with piecewise-smooth boundary.
Equivalence of definitions 2.3 and 2.2 with degenerate corners excluded is straightforward to show using

the well-known facts about existence of the extensions of functions defined on Lipschitz domains to the plane.
Surfaces satisfying Definition 2.3 can be used to model a large variety of features; for example, by joining

the surfaces along boundary lines we can obtain surfaces with creases. However, in addition to boundary
cusps, a number of useful features such as cones cannot be modeled, unless degenerate configurations of
control points are used.

2.2 Tangent Plane Continuity and C
1-continuity

As we will see in Section 3, analysis of subdivision focuses on the behavior of surfaces which are known to
be at least C1-continuous in a neighborhood of a point, but nothing is known about the behavior at the
point. In this case, it is convenient to split the analysis into several steps, the first being tangent plane

continuity. In the definition below, we use ∧ to denote the exterior product (vector product for p = 3) and
[·]+ to denote normalization of a vector.

Definition 2.4. Let D be the unit disk in the plane. Suppose a surface (M,f) in a neighborhood of a point
x ∈M is parametrized by h : U → Rp, where U is a subset of the unit disk D containing 0, which is regular
everywhere except 0, and h(0) = f(x). Let π(y) = [∂1h ∧ ∂2h]+. where ∂1h and ∂2h are derivatives with
respect to the coordinates in the plane of the disk D. The surface is tangent plane continuous at x if the
limit limy→0 π(y) exists.

For an interior point x for which the surface is known to be C1-continuous in a neighborhood of the point
x excluding x, the surface is C1-continuous at x if and only if it is tangent plane continuous and the projection
of the surface into the tangent plane is injective ([26], Proposition 1.2). The proof of this proposition does
not assume that the surface is defined on an open neighborhood of x. C1 continuity for an interior point x is
inferred from existence and C1 continuity of two independent derivatives of reparametrization of the surface
over the tangent plane. This fact alone is not sufficient to guarantee that the surface has piecewise continuous
boundary with nondegenerate corners: we need to impose an additional condition on the boundary curve.
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We can see that the boundary of (M,f) has a nondegenerate corner at x if there is a neighborhood Ux such
that f(Ux) ∩ f(∂M) admits a parametrization by two C1-continuous curves γi : (0, 1] → Rp, i = 1, 2, such
that γ1(1) = γ2(1) = f(x), and the tangents to the curves are different at the common endpoint x.

Proposition 2.1. Suppose a surface (M, f) is C1-continuous with C1-continuous boundary in a neighborhood
Ux of a boundary point x excluding x. The surface is C1-continuous at x with piecewise C1-continuous
boundary if and only if it is

1. tangent plane continuous,

2. the projection of the surface into the tangent plane is injective,

3. the boundary either has a nondegenerate corner at x or is C1-continuous at x.

Proof. Necessity of these conditions is straightforward. Most of the proof of sufficiency coincides with the
proof of Proposition 1.2 from [26]: if we assume only that the surface is tangent plane continuous and the
projection into the tangent plane is injective, we can show that the derivatives in two independent directions
of π, the inverse of a projection of the surface into the tangent plane, exist and are continuous at point x.

It remains to show that the surface is C1-diffeomorphic to one of the domains Qi, i = 1, 2, 3.
As the boundary curves γi are C

1-continuous, and their tangents are in the tangent plane to the surface
at all points, their projections Pγi into the tangent plane at x are also C1-continuous. At the point x the
tangents to the curves are in the tangent plane at x, and coincide with the tangents to the projections.
By construction, the domain of π, the image of the projection of the surface into the tangent plane, is
homeomorphic to a halfdisk. We have shown that the image of the boundary diameter of the halfdisk is
C1-continuous or C1-continuous with a nondegenerate corner at x. The neighborhood Ux can be chosen in
such a way that Pf(∂Ux \∂M), the image of the part of the boundary of Ux which is not the boundary ofM ,
is a semicircle centered at x and intersects the curves Pγi only at a single point each. (We omit somewhat
tedious but straightforward proof of this fact.)

Thus, our surface can be parametrized in a neighborhood of x over a planar domain Pf(Ux) which is
a subset of an open disk DPf(x) bounded by two C1 curve segments connecting the center Pf(x) to the
boundary. Let l1 and l2 be the rays along tangent directions to γ1 and γ2 at x (possibly collinear). Then
for sufficiently small radius of the neighborhood, we can assume that orthogonal projections of γi to li is
injective. Note that l1∩ l2 split the disk DPf(x) into two parts D1 and D2; either both parts are half-disks, or
one part is convex and the other concave. Now we can directly construct a C1-diffeomorphism of the domain
Pf(Ux) to one of the domains D1 and D2. For example, in the simplest case of l1 and l2 being collinear,
we can use a coordinate system (s, t) in which l1 and l2 form the s axis, and γ1 and γ2 form a graph of a
function γ(s). Assuming that the disk DPf(x) has radius 1 the formula

(s, t) →

(

s,
√

1− s2
t− γ(s)

√

(1− s2)− γ(s)

)

defines the desired diffeomorphism.
We have shown that the surface has a parametrization g over one of the domains Qi i = 1, 2, 3 in

the neighborhood of x, which has C1-continuous derivatives everywhere on Qi with nowhere degenerate
Jacobian.

This proposition provides a general strategy for establishing C1-continuity of surfaces, which is partic-
ularly convenient for subdivision surfaces. Moreover, as we shall see, in most cases of practical importance
we can infer the injectivity of the projection from the other two conditions, so only local tests need to be
performed.

3 Subdivision Schemes on Complexes with Boundary

In this section we summarize the main definitions and facts about subdivision on complexes that we use;
more details for the case of surfaces without boundaries can be found in [26, 24]. The changes that have
to be made to make the constructions work for the boundary case are relatively small. We restrict the
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presentation to the case of schemes for triangle meshes to avoid making the notation excessively complex.
However, the results equally apply to quadrilateral schemes; only minor changes in notation are necessary.

3.1 Definitions

Simplicial complexes. Subdivision surfaces are naturally defined as functions on two-dimensional polyg-
onal complexes. A simplicial complex K is a set of vertices, edges and planar simple polygons (faces) in
RN , such that for any face its edges are in K, and for any edge its vertices are in K. We assume that there
are no isolated vertices or edges. |K| denotes the union of faces of the complex regarded as a subset of RN

with induced metric. We say that two complexes K1 and K2 are isomorphic if there is a homeomorphism
between |K1| and |K2| that maps vertices to vertices, edges to edges and faces to faces.

A subcomplex of a complex K is a subset of K that is a complex. A 1-neighborhood N1(v,K) of a vertex
v in a complex K is the subcomplex formed by all faces that have v as a vertex. The m-neighborhood of a
vertex v is defined recursively as a union of all 1-neighborhoods of vertices in the (m − 1)-neighborhood of
v. We omit K in the notation for neighborhoods when it is clear what complex we refer to.

Recall that a link of a vertex is the set of edges of N1(v,K) that do not contain v. We consider only
complexes with all vertices having links that are connected simple polygonal lines, open or closed. If the link
of a vertex is an open polygonal line, this vertex is a boundary vertex, otherwise it is an internal vertex.

In the analysis of schemes for surfaces without boundary the regular complex R and k-regular complexes
Rk are are commonly used [26]. We are primarily interested in schemes that work on quadrilateral and
triangle meshes, and we consider k-regular complexes with all faces being identical triangles or quads;
however, similar complexes can be defined for the remaining regular tiling, with all faces being hexagons,
and more generally for any Laves tiling. For schemes acting on meshes with boundary we use regular and
k-regular complexes with boundary. A regular complex with boundary is isomorphic to a regular tiling of
the upper half-plane. A k-regular complex Rα

k with apex angle α is isomorphic to the regular tiling of a
sector with apex angle α, consisting of identical polygons, with all internal vertices of equal valence and all
vertices on the boundary of equal valence, excluding the vertex C at the apex which has valence k + 1. For
triangle meshes the valence of regular interior vertices is six, and for boundary vertices it is three.

Note that the complex is called k-regular, because the number of faces sharing the vertex C is k, not the
number of edges. In the case of closed surfaces these numbers are equal.

Tagged complexes. The vertices, edges or faces of a complex can be assigned tags, or more formally, a
map can be defined from the sets of vertices, edges or faces to a finite set of tags. These tags can be used
to choose a type of subdivision rules applied at a vertex. In this paper, we use tags in a very limited way:
specifically, a boundary vertex can be tagged as a convex or concave corner, or a smooth boundary vertex.
However, as it is discussed below, the tags can be used to create creases in the interior of meshes and for
other purposes. Subdivision on tagged complexes merits a separate detailed consideration in a future paper.

Isomorphisms of tagged complexes with identical tag sets can be defined as isomorphisms of complexes
which preserve tags, i.e. if a vertex has a tag τ its image also has a tag τ .

Subdivision of simplicial complexes. We can construct a new complex D(K) from a complex K by
subdivision. For a triangle scheme, D(K) is constructed by adding a new vertex for each edge of the complex
and replacing each old triangular face with four new triangles. If some faces of the initial complex are not
triangular, they have to be split into triangles first. For a quadrilateral scheme, D(K) is constructed by
adding a vertex for each edge and face, and replacing each n-gonal face with n quadrilateral faces. Note that
k-regular complexes and k-regular complexes with boundary are self-similar, that is, D(Rk) and Rk, as well
as D(Rα

k ) and Rα
k , are isomorphic.

We use notation Kj for j times subdivided complex Dj(K) and V j for the set of vertices of Kj . Note
that the sets of vertices are nested: V 0 ⊂ V 1 ⊂ . . ..

If a complex is tagged, it is also necessary to define rules for assigning tags to the new edges, vertices and
faces. For our vertex tags, we use a trivial rule: all newly inserted boundary vertices are tagged as smooth
boundary.
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Subdivision schemes. Next, we attach values to the vertices of the complex; in other words, we consider
the space of functions V → B, where B is a vector space over R. The range B is typically Rl or Cl for some
l. We denote this space P(V,B), or P(V ), if the choice of B is not important.

A subdivision scheme for any function pj(v) on vertices V j of the complex Kj computes a function
pj+1(v) on the vertices of the subdivided complex D(K) = K1. More formally, a subdivision scheme is
a collection of operators S[K] defined for every complex K, mapping P(K) to P(K1). We consider only
subdivision schemes that are linear, that is, the operators S[K] are linear functions on P(K). In this case
the subdivision operators are defined by equations

p1(v) =
∑

w∈V

avwp
0(w)

for all v ∈ V 1. The coefficients avw may depend on K.
We restrict our attention to subdivision schemes which are finitely supported, locally invariant with

respect to a set of isomorphisms of tagged complexes and affinely invariant.
A subdivision scheme is finitely supported if there is an integerM such that avw 6= 0 only if w ∈ NM (v,K)

for any complex K (note that the neighborhood is taken in the complex Kj+1). We call the minimal possible
M the support size of the scheme.

We assume our schemes to be locally defined and invariant with respect to isomorphisms of tagged com-
plexes. Together these two requirements can be defined as follows: there is a constant L such that if for
two complexes K1 and K2 and two vertices v1 ∈ V1 and v2 ∈ V2 there is a tag-preserving isomorphism
ρ : NL(v1,K1) → NL(v2,K2), such that ρ(v1) = v2, then av1w = av2ρ(w). In most cases, the localization size
L =M .

The final requirement that we impose on subdivision schemes is affine invariance: if T is a linear transfor-
mation B → B, then for any v Tpj+1(v) =

∑

avwTp
j(v). This is equivalent to requiring that all coefficients

avw for a fixed v sum up to 1.
For each vertex v ∈ ∪∞

j=0V
j there is a sequence of values pi(v), pi+1(v),. . . where i is the minimal number

such that V i contains v.

Definition 3.1. A subdivision scheme is called convergent on a complex K, if for any function p ∈ P(K,B)
there is a continuous function f defined on |K| with values in B, such that

lim
j→∞

sup
v∈V j

∥

∥pj(v)− f(v)
∥

∥

2
→ 0

The function f is called the limit function of subdivision.

Notation: f [p] is the limit function generated by subdivision from the initial values p ∈ P(K).
It is easy to show that if a limit function exists, it is unique. A subdivision surface is the limit function

of subdivision on a complex K with values in R3. In this case we call the initial values p0(v) the control
points of the surface.

Assuming the trivial rule for assigning tags to the newly inserted boundary vertices, we observe that
locally any surface generated by a subdivision scheme on an arbitrary complex can be thought of as a part
of a subdivision surface defined on a k-regular complex or a k-regular complex with boundary.

Note that this fact alone does not guarantee that it is sufficient to study subdivision schemes only on
k-regular complexes and k-regular complexes with boundary [26]. If the number of control points of the
initial complex for a k-gonal patch is less than the number of control points of the central k-gonal patch in
the k-regular complex, then only a proper subspace of all possible configurations of control points on the
subdivided complexes can be realized. Although it is unlikely, it is possible that for such complexes almost
all configurations of control points will lead to non-smooth surfaces, while the scheme is smooth on the
k-regular complexes.

Subdivision matrices. Consider the part of a subdivision surface f [y] with y ∈ U j
1 = |N1(0,R

j
k)|, defined

on the domain formed by faces of the subdivided complex Rj
k adjacent to the central vertex. It is straight-

forward to show that the values at all dyadic points in |N1(0,R
j
k)| can be computed given the initial values

pj(v) for v ∈ NL(0,R
j
k). In particular, the control points pj+1(v) for v ∈ NL(0, R

j+1
k ) can be computed using
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only control points pj(w) for w ∈ NL(0,R
j
k). Let p̄

j be the vector of control points pj(v) for v ∈ NL(0,R
j
k).

Let p + 1 be the number of vertices in NL(0,Rk). As the subdivision operators are linear, p̄j+1 can be
computed from p̄j using a (p+ 1)× (p+ 1) matrix Sj : p̄j+1 = Sj p̄j

If for some m and for all j > m, Sj = Sm = S, we say that the subdivision scheme is stationary on the
k-regular complex, or simply stationary, and call S the subdivision matrix of the scheme.

Eigenbasis functions. let λ0 = 1, λi, . . . λJ be different eigenvalues of the subdivision matrix in nonin-
creasing order, the condition λ0 > λ1 is necessary for convergence.

For any λi let J
i
j , j = 1 . . . be the complex cyclic subspaces corresponding to this eigenvalue.

Let ni
j be the orders of these cyclic subspaces; the order of a cyclic subspace is equal to its dimension

minus one.
Let bijr, r = 0 . . . nij be the complex generalized eigenvectors corresponding to the cyclic subspace J i

j .

The vectors bijr satisfy

Sbijr = λib
i
jr + bij r−1 if r > 0, Sbij0 = λib

i
j0 (3.1)

The complex eigenbasis functions are the limit functions defined by f ijr = f [bijr] : U1 → C

Any subdivision surface f [p] : U1 → R3 can be represented as

f [p](y) =
∑

i,j,r

βi
jrf

i
jr(y) (3.2)

where βi
jr ∈ C3, and if bijr = bklt, β

i
jr = βk

lt, where the bar denotes complex conjugation.
One can show using the definition of limit functions of subdivision and (3.3) that the eigenbasis functions

satisfy the following set of scaling relations:

f ijr(y/2) = λif
i
jr(y) + f ij r−1(y) if r > 0, f ij0(y/2) = λif

i
j0(y) (3.3)

Real eigenbasis functions. As we consider real surfaces, it is often convenient to use real Jordan normal
form of the matrix rather than the complex Jordan normal form. For any pair of the complex-conjugate
eigenvalues λi, λk, we can choose the complex cyclic subspaces in such a way that they can be arranged into

pairs J i
j , J

k
j , and b

i
jr = bkjr for all j and r. Then we can introduce a single real subspace for each pair, with the

basis cijr, c
k
jr, r = 0 . . . nij , where c

i
jr = ℜbijr, and c

k
jr = ℑbijr. We call such subspaces Jordan subspaces. Then

we can introduce real eigenbasis functions gijr(y) = f ijr(y) for real λi, and g
i
jr(y) = ℜf ijr(y), g

k
jr(y) = ℑf ijr(y)

for a pair of complex-conjugate eigenvalues (λi, λk). For a Jordan subspace corresponding to pairs of complex
eigenvalues the order is the same as the order of one of the pair of cyclic subspaces corresponding to it.

Similar to (3.2) we can write for any surface generated by subdivision on U1:

f [p](y) =
∑

i,j,r

αi
jrg

i
jr(y) (3.4)

Now all coefficients αi
jr are real. Eigenbasis functions corresponding to the eigenvalue 0 have no effect

on tangent plane continuity or Ck-continuity of the surface at zero. From now on we assume that λi 6= 0 for
all i.

We can assume that the coordinate system inR3 is always chosen in such a way that the single component
of f [p] corresponding to eigenvalue 1 is zero. This allows us to reduce the number of terms in (3.4) to p.

3.2 Reduction to universal surfaces

In [26] we have shown that for surfaces without boundary the analysis of smoothness of subdivision can be
reduced to the analysis of universal surfaces. Moreover, if a subdivision scheme is C1, almost any surface
produced by subdivision is diffeomorphic to the universal surface. In this section, we introduce the universal
surfaces for neighborhoods of boundary vertices, and show that a similar reduction can be performed in this
case.
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This fact is of considerable practical importance for design of subdivision schemes for surfaces with
piecewise-smooth boundary: as we have observed in Section 2, convex and concave corners are not diffeo-
morphic; therefore, a convex and and a concave corner in R3 cannot be diffeomorphic to the same universal
surface, and cannot be generated by the same subdivision rule.

Universal map. The decomposition (3.4) can be written in vector form. Let hijr be an orthonormal basis

of Rp. Let ψ be
∑

i,j,r g
i
jrh

i
jr; this is a map U1 → Rp. Let α1, α2, α3 ∈ Rp be the vectors composed of

components of coefficients αi
jr from (3.4) (each of these coefficients is a vector in R3). Then (3.4) can be

rewritten as

f [p](y) =
(

(ψ, α1), (ψ, α2), (ψ, α3)
)

(3.5)

This equation indicates that all surfaces generated by a subdivision scheme on U1 can be viewed as
projections of a single surface in Rp. We call ψ the universal map, and the surface specified by ψ the
universal surface. In [26], it was demonstrated that the analysis of tangent plane continuity and Ck continuity
of subdivision can be reduced to analysis of the universal surface. Not surprisingly, we will see that this also
holds for subdivision schemes with boundary.

In the chosen basis the matrix S is in the real Jordan normal form. Note that by definition of S for any
a ∈ Rp

(a, ψ(y/2)) = (Sa, ψ(y))

Using the well-known formula for inner products (Su, v) = (u, ST v), we get

(x, ψ(y/2)) = (x, STψ(y)), for any x

This means that the scaling relations can be jointly written as

ψ(y/2) = STψ(y) (3.6)

The universal map ψ is only piecewise Ck, even if we assume that subdivision produces Ck limit function
on regular complexes and regular complexes with boundary: derivatives have discontinuity at the boundaries
of polygons of U1. However, one can easily construct a map κ (see [26]) such that ϕ = ψ◦κ−1 is C1-continuous
away from the center.

We will impose the following condition on the subdivision schemes which we call Condition A. For any
y ∈ U1

∂1ψ(y) ∧ ∂2ψ(y) 6= 0 for all y ∈ U1, y 6= 0.

This condition holds for all known practical schemes.

Reduction theorem. Our goal is to relate tangent plane continuity and Ck-continuity of the universal
surface in Rp and tangent plane continuity of the subdivision scheme. The following theorem holds under
our assumptions:

Theorem 3.1. For a subdivision scheme satisfying Condition A to be tangent plane continuous on a k-regular
complex with boundary, it is necessary and sufficient that the universal surface be tangent plane continuous;
for the subdivision scheme to be Ck-continuous with p.w. Ck-continuous boundary, it is necessary and
sufficient that the universal surface is Ck-continuous with p.w. Ck-continuous boundary. Almost all surfaces
generated by a subdivision scheme on a k-regular complex with boundary are locally diffeomorphic to the
universal surface.

Proof. Sufficiency is clear as any surface is a linear projection of the universal surface. To prove necessity,
we use Proposition 2.1, and show that

• if the universal surface is not tangent plane continuous then a set of subdivision surfaces of non-zero
measure is not tangent plane continuous;
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• if the universal surface has non-injective projection into the tangent plane same is true for a set of
subdivision surfaces of non-zero measure;

• if the projection of the universal surface into the tangent plane is not Ck, same is true for a set of
subdivision surfaces of non-zero measure;

• if the boundary of the universal surface is not Ck-continuous, or is not Ck-continuous with nondegen-
erate corner, same is true for a set of subdivision surfaces of non-zero measure.

The proof of the first three statements coincides with the proof for the surface without boundary presented
in [26].

We only need to consider the fourth statement. By assumption, the boundary of the surface is C1-
continuous away from zero. Let the two pieces of the boundary be γi : (0, 1] → Rp, i = 1, 2, with γ1(1) =
γ2(1). We can assume both pieces to be C1-continuous away from one. Suppose γ1 does not have a tangent
at one; then there are at least two directions τ1 and τ2 which are limits of sequences of tangent directions to
γ1(t) as t approaches one. There is a set of three-dimensional subspaces π of measure non-zero in the space
of all three-dimensional subspaces, for which the projections of both vectors τ1 and τ2 to the subspace are
not zero. If we project the universal surface to any of these subspaces, the boundary curve of the resulting
surface will not be tangent continuous. For curves tangent continuity is equivalent to C1-continuity. For
Ck-continuity the proof for curves is identical to the proof for surfaces. We conclude that the curves γ1 and
γ2 should be Ck-continuous. Similarly, if the curves are joined with continuity less than k, then almost all
curves obtained by projection into R3 will have the same property. Finally, if the tangents to the curves
coincide, same is true for almost all projections of the curves, which means that almost all projections do
not have a non-degenerate corner.

The following important corollary immediately follows from Theorem 3.1:

Corollary 3.2. Almost all surfaces generated by a given Ck-continuous subdivision scheme on a k-regular
complex are diffeomorphic.

Indeed, as any subdivision surface f : Uk → R3 is obtained as a projection of the universal surface, for
almost any choice of projection it defines a diffeomorphism of the universal surface and f .

This corollary implies in particular that the same subdivision rule cannot generate convex and concave
corners simultaneously in a stable way, and separate rules are required for these cases.

4 Criteria for tangent plane and C
1 continuity

Tangent plane continuity criteria of [26] do not use the fact that only interior points of a surface are con-
sidered. Similarly, C1-continuity criteria use only the fact that C1-continuity is equivalent to tangent plane
continuity and injectivity of the projection into the tangent plane. Therefore, C1-continuity criteria also
hold for boundary points. We only need to establish the conditions that guarantee that the boundary curves
are C1-continuous, possibly with corners.

We focus on a sufficient condition for C1-continuity ([26] Theorem 3.6 and Theorem 4.1), which is most
relevant for applications. More general necessary and sufficient conditions can be extended in a similar way.

To state the sufficient condition, we need to define characteristic maps, which are commonly used to
analyze C1-continuity of subdivision surfaces. We use a definition somewhat different from the original
definition of Reif [18].

4.1 Conditions on Characteristic maps

Definition 4.1. The characteristic map Φ : U1 → R2 is defined for a pair of cyclic subspaces Ja
b , J

c
d of

the subdivision matrix as

1. (fa0, fa1) if J
a
b = Jc

d, λa is real,

2. (fa0, fc0) if J
a
b 6= Jc

d, λa, λc are real,
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3. (ℜfa0,ℑfa0) if λa = λ̄c, b = d.

Three types of characteristic maps are shown in Figure 2.

a b c

Figure 2: Three types of characteristic maps: control points after 4 subdivision steps are shown. a. Two
real eigenvalues. b. A pair of complex-conjugate eigenvalues. c. single eigenvalue with Jordan block of size
2.

The domain of a characteristic map is the neighborhood U1, consisting of k faces of the regular complex;
we call these faces segments. We assume that the subdivision scheme generates C1-continuous limit functions
on regular complexes, and the characteristic map is C1-continuous inside each segment and has continuous
one-sided derivatives on the boundary.

Characteristic map satisfies the scaling relation Φ(t/2) = TΦ(t), where T is one of the matrices

Tscale =

(

λa 0
0 λc

)

, Tskew =

(

λa 1
0 λa

)

, Trot = |λa|

(

cosϕ − sinϕ
sinϕ cosϕ

)

,

where ϕ is the argument of a complex λa.

Sufficient condition for C1-continuity. The following sufficient condition is a special case of the con-
dition that was proved in [26]. Although all our constructions apply in the more general case, we state
only a simplified version of the criterion sufficient for most applications. This condition generalizes Reif’s
condition [18].

Define for any two cyclic subspaces ord
(

J i
j , J

k
l

)

to be nij + nkl , if J
i
j 6= Jk

l ; let ord
(

J i
j , J

i
j

)

= 2ni
j − 2;

note that for ni
j = 0, this is a negative number, and it is less than ord for any other pair. This number

allows us to determine which components of the limit surface contribute to the limit normal (see [26, 24] for
details). We say that a pair of cyclic subspaces Ja

b , J
c
d is dominant if for any other pair J i

j , J
k
l we have either

|λaλc| > |λiλk|, or |λaλc| = |λiλk| and ord (Ja
b , J

c
d) > ord

(

J i
j , J

k
l

)

. Note that the blocks of the dominant
pair may coincide.

Theorem 4.1. Let bijr be a basis in which a subdivision matrix S has Jordan normal form. Suppose that
there is a dominant pair Ja

b , J
c
d. If λaλc positive real, and the Jacobian of the characteristic map of Ja

b , J
c
d

has constant sign everywhere on U1 except zero, then the subdivision scheme is tangent plane continuous on
the k-regular complex.

If the characteristic map is injective, the subdivision scheme is C1-continuous.

In the special case when all Jordan blocks are trivial, this condition reduces to an analog of Reif’s
condition. Theorem 4.1 doesn’t make any claim about the type of boundary however. It is therefore not
enough for the analysis of the desired surfaces.

Criterion for piecewise C1-continuity of the boundary. Assuming that the scheme at a boundary
vertex satisfies the conditions of Theorem 4.1, we establish additional conditions which guarantee that
the scheme for almost all control meshes generates C1-continuous surfaces with piecewise C1-continuous
boundary with nondegenerate corners. The domain of the characteristic function is called U1. We assume
that the part of U1 that corresponds with the boundary of the surface is a straight line. We call I1 and
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I2 the two parts of this boundary line achieved by excluding the center vertex. When we talk about ∂1 we
mean the derivative in the direction of this boundary line. ∂2 will be the orthogonal direction. We will call
the two components of the characteristic map by f1 and f2 in the following theorem.

Theorem 4.2. Suppose a subdivision scheme satisfies the conditions of Theorem 4.1 for boundary vertices
of valence k. Then the scheme is p.w. C1-continuous with nondegenerate corners for boundary vertices of
valence k if and only if the following conditions are satisfied.

1. λa and λc are positive real.

2. Suppose λa > λc, (diagonal scaling matrix, asymmetric scaling). Then the scheme is boundary C1-
continuous if and only if ∂1f1 6= 0 and has the same sign on I1 and I2 or ∂1f1 ≡ 0 on I1 and I2.

The scheme is a nondegenerate corner scheme, if and only if ∂1f1 6= 0 on I1 and ∂1f1 ≡ 0 on I2. Same
is true if I1 and I2 are exchanged.

3. Suppose Ja
c = Jb

d (scaling matrix is a Jordan block of size 2), and ∂1f1 does not vanish on I1 and
I2. The scheme is boundary C1-continuous if ∂1f2 has the same sign everywhere on I1 and I2 and if
∂1f2(t1) = 0 for a t1 ∈ I1 ∪ I2 then ∂1f1(t1) needs to have this sign as well. Nondegenerate corners
cannot be generated by a scheme of this type.

4. Suppose a = c (diagonal scaling matrix, symmetric scaling). The boundary is C1-continuous if and
only if there is a nontrivial linear combination α1∂1f1+α2∂1f2 identically vanishing on I1 and I2, and
any other independent linear combination has the same sign on I1 and I2. The scheme is a corner
scheme if and only if there is a linear combination α1∂1f1 + α2∂1f2 identically vanishing on I1 and
a different linear combination β1∂1f1 + β2∂1f2 identically vanishing on I2 with [α1, α2] and [β1, β2]
linearly independent.

Proof. For each of the boundary segments defined on I1 and I2 we need to show that the limit of the tangent
exists at the common endpoint. If these limits coincide then the boundary curve of the universal surface is
C1-continuous; if the limits have different directions, then the universal surface has a nondegenerate corner.

First, we observe that by assumption the characteristic map has non-zero Jacobian on the boundary. This
means that one of the components has nonzero derivative along the boundary ∂1f1(t) 6= 0 or ∂1f2(t) 6= 0
at any point t ∈ I1 ∪ I2. Consider the tangent to the boundary of the surface defined by the characteristic
map. It is a two-dimensional vector v(t) = (∂1f1(t), ∂1f2(t)), where t is a point of I1 or I2. The tangent
satisfies the scaling relation of the form v(t/2) = 2Tv(t), where T is the scaling matrix for the characteristic
map. The direction of the tangent has a limit if and only if T is either Tscale or Tskew and its eigenvalues
are positive (Lemma 3.1, [26]). As the projection of the universal surface is arbitrarily well approximated
by the characteristic map, or coincides with it for simple Jordan structures of the subdivision matrix, we
conclude that for the universal surface boundary to have well-defined tangents at zero, the eigenvalues of
the characteristic map have to be positive and real. However, this condition is not sufficient for existence of
tangents.

Diagonal scaling matrix, asymmetric case. First we consider the case of dominant cyclic subspace
pair Ja

b , J
c
d with a 6= c (different eigenvalues). In this case the sequences ∂1f1(t/2

m) and ∂1f2(t/2
m), for

∂1f1(t), ∂1f2(t) 6= 0, change at a different rate. This can be easily seen from the scaling relation. Moreover,
the ratio ‖∂1f2(t/2

m)‖/‖∂1f1(t/2
m)‖ approaches zero as m→ ∞.

Suppose at some points t1, t2 of I ∂1f1(t1) 6= 0 and ∂1f1(t2) = 0. Then ∂1f2(t2) 6= 0 and the tangents at
points t2/2

m all point in the direction ±e2, where e2 is the unit vector along the coordinate axis corresponding
to f2. ‖∂1f2(t1/2

m)‖/‖∂1f1(t1/2
m)‖ → 0 as m → ∞, thus, at points t1/2

m the direction of the tangent
approaches ±e1. We conclude that there is no limit, unless ∂1f1 is either nowhere or everywhere zero I1.
Same applies to I2. Conversely, if ∂1f1 is nowhere zero, then the limit tangent direction at the center is ±e1.
If it is zero everywhere, then by assumption about the characteristic map, ∂1f2 is nowhere zero, and the
limit tangent direction is ±e2. The choice of sign in each case depends on the sign of ∂1f1 or ∂1f2.

If ∂1f1 is not zero and has the same sign on both I1 and I2 then the tangent is continuous, and the
boundary curve is C1-continuous. If ∂1f1 ≡ 0 on I1 and I2 the images of I1 and I2 under the characteristic
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map are straight lines on the e2 axis and therefore the boundary curve is C1 continuous. If it is zero on I1
and nonzero on I2, then the tangents are not parallel, and the surface defined by the characteristic map has
a corner; and the same for I1 and I2 interchanged which proves the second part.

Scaling matrix is a Jordan block of size 2. The second condition of the theorem applies if the
characteristic map components correspond to a cyclic subspace of size 2, i.e. satisfy f1(t/2) = λaf1(t)+f2(t).
Thus, ∂1f1 ≡ 0 implies ∂1f2 ≡ 0 on I1 or I2. Otherwise v(t/2m) converges to ±e1 for any t on I1 as well as
I2. If ∂1f2(t) 6= 0 its sign determines the sign of the limit tangent.

Diagonal scaling matrix, symmetric case. In the symmetric case where a = b the sequences defined
above change at the same rate, and any linear combination α1f1 + α2f2 is also an eigenbasis function.
Suppose f1 and f2 come from different cyclic subspaces of the same eigenvalue which have the same size.
Suppose α1∂1f1 + α2∂1f2 does not vanish identically on I1 for any nontrivial choice of α1 and α2. Pick two
linearly independent combinations g1 = α1∂1f1 + ∂1α2f2 and g2 = β1∂1f1 + β2∂1f2 which do not vanish at
points t1 and t2 of I1 respectively. Then the vectors v(ti) = [∂1f1(ti), ∂1f2(ti)] are linearly independent and
the sequences v(t1/2

m) and v(t2/2
m) converge to different limit directions. Therefore, for the limit tangents

at zero to exist, there should be a nontrivial linear combination of ∂1f1 and ∂1f2 which vanishes on I1. If
α1∂1f1 + α2∂1f2 is such combination, it is easy to see that the limit tangent direction is, up to the sign,the
direction of the vector [−α2, α1]. For the boundary to be C1-continuous, the direction should be the same
on two sides. Finally, the tangents on two sides exist and do not coincide if the vectors (α1, α2) for I1 and
I2 are linearly independent.

An interesting corollary of this theorem is that in the symmetric case it is necessary for p.w. C1-continuity
of the boundary that the images of I1 and I2 under the characteristic map are straight line segments. In this
case we have that α1∂1f1 + α2∂1f2 ≡ 0 which means that α1f1 + α2f2 is constant and the image of (f1, f2)
is a straight line segment. Note that this is not necessary if the eigenvalues λa and λb are different.

4.2 Analysis of Characteristic Maps

To verify conditions of Theorem 4.1 we need to establish that the characteristic map is regular and injective,
and verify that it has the expected behavior on the boundary. Typically, analysis of the boundary behavior
is relatively easy, as in most cases the boundary curve is independent from the interior. In this section we
focus on regularity and injectivity of the characteristic map.

Regularity of the characteristic map. Just as in the case of interior points we use self-similarity of the
characteristic map to verify the regularity condition of Theorem 4.1: for any t ∈ U1, the Jacobian satisfies
J [Φ](t/2) = 4λaλbJ [Φ](t). It is immediately clear that to prove regularity of the characteristic map it is
sufficient to consider the Jacobian on a single annular portion of U1 as shown in Figure 3. As all vertices of
such a ring are either regular or boundary regular, we can estimate the Jacobian of the characteristic map
using tools developed for analysis of subdivision on regular grids. However, there is a significant difference
from the case of interior vertices: to establish regularity on a single ring, in general, we have to consider
subdivision schemes not just on regular meshes but on regular meshes with boundary, which makes the
estimates for the Jacobians somewhat more complex.

Injectivity of the characteristic map. Even if the Jacobian of a map is nonzero everywhere, only local
injectivity is guaranteed. However, for interior vertices, self-similarity of the characteristic maps allows one
to reduce the injectivity test to computing the index of a closed curve around zero [25]. A closed curve with
winding number ±1 gives injectivity in a small neighborhood of zero. This is a relatively simple and fast
operation: for example, the index can be computed counting the number of intersections of the curve with
a line. This test cannot be applied for boundary points, as there are no closed curves around zero, since the
boundary curve goes through zero.

For boundary points, a different simple test (Theorem 4.3) suffices, which in all cases that we have
considered is even easier to apply. However, unlike the curve index test, it does not immediately yield a
general computational algorithm.
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Figure 3: The k-gon without origin U1\{0} can be decomposed into similar rings, each two times smaller
than the previous ring. The size of the ring is chosen in such a way that the control set of any ring does not
contain the extraordinary vertex. In this figure the control set is assumed to consist out of the vertices of
the triangles of the ring itself, and of a single layer of vertices outside the ring.

The characteristic map can be extended using scaling relations to a complete k-regular complex with
boundary. In the following theorem we assume that the characteristic map is defined on the whole complex
|Rα

k |.

Theorem 4.3. Suppose a characteristic map Φ = (fa, fc) satisfies the following conditions:

1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of the domain besides 0.

3. The image of the boundary of the characteristic map has no self-intersections;

4. the image of the characteristic map is not the whole plane.

Then this characteristic map is injective.

Proof. We can show that the characteristic map is continuous at infinity, and if P is the stereographic
projection of the sphere to the plane such that the south pole gets mapped to 0, Φ̃ = P−1ΦP is a continuous
mapping of a subset D = P−1(|Rα

k |) of the sphere into the sphere, with the south pole mapped to the south

pole; Φ̃ is a local homeomorphism away from the south pole.
We observe that the points of the boundary of the image Φ̃(D) can be images only of the boundary of D

due to the properties of local homeomorphisms meaning ∂
(

Φ̃(D)
)

⊂ Φ̃(∂D). Suppose the boundary of the

image is not empty; we show that the image of the boundary curve Φ̃(∂D) coincides with the boundary of

the image ∂
(

Φ̃(D)
)

.

The image of the boundary has no self intersections. It is easy to see that the boundary of the domain

is a simple closed Jordan curve, and so is its image Φ̃(∂D). Suppose ∂
(

Φ̃(D)
)

6= Φ̃(∂D). Then there is

a point y on the image of the boundary Φ̃(∂D) which is an interior point of Φ̃(D). As Φ̃(∂D) separates
the sphere into two linearly connected domains, we can connect each point in either domain to point y

with a continuous curve which does not intersect ∂
(

Φ̃(D)
)

. Thus, any two points on the sphere can be

connected by a continuous curve which does not intersect ∂Φ̃(D). We conclude that the image Φ̃(D) is the

whole sphere. Therefore, either ∂
(

Φ̃(D)
)

= Φ̃(∂D), or the image is the whole sphere. The latter option

contradicts the last condition of the theorem.
Now we need to use this to prove that the map is injective. If we exclude the south pole of the sphere,

the mapping is a local homeomorphism of one simply connected domain to another. We can easily prove it
is a covering: consider an interior point y of the image, and the set Φ̃−1(y). Suppose it is infinite. Then it
has a limit point, which cannot be an interior point of D (otherwise, Φ̃ is not a local homeomorphism at
that point). Similarly, it cannot be a boundary point, unless it is the south pole. It cannot be the south
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pole xs for which P (xs) = 0, because then Φ̃(xs) has to be y which means that y = 0 which contradicts
the assumption Φ−1(0) = {0}. We conclude that Φ̃−1(y) is finite for each point y of the interior of the
image. Similar arguments holds for boundary points away from the poles. Φ̃ is a local homeomorphism
and maps the boundary exactly to the boundary. Let y be a point of the image away from poles, and let
x1, x2, . . . xn be points of Φ̃−1(y). Then for each xi there is a sufficiently small neighborhood Ui which maps
homeomorphically to a neighborhood of xi ∈ Φ̃(D). Then the inverse image of ∩iΦ̃(Ui) is a finite union
of disjoint diffeomorphic subsets of D. But since y is in each of this sets it is only one set. We conclude
that Φ̃ is a covering on D with south pole excluded. However, we have observed that the image of D is
simply connected. Therefore, the covering has to be injective. We conclude that the characteristic map is
injective.

5 Verification of C1-continuity

5.1 Loop scheme

In this section we describe the structure of the boundary subdivision matrices for the Loop scheme. Some
parts of our analysis are similar to the analysis performed by Jean Schweitzer [19].

The control mesh for a boundary patch surrounding an extraordinary vertex is shown in Figure 4. There
are 3 different types of vertices in the control mesh, shown in the same figure. A different subdivision mask
is used for each type. There are two masks for the vertices of types 1 and 3, one for boundary vertices and
one for interior vertices. We consider these vertices to have the same type for notational convenience.

The figure also shows the masks of the rules that we consider. Our family of schemes includes all schemes
satisfying the following conditions:

1. The support for each mask is the same as for the Loop scheme or for the cubic B-spline on the boundary;

2. The only masks that are modified are the masks for odd vertices adjacent to the central vertex, and
for the central vertex itself (types 0,1).

3. The masks for interior edge vertices of type 1 are all identical and symmetric with respect to the edge
connecting the vertex with the central vertex. The masks for two boundary vertices of type 1 are also
identical.

We assume that all coefficients in the masks are positive. This choice is sufficiently general to construct a
variety of schemes; on the other hand, complete eigenanalysis can be performed for all schemes from this
family. We show that no scheme from this family can produce a rule for a concave corner. There are reasons
to believe that this is true for any scheme with positive coefficients or small support.

For the specific schemes that we consider the boundaries do not depend on the control points in the
interior. Potentially, the boundary can depend on the valence of a boundary vertex, this is the case with the
scheme presented in [8]. However, we believe that this is best avoided, and present a set of schemes for which
the boundary rules are simply cubic spline rules, except at vertices marked as corners, where interpolation
is forced.

Subdivision matrix. We assume that k > 1; we will consider the case k = 1 separately. The subdivision
matrix for a boundary vertex with k adjacent triangles has the following form:
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0 1

1

3

3

2

(A) (B) (C)

Figure 4: Control mesh for a boundary patch of a Loop subdivision surface and masks of the subdivision
rules. (A) The rule for the odd vertices on the boundary adjacent to the central vertex (type 1). (B) The
rule for the interior odd vertices adjacent to the central vertex (type 1). (C) The rule for the central vertex
(type 0). The rules for vertices of type 2 and 3 (interior) are the standard Loop rules; the rule for the vertex
of type 3 (boundary) is the standard one-dimensional cubic spline rule.
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(5.1)

The vectors a1 and a3 have length k − 1, the vector a2 has length k, Ik and Ik−1 are unit matrices of
sizes k and k − 1. Note that the eigenvalues of the matrix are 1/8 1/16, the eigenvalues of the upper-left
3× 3 block A00 and the eigenvalues of the matrix A11. The matrix A11 is tridiagonal, of size k − 1× k − 1.
The eigenvalues of A00 are 1, β, β− 2α where the eigenvector to 1 is the vector e = [1, . . . , 1]. Following [19],
we observe that k − 1 × k − 1 tridiagonal symmetric matrices have the following eigenvectors, independent
of the matrix, j = 1 . . . k − 1:

vj = [sin jθk, sin 2jθk, . . . sin (k − 1)jθk] (5.2)

where θk = π/k. Multiplying the matrix A11 by the vectors, we see that the eigenvalues are λj = 2δ cos jθk+
γ.

If α 6= 0, out of two remaining eigenvectors, only the eigenvector vβ corresponding to β is typically of
interest to us. It has the form [0, 8C,−8C,

(

βI −A−1
11

)

[C, 0 . . . − C]], where C is a constant, if βI − A11 is
non-degenerate.

A more revealing expression for the components can be found if we regard the eigenvector as a solution
to the recurrence

δ
(

vβi−1 + vβi+1

)

+ (γ − β)vβi = 0, i = 1 . . . k − 1

(the numbering of entries in vβ is such that vβ = [0, vβ0 , v
β
k , v

β
1 , ..., v

β
k−1] to make the equations uniform

equations). In addition, we have the condition vβ0 = −vβk , to ensure that
[

0, v0β , v
1
β

]

is the eigenvector of A00.
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The behavior of the solution of the recurrence depends on the ratio r = (γ − β)/δ, assuming δ 6= 0 (
otherwise, A11 is diagonal with all eigenvalues equal to γ and the eigenvector with respect to β is found
easily.). The additional condition vβ0 = −vβk determines a unique solution up to a constant multiplier, even
if the matrix βI −A11 is degenerate.

If α = 0, the eigenvalue β has a two-dimensional eigenspace. Two eigenvectors vβ and v′
β
satisfying

conditions vβ0 = 0 and v′
β
k = 0 can be computed explicitly, for the cases when the matrix βI − A11 is not

degenerate, i.e. when for all 1 ≤ j ≤ k − 1, r 6= −2 cos jθk.
Finally, suppose α = 0 and r = −2 cos(jθk) for some j. In this case β = γ − δr is also an eigenvalue of

A11, and, therefore, has multiplicity 3. In this case it has a Jordan block of size 2, and only 2 eigenvectors
which can be taken to be vβi = sin iθk and v′

β
i = cos iθk, i = 0 . . . k.

Summary of the eigenstructure. We have determined that the eigenvalues of the subdivision matrix
are 1,β,β − 2α, 1/8, 1/16, and λj = 2δ cos jθk + γ, j = 1 . . . k − 1. The eigenvectors corresponding to the
eigenvalues λj do not depend on the matrix and are given by (5.2). The eigenvectors corresponding to the
eigenvalue β depends on the ratio r = (γ − β)/δ; for α 6= 0, there is a single eigenvector. For α = 0, there is
a pair of eigenvectors for the case when β is not an eigenvalue of A11. If β is an eigenvalue of A11, it has a
nontrivial Jordan block of size 2.

The case k = 1. The matrix in this case has eigenvalues β, β − 2α, and a triple eigenvalue 1/8. The
eigenvectors can be trivially computed.

Coefficients for smooth boundary vertices. One possible choice was given by Hoppe et al. [8] and
examined in detail in [19]. In our notation, this choice corresponds to β = 5/8, α = 1/8, γ = 3/8, δ = 1/8.
For extraordinary vertices, and β = 1/2 for other vertices. Remarkably, the ratio r is −2. The disadvantage
of this choice is that the shape of the boundary curve depends on the valence of the vertices on the boundary,
hence it becomes impossible to join two meshes continuously along a boundary if extraordinary vertices on
two sides do not match.

If we require the boundary curve to be a cubic spline, β has to be 1/2 and α has to be 1/8. We have
two degrees of freedom left: γ and δ. It turns out to be sufficient to use only one, and we fix δ at the value
corresponding to the regular valence, i.e. 1/8.

We consider the cases k > 2, k = 2 and k = 1 separately.
Case k > 2. Once α, β and δ are fixed, the eigenvalues of the subdivision matrix become 1, β = 1/2,
β − 2α = 1/4, 1/8, 1/16, and λj = (1/4) cos jθk + γ.

The tangent vector on the boundary of the surface corresponds to the eigenvector of the subdivision
matrix with eigenvalue β = 1/2. This vector should be one of the subdominant eigenvectors. The second
subdominant eigenvector is likely to correspond to the largest of the eigenvalues λj , i.e. to the eigenvalue
λ1 = γ + (1/4) cos θk. In order for the eigenvalue 1/2 to be subdominant, we choose γ in such a way that
|λj | < 1/2 for j > 1, i.e. λ2 < 1/2 and λk−1 > −1/2. For positive γ, the second condition is satisfied
automatically. We also would like λ1 > β − 2α = 1/4. This leads to the following range for γ:

1

4
(1− cos θk) < γ <

1

2
−

1

4
cos 2θk (5.3)

In this range we also have |λ1| > |λj | for j > 1. There are two choices of γ that we find particularly
interesting: γ = 1/4 and γ = 1/2− 1/4 cos θk.

The first choice, γ = 1/4, is the maximal value of γ independent of k for which it is in the correct range
for all k > 2. Note that in this case r = −2 again. The second choice, leads to equal subdominant eigenvalues
β = λ1 = 1/2. In this case, r = −2 cos θk. The expressions for the subdominant eigenvectors are v1j = sin jθk

and vβj = cos jθk, i.e. form a half of a regular 2k-gon.
The choice of γ = 1/2 − 1/4 cos θk, although being slightly more complex, appears to be more natural.

It has the additional advantage of coinciding with the regular value γ = 3/8 for k = 3.
Case k = 2. In this case, the eigenvalues are 1, 1/2, 1/4, 1/8, 1/16, and λ1 = γ. Thus, we need to pick
1 > γ > 1/4, to get the same eigenvectors as in the case k > 2. It is interesting to note however, that the
choice of γ = 1/4 also results in a C1 surface, although the behavior of the scheme becomes less desirable.

16



p
0

p
1

0
p

1

1

p
2

0 p
2

1

p
3

0

Figure 5: The control mesh for the characteristic map in the case k = 1.
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Figure 6: Fig (a) show the 2 ring control data for a mesh with 5 sectors which we subdivide twice. We get 5
rings show in Fig (b) for a mesh with 5 sectors. In Fig (c) we see one sector in which the relevant triangles
are marked and Fig (d) shows a control net for a given triangle.

Case k = 1. The subdominant eigenvalues are 1/2 and 1/4. They define a configuration of eigenvectors
shown in Figure 5.

Proposition 5.1. Let β = 1/2, α = 1/8, δ = 1/8 and γ = 1/2− 1/4 cos θk and Φ be the characteristic map
which is defined by the eigenvectors to β = 1/2 and λ1 = 1/4 cos(θk) + γ = 1/2 . Then

1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of the domain besides 0;

3. the image of the boundary of the characteristic map has no self-intersections;

4. the image of the characteristic map is not the whole plane.

Proof. We consider the boundary k-regular 2 ring mesh with data given by the 2 eigenvectors described
above (shown for k = 7 in Figure 6(a)). We subdivide this twice by our given rules. We then have 5 accurate
rings of a k-regular mesh (Figure 6(b)). In the standard Loop scheme if a triangle is sourrounded by one
ring of triangles and all subdivision at all those 12 points and points inserted on these edges and faces going
forward are done by regular Loop subdivision the polynomial on the triangles in (u, v, w) Bezier coordinates
u+ v + w = 1 is given by (see [19]):

p(u, v, w) = B ·Q · P

where

B = (u4, 4u3v, 4u3w, 6u2v2, 12u2vw, 6u2w2, 4uv3, 12uv2w, 12uvw2, 4uw3, v4, 4v3w, 6v2w2, 4vw3, w4)

and Q is a 15×12 matrix given in [19] and P ∈ R12×n such that Pi ∈ Rn is the data on the point i numbered
as shown in Figure 6(d). The 12 triangles in the 3rd and 4th ring of our 5 ring mesh (see Figure 6(b) for
k = 5) which are away from the boundary are regular. We can therefore compute the 12 different polynomials

17



highlighted in Figure 6(c). We are able to compute the polynomials depending on the number of sectors
k > 3 and which sector i = 3, . . . k − 2. We have to treat the case k ≤ 3 and the case where i = 1, 2, k − 1, k
separately. The triangles on the boundary are not surrounded by a control net of regular vertices but
since the boundary rules are regular cubic B-spline rules subdividing with boundary rules is equivalent to
subdividing with regular rules a mesh that is extended by a mirror image over the boundary. The sectors
2 and k − 1 have to be considered separately only in creating the 5 rings as they are more influenced by
the extraordinary boundary rules then the other sectors. If k ≤ 3 we check all the triangles directly. For
any k however the eigenvector data has a symmetry across the y-axes and therefore the characteristic map
has the same symmetry. For each different type we compute the polynomial p = (f1, f2) on the triangle in
Berstein-Bezier coordinates.

We will prove 1.-4. for each of those polynomials and by the scaling property

Φ(t/2) = TΦ(t) where T =

(

β 0
0 λ1

)

=
1

2
I (5.4)

we can then extend it to the whole sector. To prove that a polynomial in Bernstein-Bezier coordinates is
positive on the given triangle we need to check that all the coefficients are positive.

1. In order to prove that there is no other element than 0 in the preimage Φ−1(0) we check that f21+f
2
2 > 0

in each triangle of each sector. Then by the scaling property we know that

f1(t/2)
2 + f2(t/2)

2 = λ2af1(t)
2 + λ2bf2(t)

2 = (λ2a − λ2b)f1(t)
2 + λb(f1(t)

2 + f2(t)
2) > 0.

Since ‖Φ(t)‖ > 0 for all t > 0 we proved the first statement.

2. We compute the Jacobian

J [Φ] = ∂xf1∂yf2 + ∂xf2∂yf1 = (∂uf1 − ∂wf1)(∂vf2 − ∂wf2) + (∂uf2 − ∂wf2)(∂vf1 − ∂wf1)

in each triangle and see that the coefficients of J (a polynomial in Bezier coordinates) are all of the
same sign independent of k and i. Therefore the polynomial has the same sign everywhere. By the
scaling property we can extend it from the ring to the sector. The scaling property for the Jacobian is

J [Φ](t/2) = 4βλ1J [Φ](t) = J [Φ](t)

3. We take the 2 triangles in the third ring that form the boundary to the second ring and find the
expression of the polynomial that describes the boundary curve. We want to show that the angle
grows monotonically and since the angle is given by arctan(f1/f2) it is enough to show that f1/f2
grows monotonically. We compute f ′1f2 − f ′2f1, the enumerater of the derivative of f1/f2 and see that
all coefficients have the same sign. Since the denominator is a square, it is also positive. This means
that f1/f2 is monoton, and therefore the angle is monoton. Therefore in each sector the curves can not
intersect. There can not be intersection between sectors as the curves limit lies strictly within their
sectors.

4. Box Spline surfaces lie strictly within the convex hull of their control net and therefore the image of
the characteristic map has to lie in the upper half plane.

All the explicit checks were done in Maple.

We can now conclude by Theorem 4.3 that the characteristic map is injective. It is also regular as the
Jacobian of the characteristic map has constant sign everywhere. This means that in order for the scheme
to be C1 smooth with smooth boundary we have to check the 4th condition of Theorem 4.2, since the
subdominant eigenvalues are equal and span a 2-dimensional eigenspace. Since the boundary curve is a
B-Spline interpolating points on the x-axes we get that ∂1f1 > 0 and ∂1f2 = 0, giving us the condition for a
scheme that is C1 smooth with smooth boundary.

Lets now consider the corner case.
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Coefficients for corner vertices. Separate rules have to be defined for corners. The interpolation
conditions for corners require α = 0. Therefore, the block A00 has a double eigenvalue β. For a corner, the
tangent plane is defined by the two tangents at the non-C1-continuous point of the boundary. Unlike the
case of the smooth boundary points, there is no need to fix all rules on the boundary – parameter β still
can be used to ensure smoothness of the limit surface. Hence the rules of Hoppe et al. [8] can be used. One
can see [19] that the characteristic map has a convex corner. Therefore, this scheme cannot produce concave
corners. It turns out that in fact no scheme from the class that we have defined can produce smooth concave
corners.

The explicit knowledge of eigenvectors and the convex hull property allows us to determine quickly if a
scheme can possibly produce convex or concave corner. If β has multiplicity 3 with Jordan blocks of size 2
and 1 which happens when it is an eigenvalue of A11, the scheme is likely to be non tangent plane continuous;
we assume that this is not the case. Then the eigenvectors of interest can be found explicitly for various
values of r = (γ − β)/δ.

It is easy to see that positive values of r are of little interest to us, because the components of the
vectors alternate signs in these cases, and are likely to produce non-regular characteristic maps. Also, for
r ≤ −2 we are guaranteed to get a convex configuration of control points for the characteristic map. As the
characteristic map interpolates the boundary curve, it cannot have a concave corner. We conclude that we
have to use r from the range (−2, 0). We have seen that in this case the eigenvectors corresponding to the
eigenvalue β can be taken to be sin iθ, sin (i− k) θ, where θ is such that r = −2 cos θ. This means that the
corner is convex if θ < θk, and concave otherwise. In other words, r = −2 cos θ < −2 cos θk, or

γ < β − 2δ cos θk (5.5)

In addition, we need to ensure that the double eigenvalue β is actually subdominant. To achieve this,
we choose δ and γ large enough so that 2δ cos jθk + γ < β, j = 1 . . . k − 1. As 2δ cos jθk + γ decreases as a
function of j, and we assume that γ > 0, it is sufficient to require that 2δ cos θk + γ < β, which coincides
with the convexity condition. We conclude that for r < 0 the subdivision scheme can generate only convex
smooth corners.

One can show that this is true even if we do not assume that α = 0.
In the case k = 1, one can also immediately see that the corner produced by subdivision is convex.

Concave corner vertices. We assume that k > 1. It is impossible to have stationary subdivision rules
for a triangular mesh producing a concave corner for k = 1. As we have observed, concave corners cannot
be produced simply by changing some of the coefficients using the same stencil. One can also show that
no scheme with positive coefficients can produce interpolating smooth concave corners. It is possible to
construct rules to produce C1-continuous surfaces with concave corners, but negative coefficients and larger
support have to be used.

Our approach to deriving the rules is based on the idea of reduction of the magnitudes of all eigenvalues,
excluding 1 and β = 1/2. It turns out that this approach leads to particularly simple rules for subdivision.

For the scheme to produce smooth surfaces at a corner vertex the eigenvectors xβ , x′
β
of the eigen-

value β = 1/2 should be subdominant. If we choose these eigenvectors to be xβ = [0, 0, 1, vβ1 / sin kθ, . . .],

x′
β

= [0, 1, 0, v′
β
1/ sin kθ . . .], corresponding left eigenvectors are very simple: l = [−1, 0, 1, 0, . . .], l′ =

[−1, 1, 0, 0, . . . 0]. The left eigenvector l0 for the eigenvalue 1 is [1, 0, . . . 0]. Consider the following modi-
fication of the vector of control points

p̃ = (1− s)p+ s
(

(l0, p)x0 + (l, p)xβ + (l′, p)x′
β
)

where x0 is the eigenvector [1, . . . 1] of the eigenvalue 1. Substituting expressions for the left eigenvectors we
get

p̃ = (1− s)p+ s
(

p0x0 +
(

p10 − p0
)

xβ +
(

p1k − p0
)

x′
β
)

. (5.6)

The effect of this transformation is to scale all components of p in the eigenbasis of the subdivision matrix
by (1− s) except those corresponding to the eigenvalues 1 and β. If repeated at each subdivision step, it is
equivalent to scaling all eigenvalues except 1 and β by (1− s).
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Figure 7: Control mesh for a boundary patch of a Loop subdivision surface with concave corner

To simplify the rules, we observe that it is unnecessary to scale multiple eigenvalues 1/16 and 1/8 of the
lower-right blocks of the subdivision matrix. If we apply the rules (5.6), not to the whole vectors of control
points p, but to a truncated part, modifying only control points of type 1, as a result, the eigenvalues 1/8
and 1/16 will not change. This observation leads us to the following choice of rules:

p̃1i = (1− s)pbi + s

(

p0 +
(

p10 − p0
) sin (k − i)θ

sin kθ
+
(

p1k − p0
) sin iθ

sin kθ

)

(5.7)

In the matrix form, this transformation can be written as

T =









M 0

0 I









Multiplying this matrix by the subdivision matrix on the left, we see that the eigenvalues of the product
ST are eigenvalues of the blocks B00M and B11. By construction. eigenvalues of B00M are 1, 1/2, (1 −
s) (2δ cos jθk + γ), j = 1 . . . k − 1. As we have seen before, the eigenvalues of B11 are 1/8 and 1/16.

By choosing the value of s so that (1 − s) (2δ cos θk + γ) < 1/2, we can ensure that the β = 1/2 is
the subdominant eigenvalue. The parameter s can be viewed as a tension parameter for the corner, which
determines how flat the surface is near the corner.

We can therefore consider the case of convex and concave corners together:

Proposition 5.2. Let β = 1/2, α = 0, δ = 1/8 and γ = 1/2 − 1/4 cos(θ) where 0 < θ < π for convex
corners and π < θ < 2π for concave corners. Then Φ, the characteristic map is defined by the eigenvectors
corresponding to β = 1/2. Then

1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of the domain besides 0;

3. the image of the boundary of the characteristic map has no self-intersections;

4. the image of the characteristic map is not the whole plane.

Proof. The proof is done exactly the same way as in the non-corner case. The characteristic map we need to
check has a parameter θ. In the case of the concave corner the convex hull of the control points (see Figure
7) no longer lies in the upper half plane. However we can look at the sectors individually and see that the
limit function does not span the whole complex plane.
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Figure 8: Control mesh for a boundary patch of a Catmull-Clark subdivision surface and masks of the
subdivision rules. (A) The rule for the boundary vertices adjacent to the central vertex (type 1). (B) The
rule for the interior edge vertices adjacent to the central vertex (type 1). (C) The rule for the face vertices
adjacent to the central vertex (type 2). (D) The rule for the central vertex (type 0). The rules for vertices
of type 4, 5 and 6 are the standard Catmull-Clark rules; the rule for the vertex of type 3 is the standard
one-dimensional cubic spline rule.

With this we have established that the characteristic map is injective and regular. Now we need to check
condition 4 in Theorem 4.2. Since the boundary of the control mesh away form 0 is a straight line for k > 1
the limit curve which is a B-spline is also a straight line. This means it satisfies the condition.

5.2 Catmull-Clark scheme

The analysis of the eigenstructure of the boundary subdivision matrices becomes more complex in the case
of the Catmull-Clark scheme. Using the Catmull-Clark scheme as an example, we describe a technique that
can be used to analyze schemes with larger support.

The control mesh for a boundary patch surrounding an extraordinary vertex is shown in Figure 8.
There are 6 different types of vertices in the control mesh, shown in the same figure. For two types (1

and 3) there are two different masks that are used for boundary and interior vertices respectively. As we
did in the case of the Loop scheme, we introduce a number of undefined coefficients into the masks and
find eigenvalues and eigenvectors of the subdivision matrix as functions of coefficients. The choice of the
parameters is guided by the same considerations as for the Loop scheme.

Various types of boundary behavior (smooth convex corner, smooth boundary) can be obtained by
choosing appropriate values of the parameters. Again, we can show that no scheme from this class can
generate surfaces with smooth concave corners.

Subdivision matrix. The subdivision matrix has somewhat more complex structure for the Catmull-Clark
scheme.

In the block form, the matrix can be written as

















A00

A10
1
8I2

A20 A21 A22

A30 A31 A32
1
64Ik

















where the diagonal blocks are
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A00 =















































1− 2α α α

1− β β

1− β β

ǫ1 δ1 γ δ1 δ2 δ2

ǫ1 δ1 γ δ1 δ2 δ2

· · · · ·

ǫ1 δ1 δ1 γ δ2 δ2

ǫ2 η2 η2 η1

ǫ2 η2 η2 η1

· · · ·

· · · ·

ǫ2 η2 η2 η1















































A22 =



























































3
32 0 1

64
1
64

3
32

1
64

1
64

· · ·
3
32

1
64

1
64 0

0 1
16

1
16

1
16

1
16 ·

· ·
1
16

1
16

1
16

1
16

1
16

1
16

· ·
1
16 ·

0 1
16



























































(5.8)

Note that all eigenvalues of A22 are guaranteed to be less than 1/8 (the sum of the magnitudes of the
entries on any line does not exceed 1/8). Thus, only the eigenvalues of A00 are of interest to us. Next, we
observe that the matrix A00 itself has two blocks on the diagonal; the first 3 × 3 block is identical to the
block that we have considered for the Loop scheme; it has eigenvalues 1, β and β− 2α. The remaining block
denoted by Ā00 is the one we need to consider.

The matrix Ā00 acts on control points of types 1 and 2, excluding boundary control points of type 1.

Transformation of the subdivision matrix. Assume k > 1 (we will consider the case k = 1 sepa-
rately). The eigenvalues and eigenvectors of Ā00 can be found directly from the recurrences derived from
the subdivision rules. We take a somewhat different approach, similar to the DFT analysis used for interior
extraordinary vertices. This approach has somewhat greater generality and can potentially be applied to
analyze subdivision schemes with larger supports. To find the eigenvalues of Ā00, we introduce a new set of
control points. We replace control points of type 2, p2i , i = 0 . . . k− 1, with k+1 control points p̃2i satisfying

p2i =
1

2

(

p̃2i + p̃2i+1

)

(5.9)

for i = 0 . . . k− 1. Also, let p̃1i = p1i for control points of type 1. Note that we increase the number of control
points. These equations clearly do not define the new control points uniquely. However, it is not relevant
for our purposes. In matrix form, the relation between the original vector of control points of types 1 and 2
and the transformed vector p̃ can be written as p = T p̃, where T is a 2k + 1× 2k + 2 matrix.

In addition, we define the subdivision rules for the new control points. We choose the rules for p̃ in such
a way that the relations (5.9) also hold after the subdivision rules are applied to p and p̃. Let S̃ be the
subdivision matrix for p̃. Then our choice of rules means that

ST p̃ = T S̃p̃.

If λ is an eigenvalue of S̃, then S̃p̃λ = λp̃λ where p̃λ is the corresponding eigenvector, and

ST p̃λ = T S̃p̃λ = λT p̃λ.

Therefore, λ is also an eigenvalue of S, unless T p̃λ = 0. Note that the nullspace of T has dimension 1 and
contains the vector p1i = 0, p̃2i = (−1)i. Hence a complete set of eigenvalues and eigenvectors of S can be
obtained from eigenvalues and eigenvectors of S̃ once we exclude the eigenvalue corresponding to this vector,
if it happens to be an eigenvector.

We choose the subdivision rule for p̃2i as follows:
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[S̃p̃]2i = ǫ2p
0 + 2η2p

1
i + η1p̃

2
i (5.10)

In terms of new control points, the rule for control points of type 1 becomes

[Sp]1i = ǫ1p
0 + δ1

(

p1i−1 + p1i+1

)

+ γp1i +
δ2
2

(

p̃2i−1 + 2p̃2i + p̃2i+1

)

The matrix Ā00 is transformed into

Ã00 =

































γ δ1
δ2
2 δ2

δ2
2

δ1 γ δ1
δ2
2 δ2

δ2
2

· · · · · ·

δ1 γ δ2
2 δ2

δ2
2

η1
2η2 η1

2η2 η1
· η1

2η2 η1
η1

































(5.11)

Note that p̃20 and p̃1k depend on p10 and p1k which are outside this matrix.
This matrix has a double eigenvalue η1. The rest of the eigenvalues are eigenvalues of the matrix A

consisting only of the 4 tridiagonal subblocks. We have already observed that three diagonal matrices have
eigenvectors independent from the entries of the matrix. Denote H the matrix with entries sin ijθk, with
θk = π/k as before, i, j = 1 . . . k − 1. This matrix to some extent has the same role in the analysis of
subdivision matrices of boundary vertices as the DFT matrix has in the analysis of subdivision matrices
of interior vertices. The transform H is defined as diag (H,H). The inverse of this matrix is H−1 =
diag ((2/k)H, (2/k)H).

HAH−1 =
2

k

(

H 0
0 H

)(

B00 B01

B10 B11

)(

H 0
0 H

)

=
2

k

(

HB00H HB01H
HB10H HB11H

)

(5.12)

each block HBijH is a diagonal matrix. Finally, we apply the following permutation to the components
of the vector:

[

p11, p
1
2, . . . p

1
k−1, p̃

2
1, p̃

2
2, . . . p̃

2
k−1

]

→
[

p11, p̃
2
1, p

1
2, p̃

2
2 . . . p

1
k−1, p̃

2
k−1

]

. Let P be the corresponding
permutation matrix. The matrix A is reduced to the block diagonal form

PHAH−1P−1 =









B(1)
B(2)

·
B(k − 1)









(5.13)

where the blocks B(i), i = 1 . . . k − 1, are 2× 2 matrices

B(i) =





γ + 2δ1 cos
iπ

k
δ2

(

1 + cos
iπ

k

)

2η2 η1



 (5.14)

The explicit expressions for the eigenvalues are not particularly enlightening in the general case and we
omit them here.
Case k = 1. In this case, the eigenvalues and eigenvectors can be computed directly. The eigenvalues are β,
β − 2α, η2, 1/8, 1/16 and 1/64.

Eigenvectors. We start with eigenvectors of the matrix A00. We assume that η1 6= 0 and δ1 6= 0 and
none of the eigenvalues of the blocks B(i) coincide with η1. In this case, the eigenvectors corresponding to
each block B(i) can be taken to be [0, . . . 0, 1, r, 0, . . . 0], where the only two nonzero entries are in positions
2i− 1 and 2i, r = −2η2/(η1 − λ), and λ is the eigenvalue. Applying the inverse permutation and transform
H, we get eigenvectors of the form [vi, rvi], with vi being a vector of length k − 1 with entries sin(jθk),
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j = 1 . . . k − 1. The entries of the eigenvector of A00 corresponding to p̃20 and p̃2k are zero. The remaining
possible eigenvalues of A00 are 1, β, β − 2α and η1. Once the eigenvalue is known, the expressions for the
eigenvectors can be found directly from the subdivision rules. Keeping in mind that for all eigenvectors
except the eigenvector of the eigenvalue 1 and β − 2α for α 6= 0 we have p0 = 0. An interior control point of
type 1, p1i and a control point of type 2 p2i from an eigenvector p with eigenvalue λ should satisfy

λp1i = δ1
(

p1i−1 + p1i+1

)

+ δ2
(

p2i + p2i−1

)

+ γp1i i = 1 . . . k − 1

λp2i = η2
(

p1i + p1i+1

)

+ η1p
2
i i = 0 . . . k − 1

λp10 = βp10

λp1k = βp1k

(5.15)

For λ 6= η1, this leads to the following system of equations for p1i , i = 1 . . . k − 1,

0 =

(

δ1 + δ2
η2

λ− η1

)

(

p1i−1 + p1i+1

)

+

(

γ − λ+
2δ2η2
λ− η1

)

p1i (5.16)

Denote η̃1 = δ2η2/δ1. Then, if λ = η1 − η̃1, the equation is reduced to p1i (γ − η1 + η̃1 − 2δ2) = 0, which has
nontrivial solutions only if (γ − η1 + η̃1 − 2δ2) = 0.

Now we can find expressions for the eigenvectors. We start with the eigenvector of the eigenvalue η1.
Two cases are possible:

1. β = η1. Then there are two eigenvectors which both have p1i = (−1)i, and for the first one p2i =
(λ− γ + 2δ2)(−1)ii/δ1, and for the second one p2i = (λ− γ + 2δ2)(−1)i(i+ 1)/δ1.

2. β 6= η1. In this case, p1i = 0, and p2i = (−1)i.

If one of the eigenvalues β or β−2α coincides with η1, its eigenvectors are described by the same formulas.
Suppose β 6= η1. Then three cases are possible for the eigenvector of β.

1. β = η1 − η̃1, γ+ β− 2δ2 = 0. In this case, the eigenvalue β has multiplicity k+1, and the components
p1i , i = 0 . . . k can be chosen arbitrarily.

2. β = η1 − η̃1, γ + β − 2δ2 6= 0. In this case, the eigenvalue β has multiplicity 2, the components p1i ,
i = 1 . . . k − 1 are zero, and p10, p

1
k can be chosen arbitrarily.

3. β 6= η1 − η̃1, γ + β − 2δ2 6= 0. This is the most useful case. Let

r(λ) =
γ − λ+ 2δ2η2

λ−η1

δ1 + δ2
η2

λ−η1

(5.17)

then (5.16) reduces to p1i−1 + p1i+1 + r(β)p1i = 0. We have already explored the possible solutions of
these equations in Section 5.1. The most useful range of r(β) is (−2, 0), in which case the eigenvector
can be chosen to be sin ((i− k/2)θ), with θ such that r(β) = −2 cos θ.

Finally, for β − 2α there are two possibilities.

1. β − 2α = η1 − η̃1, γ + β − 2α − 2δ2 6= 0. In this case, the eigenvalue β has multiplicity k − 1, the
components p1i , i = 1 . . . k − 1 can be chosen arbitrarily, p10 = p1k = 0.

2. β− 2α 6= η1 − η̃1, γ+β− 2α− 2δ2 6= 0. This case is similar to the third case for the eigenvalue β, with
r(β) replaced with r(β − 2α).

If α = 0, then in the case β 6= η1 − η̃1, γ + β − 2δ2 6= 0, the eigenvalue β has two eigenvectors that can
be chosen to be sin iθ and sin(i− k)θ
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Figure 9: The control mesh for the parametric and characteristic maps in the case k = 1 for smooth boundary.

Coefficients for smooth boundary vertices. As it was discussed in Section 5.1, it is desirable to
use β = 1/2 and α = 1/8 for smooth boundary vertices. This choice of coefficients leads to a cubic spline
boundary curve. It is easy to see that we need only a single parameter in this case to ensure C1-continuity. We
choose the parameter γ, using the standard values for all other parameters: η1 = η2 = 1/4, δ1 = δ2 = 1/16.
In this case, the expression for the eigenvalues λj , λ

′

j simplifies to

λj , λ
′

j =
1

2
η̃ +

1

8
±

1

8

√

16η̃2 − 8η̃ + 1 + 2 (1 + cos jθk) j = 1 . . . k − 1

Note that for any k, j and any 0 < γ < 1, |λj | < λ1 and |λ′j | < λ1. From the formulas for the eigenvectors
we can tell that it is desirable to have subdominant eigenvalues β = 1/2 and λ1. For λ1 to be equal to 1/2,
we can take γ = 3/8− (1/4) cos θk. Note that for the regular case k = 2 we get the standard value γ = 3/8.
In general, for 1/2 to be one of the subdominant eigenvalues, it is necessary that γ < 3/8− (1/4) cos 2θk. If
one wishes to use a single value of γ for all valences, then the maximal possible choice of γ is 1/8.
Case k = 1. For the regular choices of parameters, the subdominant eigenvalues are 1/2 and 1/4, where 1/4
has a Jordan block of size 2. The resulting scheme is C1, although the normals converge to the limit
slower than in other cases due to the presence of the Jordan block. In this case the parametric map
does not coincide with the characteristic map. The parametric map can be informally characterized as
the map approximating, up to affine invariance, any subdivision surface generated near the central con-
trol point. Typically, it coincides with the characteristic map, but in the case when one of the subdom-
inant eigenvalues has a nontrivial Jordan block, these maps can be different. The tangent vectors are
actually determined by the control vectors of the parametric map. The control net of the characteristic
and parametric maps for k = 1 and the standard choice of coefficients is shown in Figure 9. Assum-
ing the ordering of components x1 = [p0, p10, p

1
1, p

2, p30, p
3
1, p

4
0, p

5
0, p

6
0], the eigenvectors defining the maps are

x1 = [0, 1,−1, 0, 2,−2, 1,−1, 0] (eigenvalue 1/2), x2 = [0, 0, 0, 1, 0, 0, 2, 2, 4] (eigenvalue 1/4 regular eigenvec-

tor) and x′
2
= [−1, 2, 2, 5, 11, 11, 10, 10, 51/5] (eigenvalue 1/4, generalized eigenvector). The characteristic

map is defined by the pair (x1, x2), the parametric map is defined by the pair (x1, x′
2
).

Coefficients for convex corner vertices. For the corner vertices we choose α = 0, β = 1/2. In this case,
we have to ensure that the two eigenvectors of the double eigenvalue β are the subdominant eigenvectors.
The necessary condition for this is λ1 < β. In addition, we have to verify that the resulting corner is indeed
convex. As it was the case for the Loop scheme, if the characteristic map is regular, for convexity it is
sufficient that the control mesh of the characteristic map has a convex corner at the central vertex. As the
subdominant eigenvectors for the eigenvalue β can be chosen to have components p1i equal to sin iθ and cos iθ,
with θ such that −2 cos θ = r(β) and r(β) defined by (5.17), the condition for convexity is r < −2 cos θk. As
it was the case for the Loop scheme, this condition turns out to be exactly equivalent to the condition for
the eigenvalue β to be subdominant. We arrive at the same conclusion: no scheme from the class that we
have defined can produce smooth concave corners.

Coefficients for concave corner vertices. To obtain coefficients that would allow us to generate surfaces
with smooth concave corners, we use the same approach that we used for the Loop scheme: we modify the
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coefficients in such a way that all eigenvalues of the matrix A00 except 1 and β = 1/2 are scaled by the
constant s < 1. Recall that the idea is to use subdivision rules with γ chosen in such a way that the
eigenvectors of the eigenvalue β = 1/2 produce a concave configuration, and use additional modification of
control points to ensure that β is subdominant. The additional rules were derived from the expression

p̃ = (1− s)p+ s
(

(l0, p)x0 + (l, p)xβ + (l′, p)x′
β
)

where x0 is the eigenvector [1, . . . , 1] of the eigenvalue 1. The vectors xβ and x′
β
are eigenvectors of the

eigenvalue β, and l0, l and l′ are corresponding left eigenvectors. The left eigenvectors l0, l and l′ are
exactly the same as for the Loop scheme: l = [−1, 0, 1, 0, . . .], l′ = [−1, 1, 0, 0, . . . 0] and l0 = [1, 0, . . . 0]. The

eigenvectors xβ and x′
β
coincide with the eigenvectors for the Loop scheme when restricted to the vertices

of type 1. To obtain the desired scaling of eigenvalues we also need to modify vertices of type 2. The
components of the eigenvectors corresponding to the vertices of type 2 are easily computed using subdivision
rules (cf. (5.15)):

p2i =
η2

λ− η1

(

p1i + p1i+1

)

=
(

p1i + p1i+1

)

Therefore, the analog of rules (5.7) for the Catmull-Clark subdivision is

[Sp]1i = (1− s)p1i + s

(

p0 +
(

p10 − p0
) sin (k − i)θ

sin kθ
+
(

p1k − p0
) sin iθ

sin kθ

)

[Sp]2i = (1− s)p2i + s

(

p0 +
(

p10 − p0
) sin (k − i)θ + sin (k − i+ 1)θ

sin kθ
+
(

p1k − p0
) sin iθ + sin (i+ 1)θ

sin kθ

)

(5.18)

Proposition 5.3. Let Φ be the characteristic map defined by the eigenvectors described as above for each of
the different cases. Then

1. the preimage Φ−1(0) contains only one element, 0;

2. the characteristic map has a Jacobian of constant sign at all points of the domain besides 0.

3. The image of the boundary of the characteristic map has no self-intersections;

4. the image of the characteristic map is not the whole plane.

Proof. We will consider the smooth boundary case and the corner case separately. For the smooth boundary
case we use the coefficients β = 1/2, α = 1/8, η1 = η2 = 1/4, δ1 = δ2 = 1/16 and γ = 3/8 − 1/4 cos θk.
The characteristic map is then formed by the eigenvectors to the eigenvalue β = 1/2 and λ1 = 1/2. In the
corner case we use the same coefficients for β, η1, η2, δ1 and δ2 and α = 0 and γ = 3/8− 1/4 cos θ where θ is
such that r(β) = −2 cos θ. We construct the 2 ring control mesh (see Figure 10(a) for k=4) given by these
eigenvalues and subdivide them twice. The quadrilaterals in the 3rd and 4th ring are then surrounded by
one ring of regular quadrilaterals. In each sector we have 12 quadrilaterals. We compute the surrounding 16
control values (Figure 10 (c)) for the different cases for the smooth boundary as well as for the corner case.
We distinguish the same cases as in the Loop scheme.

For each of those cases we get the polynomial by tensor product B-spline which is given by

p(u, v) = χ ·B · P

where
χ = (1, u, u2, u3, v, vu, vu2, cu3, v2, v2u, v2u2, v2u3, v3, v3u, v3u2, v3u3)

and

B =
1

6









B1 4B1 B1 0
−3B1 0 3B1 0
3B1 −6B1 3B1 0
−B1 3B1 −3B1 B1









with B1 =
1

6









1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1









(5.19)
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(a) (b) (c)

Figure 10: Fig (a) show the 2 ring control data for a mesh with 4 sectors which we subdivide twice. We get
5 rings show in Fig (b). Fig (d) shows a control net for a given quadrilateral.

and P ∈ R16×2 given by the eigenvector control data. In order to do our analysis we have to transform
the polynomial into Bernstein-Bezier coordinates first. We do that by replacing the vector χ with its
Bernstein-Bezier equivalent. This is done by making every expression in χ a homogenous polynomial in
u, v, u′ = 1−u, v′ = 1−v by substituting 1s. Therefore we now have 168 polynomials p(u, u′, v, v′) = (f1, f2)
representing the characteristic map in Berstein-Bezier coordinates.

1. For each of those cases we need to check that the radius f21 + f22 is strictly bigger than 0. We do that
by checking the coefficients in Berstein-Bezier coordinates are positive.

2. We compute the Jacobian on each quadrilateral and check the sign by checking the sign of the coeffi-
cients and find that they are all the same.

3. We restrict f1 and f2 to the relevant boundary of the quadrilaterals on the 4th ring. We check the
monotonicity of the quotient as in the Loop scheme.

4. This follows from the convex hull as the convex hull of the control mesh is not the whole plane. Again
we have to take it sector by sector for the concave corner case.

We can then follow similarly as for Loop that the scheme is C1 by finding the cubic B-spline boundary
curve and checking the condition of Theorem 4.2

Furthermore it is not necessary to use those exact values for the parameters you just have to make
sure that β and λ1 are subdominant as well as r(β) ∈ (−2, 0) to get similar eigenvectors and by a similar
calculation the same results.
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Marie Curie, 1997.

27



[5] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character animation. Proceedings of
SIGGRAPH 98, pages 85–94, July 1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

[6] D. Doo. A subdivision algorithm for smoothing down irregularly shaped polyhedrons. In Proceedings
on Interactive Techniques in Computer Aided Design, pages 157–165, Bologna, 1978.

[7] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov. Modern geometry—methods and applications. Part
I. Springer-Verlag, New York, second edition, 1992. The geometry of surfaces, transformation groups,
and fields, Translated from the Russian by Robert G. Burns.

[8] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle.
Piecewise smooth surface reconsruction. In Computer Graphics Proceedings, Annual Conference Series,
pages 295–302. ACM Siggraph, 1994.

[9] A. Levin. Analysis of quasi-uniform subdivision schemes. In preparation, 1999.

[10] R. E. Moore. Methods And Applications Of Interval Analysis. SIAM, Philadelphia, 1979.

[11] J. Munkres. Elementary Differential Topology. Princeton University Press, 1966.

[12] A. H. Nasri. Polyhedral subdivision methods for free-form surfaces. ACM Trans. Gr., 6(1):29–73,
January 1987.

[13] A. H. Nasri. Boundary corner control in recursive subdivision surfaces. 23(6):405–410, 1991.

[14] A. H. Nasri. Surface interpolation on irregular networks with normal conditions. 8:89–96, 1991.

[15] J. Peters and J. Fan. On the complexity of smooth spline surfaces from quad meshes. Comput. Aided
Geom. Design, 27(1):96–105, 2010.

[16] J. Peters and U. Reif. Analysis of generalized B-spline subdivision algorithms. SIAM Jornal of Numerical
Analysis, 1997.

[17] J. Peters and U. Reif. Subdivision surfaces, volume 3 of Geometry and Computing. Springer-Verlag,
Berlin, 2008. With introductory contributions by Nira Dyn and Malcolm Sabin.

[18] U. Reif. A unified approach to subdivision algorithms near extraordinary points. 12:153–174, 1995.

[19] J. E. Schweitzer. Analysis and Application of Subdivision Surfaces. PhD thesis, University of Washing-
ton, Seattle, 1996.

[20] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton University Press,
Princeton, N.J., 1970. Princeton Mathematical Series, No. 30.

[21] J. Wallner and N. Dyn. Convergence and C1 analysis of subdivision schemes on manifolds by proximity.
Comput. Aided Geom. Design, 22(7):593–622, 2005.

[22] J. Wallner, E. Nava Yazdani, and A. Weinmann. Convergence and smoothness analysis of subdivision
rules in Riemannian and symmetric spaces. Adv. Comput. Math., 34(2):201–218, 2011.

[23] G. Xie and T. P.-Y. Yu. Smoothness analysis of nonlinear subdivision schemes of homogeneous and
affine invariant type. Constr. Approx., 22(2):219–254, 2005.

[24] D. Zorin. Subdivision and Multiresolution Surface Representations. PhD thesis, Caltech, Pasadena,
1997.

[25] D. Zorin. A method for analysis of c1-continuity of subdivision surfaces. SIAM Journal of Numerical
Analysis, 37(4), 2000.

[26] D. Zorin. Smoothness of subdivision on irregular meshes. Constructive Approximation, 16(3), 2000.

28



A Appendix

A.1 Loop

The Loop subdivision matrix is given by the matrix



















































































1−2α α α

1−β β

1−β β

ǫ δ γ δ

ǫ δ γ δ

· · · ·

ǫ δ γ δ

ǫ δ δ γ

1/8 3/8 3/8 1/8

1/8 3/8 3/8 1/8

· · · ·

· · · ·

1/8 3/8 3/8 1/8

1/8 3/8 3/8 1/8

1/8 3/4 1/8

1/8 3/4 1/8

1/16 1/16 5/8 1/16 1/16 1/16 1/16

1/16 1/16 5/8 1/16 1/16 1/16 1/16

· · · · ·

1/16 1/16 5/8 1/16 1/16 1/16 1/16

1/16 1/16 1/16 5/8 1/16 1/16 1/16



















































































(A.1)

where ǫ = 1− 2δ − γ.
Depending on the range of r Table 1 shows the eigenvector for vβ and Table 2 shows the 2 eigenvectors

if β is a double eigenvalue.
The matrix Q needed to evaluate the polynomial is gvien by:

Q =
1

24





















































2 2 0 2 12 2 0 2 2 0 0 0
0 1 0 1 12 3 0 3 4 0 0 0
1 3 0 0 12 4 0 1 3 0 0 0
0 0 0 0 8 4 0 4 8 0 0 0
0 1 0 0 10 6 0 1 6 0 0 0
0 4 0 0 8 8 0 0 4 0 0 0
0 0 0 0 4 3 0 3 12 1 1 0
0 1 0 1 6 6 0 1 10 1 0 0
0 1 0 0 6 10 0 0 6 1 0 0
0 3 1 0 4 12 0 0 3 1 0 0
0 0 0 0 2 2 0 2 12 2 2 2
0 0 0 0 3 4 0 1 12 3 0 1
0 0 0 0 4 8 0 0 8 4 0 0
0 1 0 0 3 12 1 0 4 3 0 0
0 2 2 0 2 12 2 0 2 2 0 0





















































(A.2)

The different cases we need distinguish are:
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r > 2, k odd (−1)icosh

(

i−
k

2

)

θ, r =2 cosh θ

r > 2, k even (−1)isinh

(

i−
k

2

)

θ, r =2 cosh θ

r = 2, k odd (−1)i

r = 2, k even (−1)i
(

n−
k

2

)

,

− 2 < r < 2 sin

(

i−
k

2

)

θ, r =−2 cos θ

r = −2 i−
k

2

r < −2 sinh

(

i−
k

2

)

θ, r =−2 cosh θ

Table 1: Solutions for vβ

r > 2, (−1)i sinh iθ, (−1)i sinh (i− k) θ, r =2 cosh θ

r = 2, (−1)ii, (−1)i(i− k)

− 2 < r < 2 sin iθ, sin (i− k) θ, r =−2 cos θ

r = −2 i, i− k

r < −2 sinh iθ, sinh (i− k) θ, r =−2 cosh θ

Table 2: Solutions for vβ and v′
β
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12 for the interior sector with i = 3, . . . , k − 2 and arbitrary k
12 for i = 2 or i = k − 1(we only have to check be by symmetry) and arbitrary k
12 for i = 1 or i = k and arbitrary k
12 for k=1;
12 for k=2 and i = 1 or i = 2
12 for k=3 and i = 1 or i = 3
12 for k=3 and i = 2

This means that we have 12× 7 = 84 polynomials.

A.2 Catmull-Clark

The Subdivision matrix for the Catmull-Clark scheme is given by Figure 11.
The matrix we need to find the eigenvalues of is Ā00.

Ā00 =































γ δ1 δ2 δ2
δ1 γ δ1 δ2 δ2

· · · · ·

δ1 γ δ2 δ2
η2 η1
η2 η2 η1

· · ·

· · ·

η2 η1































After changing variables and rearranging the entries, we get the matrix

































η1
η1

δ2
2 γ δ1 δ2

δ2
2

δ1 γ δ1
δ2
2 δ2

δ2
2

· · · · · ·

δ2 δ1 γ δ2
2 δ2

2η2 η1
2η2 η1

· η1
2η2 η1

































which has 4 diagonal or tridiagonal subblocks of size k − 1× k − 1.
Just as in the Loop case we have to compute polynomials for the following different cases.
12 for the interior sector with i = 3, . . . , k − 2 and arbitrary k
12 for i = 2 or i = k − 1(we only have to check be by symmetry) and arbitrary k
12 for i = 1 or i = k and arbitrary k
12 for k=1;
12 for k=2 and i = 1 or i = 2
12 for k=3 and i = 1 or i = 3
12 for k=3 and i = 2
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

























































































































































































1− 2α α α

1− β β

1− β β

ǫ1 δ1 γ δ1 δ2 δ2

ǫ1 δ1 γ δ1 δ2 δ2

· · · · ·

ǫ1 δ1 δ1 γ δ2 δ2

ǫ2 η2 η2 η1

ǫ2 η2 η2 η1

· · · ·

· · · ·

ǫ2 η2 η2 η1

1
8

3
4

1
8

1
8

3
4

1
8
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Figure 11: The subdivision matrix for the Catmull-Clark scheme.
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