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Abstract

A fully adaptive model order reduction scheme based on moment-matching is proposed
to derive the reduced model of a linear time invariant system. According to the given error
tolerance, the order of the reduced model, as well as the expansion points for the transfer
function, are automatically determined on the fly during the process of model reduction. In
this sense, the reduced model is automatically obtained without heuristically assigning the
number of moments and expansion points before model reduction, which is a prerequisite
for the standard implementation of model reduction based on moment matching. The
proposed adaptive scheme is found to be efficient when it is tested on various linear time
invariant systems.

1 Introduction
Model order reduction (MOR) for linear time invariant (LTI) systems has demonstrated great
efficiency in the simulation of large-scale systems. Model reduction methods based on bal-
anced truncation are very efficient for medium to large-scale problems [1, 2]. It is well known
that a global error bound for the reduced model makes the model reduction process auto-
matic. Although model reduction methods based on Krylov subspace and moment-matching
are much simpler to be implemented and also require much less computational complexity
than methods based on balanced truncation, they cannot be performed adaptively. One always
has to decide, by experience or heuristically, the number of moments to be matched and the
position of the expansion points to be used for the transfer function. In this case, one runs
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the risk of performing model reduction repeatedly before a satisfactory solution is found. The
worst case is that, after several attempts, the reduced model remains inaccurate. The most
difficult task is choosing suitable expansion points, and in many cases using only an expan-
sion point at zero is not sufficient for an accurate and small reduced model. However, how to
choose proper nonzero expansion points and how to decide upon the corresponding number
of moments accordingly is still unknown. The above problems are therefore the most tricky
issues for model reduction based on moment-matching.

Until now, this area of research has barely been touched upon and the problems above still
remain open. An early method called CFH (Complex Frequency Hopping) is proposed in [3]
to illustrate a principle of choosing multiple expansion points of the transfer function. By
using an binary search algorithm, the expansion points are chosen with respect to the common
poles contained in both circles of the neighboring expansion points. However, the poles of
the transfer function are computed based on explicit moment-matching. This means that the
moments which are needed to compute the poles are explicitly computed by recursive matrix-
vector multiplications, in the same way as the Asymptotic Waveform Evaluation method in [4].
Therefore, the poles computed are actually not accurate, because of numerical instability,
although they would represent the actual poles if computed with precise arithmetic. Moreover,
in order to compute the actual poles according to the theorem of convergence (Theorem 1
in [4]), higher order moments must be computed. However, explicit moment computation
cannot guarantee that the higher order moments are accurately computed, again because of
numerical instability. Usually, at most the first 20 moments can be accurately computed. A
transfer-function-based approach is proposed in [5] by using a similar binary search algorithm
as in [3]. However, one reduced model is constructed at each expansion point, which means 10
reduced models are constructed if 10 expansion points are chosen. Furthermore, the reduced
models are obtained by explicitly calculating the moments, which is not numerically stable.

Recently, the issue of multi-point expansion for the transfer function is readdressed in [6].
Methods based on interpolation are proposed in the paper, which claim some rules for select-
ing the interpolation points needed for approximating the transfer function. However, these
methods are rather limited for the task at hand. For example, the methods are actually not
adaptive in choosing the number of the interpolation points, and may be implemented only
after a fixed number is given.

In this paper we aim at solving the above open problems for model reduction of LTI systems.
Our method is based on a bisection principle used to adaptively choose the expansion points
for the transfer function, which is very similar to the binary technique used in [3, 5]. The
differences from the algorithms of [3, 5] may be summarized as follows. Firstly, a single
reduced model can be obtained by our method as compared with the method in [5]. Secondly,
a different stopping criterion is used. Thirdly, the error estimation of the reduced model is
the error between the reduced model and the original model, which can be computed cheaply.
Fourthly, the expansion points are chosen to compute the projection matrix V based on implicit
moment-matching [7], which can maintain numerical stability. The proposed method not
only provides an adaptive scheme for selecting the expansion points, but also tells us how
to adaptively choose the moments for each expansion point, as well as a proper order of the
reduced model, something which cannot be adaptively selected by the previous methods.

We review the standard moment matching model reduction method PRIMA [7] in the next
section. In Section 3, the key ideas of our adaptive scheme are described, and the implementa-
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tion details are discussed as well. Simulation results for several examples in Integrated Circuit
(IC) interconnect design are presented in Section 4.

2 Review of MOR based on moment-matching
Among the various model reduction methods based on moment matching, the basic methods
for linear systems include those described in [7, 8]. Since the method PRIMA in [7] preserves
the passivity of the original system, it is usually the method of choice for model order reduction
of linear systems. Our adaptive scheme is based on PRIMA and aims to obtain the reduced
model of the linear descriptor system

C d
dt x(t)+Gx(t) = Bu(t),

y(t) = LTx(t).
(1)

Such systems arise from, e.g., the modelling of interconnects in IC design, and of coupled field
problems in MEMS simulation, mainly from discretized partial differential equations (PDEs)
obtained via a finite element discretization, a PEEC discretization, or the method of moments.
Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm1 is the input signal and y(t) ∈ Rm2 is the output
response. We consider general multi-input and multi-output systems, i.e. m1 ≥ 1 and m2 ≥ 1.

Many model reduction methods are based on the idea of projection, i.e. a basis of a subspace
which approximates the manifold in which the state vector x(t) resides is first computed, and
then the reduced order model is obtained by Petrov-Garlerkin projection. If we use system (1)
as an example, usually a matrix V ∈Rn×r whose columns span the subspace is computed, such
that x(t) is approximated by its projection onto the subspace, i.e., x(t)≈V z(t),

CV d
dt z(t)+GV z(t) ≈ Bu(t),

y(t) ≈ LTV z(t).
(2)

The reduced model is derived by forcing the residual e = CV d
dt z(t)+GV z(t)−Bu(t) of the

above first equation to be zero in a subspace which is spanned by the columns of a matrix
W ∈ Rn×r, i.e.,

W TCV d
dt z(t)+W TGV z(t) = W TBu(t),

y(t) = LTV z(t).
(3)

The above process in (3) associated with W is the so-called Petrov-Galerkin projection. The
variable r ≤ n indicates the dimension of system (3), which is also called the order of the
reduced model. Model reduction methods based on projection differ in the computation of
the matrices W and V . Methods related to balanced truncation [1, 2] compute W,V according
to the Gramians of the system, whereas methods based on moment-matching compute W,V
according to the series expansion of the transfer function.

In order to preserve the passivity of the original system, PRIMA [7] uses W =V such that
the reduced model is guaranteed to be passive if the original system is passive. The matrix V
is constructed from the moments of the transfer function (matrix),

Y (s) = H(s)U(s) = LT(sC+G)−1BU(s). (4)
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and
H(s) = LT(sC+G)−1B. (5)

H(s) is derived from the Laplace transform of (1). The Laplace domain variable s is related to
frequency f by s = 2π j f

If we expand H(s) around some expansion point s0 as

H(s) = LT[(s− s0 + s0)C+G]−1B
= LT[(s− s0)C+(s0C+G)]−1B
= LT[I +(s0C+G)−1C(s− s0)]

−1(s0C+G)−1B

=
∞

∑
i=0

LT[−(s0C+G)−1C]i(s0C+G)−1B︸ ︷︷ ︸
:=mi(s0)

(s− s0)
i,

then mi(s0), i = 0,1,2, . . . are called the ith order moments of the transfer function H(s). The
columns of V span the subspace

range{V} = span{B̃(s0),(G̃(s0)
−1C)B̃(s0), · · · ,

(G̃(s0)
−1C)qB̃(s0)},

(6)

where G̃(s0) = s0C+G, B̃(s0) = (s0C+G)−1B. In this paper we call (G̃(s0)
−1C)iB̃(s0), i =

0,1, . . . the ith order moment vectors.
It is proved in [7] that the first q+ 1 moments of the (reduced) transfer function of the

reduced model are the same as those corresponding moments of the original transfer function
H(s), i.e.

Hr(s)−H(s) = o(s− s0)
q. (7)

Here, Hr(s) is the reduced transfer function. It implies that, for a fixed s0, a larger q produces
a more accurate Hr(s).

From (7) one can see that the accuracy of Hr also depends on s0. For a fixed q, if s′ is far
away from s0, the error of Hr at s′ is usually larger than for those variables that are close to s0.
This implies that if s0 is chosen as zero, then Hr(s) is probably not accurate at high frequencies
where f � f0. One may also use multi expansion points to overcome the large error caused
at high frequencies. However, it is not immediately clear how to choose suitable expansion
points, or indeed how many corresponding moments should be taken. For the current model
reduction methods based on moment-matching, the two variables s0 and q are heuristically
given a priori, because there is not a general rule for properly choosing them.

3 The adaptive scheme
A smart technique of automatically choosing the number of moments, as well as the expansion
points, is proposed in this section. To make the procedure clear, we first explain the adaptive
scheme of matching moments given a single expansion point in subsection 3.1. Then, in the
following subsection, we show the scheme of adaptively choosing both the expansion points
and the corresponding number of moments, as well as the proper order r of the reduced model.

3



3.1 Adaptively choosing moments
As is known, given an interval of frequency f ∈ [ fl , fh], the range of the variable s is defined by
s ∈ [sl ,sh] := 2π j[ fl , fu]. In this subsection, we only consider the adaptive choice of the num-
ber of moments associated with a single expansion point. For example, the transfer function
is expanded around s0.

From (7), we see that Hr(s) has its smallest error at s0, and that the largest error must be
contributed by a point s′ which is far away from s0. For two different variables s1 and s2 with
|s1−s0|< |s2−s0|, we cannot say that error(s1) = ||H(s1)−Hr(s1)||/||H(s1)|| is also smaller
than error(s2) = ||H(s2)−Hr(s2)||/||H(s2)||. Here || · || is a general description, we will give
the detailed definition in Section 4 for SISO and MIMO systems separately.

However, if s2 is much farther away from s0 than s1, and q is relatively large, the chance
of error(s2) being larger than error(s1) increases. Since we never know how much farther s2
is than s1, and how large q should be, we simply assume that the point s∗ which is farthest
away from s0 usually has the largest error for each q. Therefore, during MOR, we only check
the error at s∗ if we only use single point expansion. This is somehow heuristic, nevertheless,
after many tests, we have found that the error at s∗ can control the error over the entire range
[sl ,sh]. Although in many situations, especially when q is small, the largest error over [sl ,sh]
is not exactly at s∗, it has a similar magnitude as the error at s∗, i.e., the largest error is
O(error(s∗)). Moreover, the point with the largest error is very close to s∗ after a certain
number q of moments are matched.

Based on this observation, the projection matrix V can be computed adaptively as follows.

Adaptive scheme of choosing moments:

M1: As input we specify the acceptable accuracy of the reduced model tol. tol here means
the acceptable maximal relative error max

s∈[sl , sh]
||H(s)−Hr(s)||2/||H(s)||2 between the re-

duced transfer function and the original transfer function.

M2: The first moment vector B̃(s0) is chosen, the projection matrix V is computed such that
range{V}= span{B̃(s0)}. Assume s∗ ∈ [sl ,sh] is the variable which is farthest away from
s0 (s∗ can be taken as e.g. sh if s0 = sl). Compute the reduced transfer function Hr(s∗)
and the error ε(s∗) = ||H(s∗)−Hr(s∗)||/||H(s∗)||.

M3: For i = 1,2, . . ., while ε > tol, add new moment vectors (G(s0)
−1C(s0))

iB̃(s0) to V , such
that

range{V} = span{(B̃(s0),(G̃(s0)
−1C)B̃(s0),

. . . ,(G̃(s0)
−1C)iB̃(s0)}

compute Hr(s∗) and ε , until ε < tol.

From the above steps, we see that at each iteration step i, only the error at the point s∗ is
checked, and usually this is sufficient. This is because if the error ε(s∗) at s∗ is smaller than
tol, the error ε(s′) at s′ (which causes the largest error in [sl ,sh]) is also small enough in many
cases. In case there are exceptions, and in order to be more confident that ε(s′) is also smaller
than tol, one can take tol to be smaller (e.g. 10 times smaller) than the expected accuracy for
the reduced model.
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When the original system is very large and LU factorization of G̃(si) is not applicable due to
memory limitations, all of the moment vectors of any expansion point si have to be computed
by solving the linear systems G̃(si)

−1x = f with iterative methods, such as GMRES. The
right hand side vector f may be the latest computed column of the matrix V . For such cases,
computation of the original transfer function at one frequency point s∗ is equivalent to the
computation of one additional moment vector in (6). Therefore, the above error check is
computationally reasonable.

For those systems with very sparse system matrices, so that the LU factorization of G̃(si)
can be obtained more easily, the computation of the original transfer function at one frequency
point s∗ needs an extra LU factorization of G̃(s∗), which is more expensive than computing
one additional moment vector corresponding to the current expansion point si. However, the
extra computation is still acceptable.

Once H(s∗) is computed in M2, it will be reused in M3. The computation of the reduced
transfer function Hr(s∗) costs even less, because V usually has very few columns. This means
that only little additional computation is necessary in order to check the error of the reduced
model. Finally, the gain of the proposed adaptive scheme over the standard method PRIMA is
that one can determine the order of the reduced model automatically and the accuracy of the
reduced model can be adjusted on the fly. Guessing and trial-and-error is thereby completely
avoided.

An error indicator proposed in [9] controls the number of moments matched for a given
expansion point. It considers the error between the neighboring reduced transfer functions
e(si) = Hr(si)−Hr+1(si), i = 1,2, . . . ,m, at many samples of the frequency. This means that
the error is derived by computing the two reduced transfer functions whilst sweeping over the
whole frequency range. The error is computed at each iteration of adding one moment vector
to the Krylov subspace of V , which needs much more computation than the scheme of error
check above. Moreover, a small e(si) cannot guarantee a small ε(si) in theory. The error
control in [6] is based on a similar idea. The proposed scheme computes the real error of the
reduced model and therefore guarantees convergence. Moreover, the method in [9] is actually
not a fully automatic method, because the expansion points are not chosen automatically.

3.2 Adaptive scheme for choosing expansion points, moments
and the order

In the following, the adaptive scheme of both choosing expansion points and deciding the
number of moments is delineated. Generally speaking, the expansion points are chosen based
on a bisection principle. The number of moments matched at each expansion point is deter-
mined by a tested point which is known to cause the largest error in the interval of each pair
of neighboring expansion points.

Adaptive scheme for choosing expansion points, moments and the order r:

E1: At the start one should choose an acceptable dimension of the reduced model, say rmax,
as well as the acceptable accuracy of the reduced model tol. rmax will be adjusted to a
proper number during the adaptive scheme if it was selected too small.
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E2: The first expansion point is chosen as s0 = sl , the projection matrix V is computed such
that range{V}= span{B̃(s0)}. Compute ε = ||H(sh)−Hr(sh))||/||H(sh)||.

E3: Let col be the number of columns in V . For i = 1,2, . . ., while ε > tol and col < rmax, add
new moment vectors (G̃(s0)

−1C)iB̃(s0) to V , such that

range{V} = span{(B̃, G̃(s0)
−1CB̃(s0), . . . ,(G̃(s0)

−1C)iB̃(s0)}. Compute ε = ||H(sh)−
Hr(sh)||/||H(sh)||.

E4: Inside the “For” loop in E3, if col > rmax, i.e., if the dimension of the reduced model
which will be produced by V is larger than the acceptable dimension, then add the second
expansion point s1 = sh and go to E5. Otherwise, if col < rmax and ε < tol, compute the
reduced model and stop.

E5: If s1 is added as the second expansion point, then compute a new matrix V based on
the two expansion points s0 = sl and s1 = sh, such that it includes the 0th order mo-
ments msl

0 ,m
sh
0 of both expansion points. I.e., range{V} = span{B̃(s0), B̃(s1)}. Because

B̃(s0) has been computed, it is simply picked out from the previously computed matrix
V . One only has to compute B̃(s1). Now only check the error at s2: ε = ||H(s2)−
Hr(s2)||/||H(s2)||. Here s2 = 2π j f2 is the midpoint between s0 and s1 with f2 = f0 +
( f1− f0)/2.

E6: While ε > tol and col < rmax, add the ith (i > 0) order moments of both expansion points,
such that

range{V} = span{B̃(s0), B̃(s1),
(G̃(s0)

−1C)B̃(s0),(G̃(s1)
−1C)B̃(s1),

. . . ,(G̃(s0)
−1C)iB̃(s0),(G̃(s1)

−1C)iB̃(s1)}.
(8)

Likewise, (G̃(s0)
−1C)iB̃(s0) can be simply picked out from the previous V , so that only

(G̃(s1)
−1C)iB̃(s1) is computed.

E7: If col > rmax, then take s2 as the new expansion point and go to E8. Otherwise, if col <
rmax and ε < tol, then compute the reduced model and stop.

E8: Compute a new matrix V based on the above three expansion points, such that it includes
the ith order moments of all expansion points, range{V} = span{B̃(s0), B̃(s1), B̃(s2)}.
Similarly, one only has to compute B̃(s2), and reuse the other two terms which are com-
puted in the previous steps. Now check the error ε3 = ||H(s3)−Hr(s3)||/||H(s3)|| and
ε4 = ||H(s4)−Hr(s4)||/||H(s4)||. Likewise, s3 is the midpoint between s0 and s2, and s4
is the midpoint between s2 and s1.

E9: While both ε3 > tol and ε4 > tol, and col < rmax, add higher order moments such that

range{V} = span{B̃(s0), B̃(s1), B̃(s2),
(G̃(s0)

−1C)B̃(s0),(G̃(s1)
−1C)B̃(s1),

(G̃(s2)
−iC)B̃(s2), . . . ,

(G̃(s0)
−1C)iB̃(s0),(G̃(s1)

−1C)iB̃(s1),
(G̃(s2)

−iC)iB̃(s2)}.
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Similarly, one only has to compute the vectors related to s2; the other vectors can be
simply picked out from the previous V and reused. If any of the two cases happens:

a) Any of the two errors satisfy ε j0 < tol, j0 = 3 or 4, go to E10.

b) col > rmax, go to E11.

E10: If Case a in E9 and col < rmax, then continue adding the higher order moments of s j,
which do not lie adjacent to s j0 and stop adding moments of the two expansion points si
which are adjacent to s j0 , or in other words, which generate s j0 . For example, if j0 = 3,
then si = s0,s2, s j = s1. At the same time, stop checking the error at s3, and only check
the errors at s4. If at some stage, the error at s4 is also smaller than tol and col < rmax,
then stop. Otherwise, only add the current tested midpoint s4 as the new expansion point.

E11: If Case b in E9, do b, c or d in E13.

E12: Let us consider a general case of m expansion points. Similarly, the 0th order moments of
all expansion points are added to V , such that range{V}= span{B̃(s0), B̃(s1), . . . , B̃(sm)}.
For i = 1,2, . . ., check each error at the midpoint of each pair of neighboring expansion
points. If none of them is smaller than tol, continue adding the ith order moments. Oth-
erwise, if any of them, say s j0 is smaller than tol, stop adding higher order moments of
the two expansion points which generate s j0 . Also stop checking the error correspond-
ing to s j0 and only check the midpoints with errors larger than tol. Keep adding higher
moments of corresponding expansion points, until all the left errors are smaller than tol
or col > rmax. Midpoints like s j0 may arise at different steps of i, they will be deleted
gradually with increasing order i.

E13: a) If all of the errors are smaller than tol and col < rmax, then stop. The projection
matrix V of the reduced model is obtained.

b) If all of the errors are smaller than tol and col > rmax, and only the 0th order mo-
ments are included in range(V ), then it means that it is impossible to obtain a
reduced model with order smaller than rmax and satisfying the required tol. The
smallest order of the reduced model is col.

c) If not all of the errors are smaller than tol and col > rmax, and if only the 0th order
moments are included in range(V ), then it means that the initially given rmax is too
small to obtain a reduced model satisfying the required tol and rmax. One should
modify the initial rmax to a larger value, e.g. rmax = 2 ∗ col, which is double the
number of columns in the current projection matrix V , and one should add the cur-
rent left midpoints (except for those deleted points s j0 with error smaller than tol)
as the new expansion points, and then repeat E12.

d) If not all of the errors are smaller than tol and col > rmax, and if higher order mo-
ments are also included in the current range(V ), then it tells us that we still have the
opportunity to use more expansion points to reduce the order of the reduced model
and meet the accuracy requirement tol. For this case, we do not have to modify rmax
and simply need to add the current left midpoints (except for those deleted points
s j0 with error smaller than tol) as the new expansion points.
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Explanation for E4: col > rmax means that there are too many columns in V for the current
single expansion point. It implies that additional expansion points should be added in order to
match the frequencies far away from the current expansion point and simultaneously maintain
the reduced model at a small size. The next expansion point is taken as the point farthest away
from the current expansion point within the specified frequency range.

For the general case in E12, when choosing the expansion points and the moments, the
original transfer function needs only to be computed at the m−1 tested midpoints. The number
m is usually less than 10 when the reduced model satisfies the required tol and rmax. Therefore,
the total extra computation generated by the adaptive scheme is still small.

Explanation for E5: Because s2 is the point which is farthest away from both s0 and s1,
we assume that the point which causes the largest error is usually around s2. Therefore, we
only test the error at s2 and expect that if the error at s2 is smaller than tol, then the errors at
all other points will also be smaller than tol, or at least close to the error at s2. Similarly in
E12, it is sufficient to check the errors only at the tested midpoints, because they are the points
which are farthest away from the current expansion points. In fact, there are special cases for
which the error at s2 is much smaller than the errors at other points between s0 and s1. The
same may also happen to other midpoints in E8 and E12, e.g. at s3 and s4. We will deal with
these cases in the next subsection.

The motivation of our approach regarding the adaptive selection of expansion points in
some sense resembles the greedy sampling procedures used in reduced basis (RB) methods
for the model reduction of parameterized partial differential equations, see, e.g. [10], [11] and
references therein. In [10, 11], the points which cause the locally largest error (rather than the
global largest error considered in our method) are selected as the candidates for the expansion
points. The selection process is done by local optimization. The whole process is much more
complex than our method and requires much more computation, because the original system
has to be repeatedly simulated. A direct comparison of the algorithms is difficult as greedy
sampling is usually performed in parameter space, while our expansion points are taken with
respect to frequencies. A further exploration of similarities and differences is beyond the scope
of this paper and will be the topic of further research. It should also be noted that our adaptive
moment selection process has no direct analogy in greedy sampling/RB methods.

Adaptively finding the order of the reduced model
It can be seen from step E13 that the order of the reduced model can also be adaptively

determined if the initially given rmax is too small to obtain a sufficiently accurate reduced
model. For example, if rmax is set to be 10, and the reduced model is still not accurate enough,
then we can set a larger rmax, and continue adding more expansion points to obtain a new
reduced model. The previously computed moments vectors can still be made use of, and the
algorithm does not have to be restarted. After a few iterations, a new reduced model with an
adaptively determined order is obtained.

3.3 Modification scheme for the tested midpoints
The above special cases in E5 happen if the two expansion points s0,s1 separately cause
very different errors at s2. This means that if we compute two individual reduced trans-
fer functions Hr0 and Hr1 by expanding the original transfer function H(s) at s0 and s1, re-
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spectively, and by matching the same number of moments, the error of Hr0 at s2, ε0(s2) =
||H(s2)−Hr0(s2)||/||H(s2)|| is either much smaller or much larger than the error of Hr1
at s2, ε1(s2) = ||H(s2)−Hr1(s2)||/||H(s2)||. For example, it could happen that ε0(s2) = 1,
ε1(s2) = 1e− 5. In this case, if we derive a single reduced transfer function by using multi-
point expansion for H(s), i.e., expanding H(s) at s0 and s1, the error ε∗(s2) of the single
reduced transfer function at s2 could also turn out to be much smaller than ε0(s2). This is
because s1 contributes more to the accuracy of the reduced model at s2 than s0 does, therefore
speeds up the decrease of ε∗(s2). If we continue matching more moments at s0 and s1 and
checking ε∗(s2), then it probably becomes smaller than tol more quickly than would the er-
rors at other points which are closer to s0. This is because those points are farther away from
s1, so that s1 could not contribute as much as s2. As a result, the algorithm stops before the
error of the reduced model is smaller than tol at all the frequencies.

One solution to the above problem is to modify the current tested midpoint s2 to a new
point s∗ such that s∗ satisfies min < ε0(s∗)/ε1(s∗) < max. Here max, min are taken as some
reasonable values, which show that the difference between ε0(s∗) and ε1(s∗) should not be too
big. One can take e.g. max= 10, min= 0.1. In order to find s∗, we take a few samples between
s0 and s2 if ε0(s2)> ε1(s2), otherwise, we take a few samples between s2 and s1. We compare
ε0 and ε1 at the samples one after the other until s∗ is found. During the process, the values
of the original transfer function H(s) at the sample points have to be estimated. However, the
samples are usually very few and less than 10. Furthermore, it is not necessary that H(s) be
computed at all the sample points; usually s∗ has been found before all the sample points are
estimated. Therefore, the computational complexity of finding s∗ is equivalent to matching a
few more moments.

If we look at min < ε0(s∗)/ε1(s∗)< max, it tells us that the difference between Hr0(s
∗) and

Hr1(s
∗) should not be large. Therefore we can also use the criterion min< ||Hr0(s

∗)||/||Hr1(s
∗)||<

max as the stopping criterion of searching s∗. In this way, we avoid calculating the original
transfer function at the sample points, which will save computation time.

Our modification scheme applies to any tested midpoint between any pair of neighboring
expansion points. This means that if the above case happens to other expansion points other
than s0,s1, we can treat those tested midpoints in the same way.

Note that, for the case that any midpoint smid is modified to a new tested point s∗, s∗ rather
than smid will be selected as the new expansion point in E13. In this way, we have realized
the fully adaptive scheme, which only checks the errors of the points which really produce the
largest errors. The resulting expansion points may not be located equidistantly between sl and
sh, a situation which is best explained by Table 9 in Section 4.

3.4 Illustration of the adaptive scheme with diagrams
To render the above scheme clearer, we plot a flowchart of the general steps of the scheme in
Fig 1. At step 2 in the flowchart, s1, . . . ,sm represent the current expansion points including
the newly added expansion points. We check if the error of the reduced transfer function Hr(s)
at all of the tested points is smaller than tol at step 3. If true, we proceed to step 4.1, otherwise
we go to step 4.2. At step 4.2 we further check whether the error of Hr(s) is smaller than
tol at some of the tested points in order to remove those expansion points which already have
satisfied the error tolerance from the current expansion point list. In the next step, only those
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expansion points having unacceptable error have to be matched with higher order moments.
During step 3 and step 4.2, we use the modification scheme in Subsection 3.3 to modify the
tested mid-points if necessary.

At step 4.1, if r > rmax, we further check at step 5.1, and see if it is at the initial stage of
moment matching, i.e., whether only the 0th order moments (i = 0) are included in the Krylov
subspace. If true, this means the current rmax is too small. The proper order of the reduced
model is the current r. If i > 0, then we can directly add new expansion points and proceed to
step 2. We have similar checks at steps 6.1 and 6.2.

In the flowchart, the new expansion points are those tested points (either the midpoints or
the modified points) at which the error of the reduced transfer function Hr(s) is still larger than
tol.

The technique of adding the expansion points is illustrated in Fig 2. Iteration i, i = 0,1, . . . ,
describes the stage where s0, . . . ,s2i are in the set current expansion points. In Fig 3, we plot
the error of the reduced transfer function Hr(s) versus the number of expansion points. The
error of Hr(s) should decrease with increasing number of expansion points. For the current
iteration i, with s0, . . . ,s2i , i = 0,1, . . . representing the expansion points, the error of Hr(s)
is measured only at the tested points between each pair of the neighboring expansion points,
which are also marked in the figure.

From the above analysis, we see that the scheme is reasonable and operative w.r.t. theoreti-
cal and numerical aspects. In the next section, we demonstrate the robustness of our adaptive
scheme using several examples. For some of them, the standard moment-matching method
PRIMA behaves badly. Our adaptive scheme produces reduced models with the desired re-
duced order and accuracy. In all cases, the expansion points, the number of moments matched
and the order r are determined automatically.

4 Simulation results

4.1 The examples
In this section, we use several examples to test the efficiency of the adaptive scheme. The
first example is an RLC tree circuit, which can be instantiated for any level l. Between two
consecutive levels, the circuit branch segments of the lower level each split into two children,

yielding
l−1
∑

i=0
2i in the circuit of level l. Each segment is made up of four RL pairs in series, rep-

resenting the wiring on a chip, with four capacitors to ground, representing the wire-substrate
interaction, see Fig. 4. We construct two models for the example with respect to different
levels of l. The dimension of the two models are n = 6134 and n = 24566 respectively.

The second example, shown in Fig. 5, is a three conductor radio-frequency busline model,
split into 16 RLC segments. The two outer busline conductors of the coplanar waveguide
are terminated at both ends with resistors to ground. The middle signal line is terminated
by a capacitor to ground at the one end, and is driven at the other end by a current source
shunted by a resistor to ground. The segment model represents each conductor segment by
a line resistance, an inter-segment capacitance, a line self-conductance, and an inter-segment
mutual inductance. The original system is of size n = 147. For both examples, the input for
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Figure 1: Flowchart of the scheme.

each example is a step signal with 0.1 ns rise time, and the frequency range of interest is set
as [ fl , fh] = [0,3 GHz] [5].

The third example results from a PEEC discretization of an on-chip metallic spiral inductor
in a square geometry. The inductor features a ground plane shield that extends beyond the
inductor’s outer windings. In addition, the inductor features a grounded guard ring which
helps to reduce parasitics even further, see Fig. 61. This example has been tested by many
methods, including those based on balanced truncation [12]. The resulting descriptor system
is of dimension n = 1434. The interesting parameter for this example is the resistance and
inductance of the inductor and the frequency range of interest is [ fl , fh] = [0,10 GHz].

All of the above three examples are single input and single output (SISO) systems. For
the fourth example, we provide simulation results for a multiple input and multiple output
(MIMO) system. The model is obtained from the SLICOT benchmark collection 2. It is
derived from an electrical circuit of a CMOS-inverter driven two-bit bus modelled by 40 RLC

1The details of this example can be find at URL: http://simulation.uni-freiburg.de/downloads/benchmark/Peek in-
ductor (38891)

2(URL: http://www.icm.tu-bs.de/NICONET/benchmodred.html
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Figure 2: Bisection principle of choosing expansion points.

sections whose discretized equation system was determined using modified modal analysis
available in Spice, yielding a numerical system with order n = 980, and which has 4 inputs
and 4 outputs [7]. The frequency of interest is [ fl , fh] = [0,3 GHz]:

4.2 Rules of implementation
We set rmax = 20 for the SISO models, and set rmax = 50 for the MIMO model. For the
SISO examples, the relative error eR between the reduced transfer function and the original
transfer function is measured by eR = max

si
|H(si)−Hr(si)|/|H(si)|, where we have taken 2000

frequency samples si = 2π j fi, i = 1,2, . . . ,2000. For the MIMO example, we use eik
R instead

of eR to indicate the relative error of the (i,k)th entry of the reduced transfer matrix Hr(s).
We use Hik(s) to represent the (i,k)th entry of H(s) and Hrik(s) to represent the (i,k)th entry
of Hr(s). Hik(s) is the transfer function relating the ith input to the kth output. We define
eik

R = max
si
|Hik(si)−Hrik(si)|/|Hik(si)|, i = 1,2, . . . ,2000. Here, | · | means the magnitude of

the transfer function.
For all but the spiral inductor example, the frequency range of interest is [0,3 GHz], there-

fore we have set sl = 0 and sh = 2π j3 GHz in the adaptive scheme. For the spiral inductor, we
have sh = 2π j10 GHz. All of the simulation results are obtained with MATLAB R© version
2007b.

For the adaptive scheme for the SISO models, the error in the adaptive scheme ε(s0) =
||H(s0)−Hr(s0)||/||H(s0)|| at a certain point s0 is defined as ε(s0)= |H(s0)−Hr(s0)|/|Hr(s0)|.
I.e. this is the relative error of the reduced transfer function at s0. When applying the
adaptive scheme to the MIMO example, the error ε(s0) at a certain point s0 is computed
as ε(s0) = max

ik
|Hik(s0)−Hrik(s

0)|/|Hik(s0)|, which is the maximal relative error of the en-

tries Hrik at s0. It can also be explained as the maximal relative error of the reduced transfer
functions Hrik relating the ith input signal to the kth output signal, i,k = 1,2, . . . ,4.

Once the errors ε(si) at all of the tested points si are smaller than tol, the reduced model is
obtained.
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Figure 3: Scheme of error control and change of the error with the number of expansion points.

4.3 Results of the adaptive scheme for a fixed tol

In this section, we show the results of the adaptive scheme when tol = 1× 10−2 for all the
examples.

4.3.1 Results for the SISO examples

For the model of the clock tree with n = 24566, the expansion points are adaptively chosen as
s0 = sl = 2π j f0 = 0, s1 = sh = 2π j fh = 2π j3 GHz, and s2 = sl +(sh− sl)/2, the midpoint
of sl and sh. Here f0 = 0, fh = 3 GHz are the corresponding frequency points. The moments
matched at each expansion point is q = 4. The order of the reduced model is r = 20. The
relative error eR of the reduced transfer function is plotted in Fig. 7. According to our adaptive
scheme, the tested point for error control is the midpoint s3 between sl and s2 and the midpoint
s4 between s2 and sh. From the figure, we see the frequency points with the largest errors are
very close to f3 = 1.5 GHz and f4 = 2.25 GHz (si = 2π j fi, i = 3,4), which is in agreement
with our adaptive scheme. f4 is also the final tested midpoint which produces the largest error.
The other midpoint f3 corresponds to s j0 in E10, and it is removed from the list of midpoints
during the adaptive scheme.

For the model of the clock tree with n = 6134, two expansion points have been adaptively
chosen, s0 = sl = 0,s1 = sh. The number of moments matched at each expansion point is q= 6.
The reduced model is of order r = 18. Fig. 8 gives the relative error of the reduced transfer
function. It shows that the error around the midpoint between sl and sh is the largest; this
further justifies our adaptive scheme. From Fig. 9, we see that the reduced transfer function
matches the original transfer function very well for each peak. The error of the reduced transfer
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function of the clock tree model with n = 24566 (eR in Fig. 7) is even smaller than eR in Fig. 8,
therefore, the reduced transfer function of the model with n = 24566 should match the original
transfer function even better. To avoid repetition, we do not show it here.

We obtain a reduced model of order r = 3 for the busline model. For this example, only
s0 = sl is used for expansion and q = 3 moments are matched. The tested point for error
control is sh = 2π j3 GHz. The error of the reduced transfer function is plotted in Fig. 10. As
we can see, the error at f ∗ = 3 GHz is the largest.

The relative error eR of the reduced transfer function of the spiral inductor model is plotted
in Fig. 11, which remains below tol = 10−2 for all frequencies. It shows that the error at
f ∗ = 10 GHz is the largest, which corresponds to the tested point sh. The reduced system is
of order r = 9 and only s0 = sl is used as the expansion point; the tested point picked by the
adaptive scheme is sh.

Fig. 12 includes the resistance of the spiral inductor obtained by full simulation of the
original system as well as the resistance computed from the reduced system. Fig. 13 compares
the inductances of the spiral inductor computed respectively from the original system and the
reduced system. Unfortunately, the reduced model produces an inaccurate resistance whose
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Figure 6: Spiral inductor with part of overhanging copper plane.

Figure 7: Error of the reduced transfer function of the clock tree model with n = 24566.

error is larger than tol = 1×10−2. This may be because the resistance is reciprocally related
to the real part of the transfer function. If we set tol = 1× 10−3, we see that the resistance
(the star symbol line in Fig. 13) is already indistinguishable from the full simulation result.
With tol = 1×10−3, the reduced model is of order r = 9, but has used two expansion points
instead.

4.3.2 Results of the MIMO example

We compare Hik with Hrik for each pair of ik, i, k = 1,2, . . . ,4 and list the relative error eik
R

between Hik and Hrik in Table 1. The order of the reduced model is r = 48. Two expansion
points s0 = sl = 0, s1 = sh = 2π j fh = 2π j3 GHz have been used, and 4 moments are matched
for each expansion point. The tested point is the midpoint s2 = s0 + (s0 − s1)/2. We see
from Table 1 that the error of the reduced transfer function Hrik , i,k = 1,2, . . . ,4 in the whole
frequency interval is very close to tol, though not below tol.
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Figure 8: Error of the reduced transfer function of the clock tree model with n = 6134.

Table 1: eik
R for each pair ik for the MIMO example with tol = 1×10−2 and rmax = 50

eik
R pair 11 pair 12 pair 13 pair 14

2.98×10−2 1.22×10−2 1.38×10−2 3.1×10−2

eik
R pair 21 pair 22 pair 23 pair 24

1.22×10−2 2.96×10−2 3.09×10−2 1.38×10−2

eik
R pair 31 pair32 pair 33 pair 34

1.38×10−2 3.09×10−2 3.23×10−2 1.12×10−2

eik
R pair 41 pair 42 pair 43 pair 44

3.1×10−2 1.38×10−2 1.12×10−2 3.15×10−2

It is worth mentioning that, if we run PRIMA with the above indicated expansion points
and number of moments, then the computed reduced model produces almost the same results
as that produced by our adaptive scheme.

4.4 Efficiency of the modification scheme
In this subsection, we demonstrate the efficiency of the modification scheme proposed in Sub-
section 3.3 to find the smallest sufficiently accurate system. We take the spiral inductor as an
example for explanation. More simulation results to which the modification scheme has been
applied can be found in Table 4, Table 6, Table 9 and Table 10 in Subsection 4.5.

From Subsection 4.3, we know that if tol = 1× 10−2, we cannot obtain a reduced model
which gives the correct resistance of the spiral inductor within acceptable accuracy. We need
to set tol = 1×10−3, where two expansion points s0 = sl and s1 = sh are adaptively chosen. If
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Figure 9: Comparison of the transfer functions of the clock tree model with n = 6134 .

we do not use the modification scheme in Subsection 3.3, the tested point for the error control
is the midpoint s2 = 2π j f2 with f2 = 5× 109 between sl and sh. The reduced model is of
order r = 6. The error of the transfer function is plotted in Fig. 14 (solid line). We see that the
error is largest at the frequency around f = 1×108 rather than the midpoint f2. And the error
of the reduced transfer function is actually not smaller than tol = 1×10−3 at all frequencies,
though the error at s2 is already around 10−6. As is analyzed in Subsection 3.3, this is because
the errors of the individual reduced transfer functions computed respectively by sl and sh at s2
show a large difference. For this example, when q = 1, we have that ε0(s2)/ε1(s2) = 5×103.

However if we use the modification scheme of Subsection 3.3, and set max = 10, min = 0.1,
a new tested point s∗ = 2π j f ∗, f ∗ = 1.58× 108 is found. Using this new tested point, the
reduced model we obtain is of order r = 9. q = 3 moments have been matched for each
expansion point. The error plot of the reduced transfer function is the line with stars in Fig. 14.
The frequency point with the largest error is around f = 1×108, which agrees with the result
of our modification scheme and is very close to the new tested frequency point f ∗.

4.5 Adaptivity to different tol

In some applications, the above assigned acceptable error tol = 10−2 for the reduced models
maybe insufficient, and one may need more accurate models. In order to show the adaptivity of
the scheme to different requirements for the accuracy of the reduced models, we list in the fol-
lowing tables the data of the reduced models derived by the adaptive scheme for different tol,
and for different examples. For the SISO examples, we list eR in the table. For the MIMO ex-
ample, we only list the maximal error emax

R , the minimal error emin
R among eik

R , i,k = 1,2, . . . ,4,
as well as the average error eave

R . I.e. emax
R = max

ik
eik

R , emin
R = min

ik
eik

R , eave
R = (∑

ik
eik

R )/16.
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Figure 10: Error of the reduced transfer function of the busline model.

For each model, we set an initial rmax, and the reduced models are derived by requiring that
r ≤ rmax. If the initially set rmax is too small (see Step E13 in the adaptive scheme), then a
reduced model with order larger than rmax could be obtained.

From Table 2, we see that almost all of the reduced models meet the requirements of tol.
There are exceptional cases for the spiral inductor example. This is reasonable, because the
tested point between each two neighboring expansion points chosen by the adaptive scheme
sometimes is not exactly the point (e.g. s′) with the largest error. In such cases, if the tested
point sT is not close enough to s′, the error of Hr at s′ could have a relatively large difference
from Hr(s) at sT . As a result, the error of Hr(s′) maybe still a bit larger than tol, although the
error of Hr(sT ) is already below tol.

However, the accuracy of the reduced model can be further improved at least for one pos-
sible cause of the exceptional cases. If the inaccuracy of such cases is caused by the large
range [min, max] assigned for ε0(s∗)/ε1(s∗) in Subsection 3.3, then by using a smaller range,
we have a more accurate estimation of the tested point sT which could be even closer to s′ .
All of the results in Table 2 are derived by using max = 10 and min = 0.1. However, when
we use tighter values, e.g. max = 2 and min = 0.5, we can obtain more accurate reduced
models. Taking the spiral inductor as an example, the reduced model actually does not satisfy
the accuracy tol = 1× 10−3 in Table 2, and the reduced transfer function has an error which
is slightly larger than tol. If we use max = 2 and min = 0.5 to recompute the reduced model,
the newly obtained reduced model is of order r = 12 and has an error= 4.2634×10−5 which
is smaller than tol = 1×10−3. We have used the same 2 expansion points, but the tested point
has been modified from s∗ = 2π j f ∗ = 2π j1.58× 108 to s∗ = 2π j f ∗ = 2π j9.98× 107. The
new tested point is that one which causes almost the largest error, because the error of Hr(s)
at the new s∗ is now H(s∗) = 4.0015× 10−5 and the largest error of H(s) at 2000 frequency
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Table 2: Adaptivity of the Scheme for Different tol
Examples rmax order r tol eR/emax

R
Clock tree n=24566 20 1×10−2 1.7008×10−4

20 1×10−3 1.7008×10−4

22 1×10−4 2.1241×10−6

20 22 1×10−5 5.9384×10−6

23 1×10−6 9.9152×10−7

29 1×10−7 5.4301×10−10

29 1×10−8 3.4221×10−10

Clock tree n=6134 18 1×10−2 1.7×10−3

19 1×10−3 3.9734×10−5

19 1×10−4 3.9734×10−5

20 18 1×10−5 8.9108×10−6

22 1×10−6 8.4101×10−7

25 1×10−7 6.7093×10−9

29 1×10−8 1.1163×10−10

Bus line n=147 1×10−2

1×10−3

1×10−4

20 3 1×10−5 7.2863×10−10

1×10−6

1×10−7

1×10−8

Spiral inductor n=1434 9 1×10−2 7.9×10−3

9 1×10−3 1.5×10−3

12 1×10−4 4.2634×10−5

20 15 1×10−5 8.2020×10−6

18 1×10−6 1.1274×10−6

16 1×10−7 2.1676×10−8

20 1×10−8 1.2086×10−9

Table 3: Adaptivity of the Scheme for Different tol, MIMO example n = 980 with rmax = 50
order r tol emin

R emax
R eave

R
48 1×10−3 1.12×10−2 3.23×10−2 2.18×10−2

1×10−4

54 1×10−5 1.6826×10−7 2.2487×10−6 8.4729×10−7

48 1×10−6 9.3259×10−5 2.4389×10−4 1.8422×10−4

55 1×10−7 5.7158×10−7 2.7846×10−6 1.4014×10−6

61 1×10−8 1.6792×10−7 2.2456×10−6 8.2128×10−7
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Figure 11: Error of the reduced transfer function of the spiral inductor.

samples si = 2π j fi, i = 1,2, . . . ,2000 is max
si

eR = 4.2634×10−5. The two errors are of course

very close. Therefore, with the modified max, and min, we can test for the point which causes
the largest error even more accurately. The accuracy of the reduced model corresponding to
tol = 1×10−6 can also be improved by using the same technique.

Unfortunately, the accuracy of the reduced models for the MIMO example in Table 3 cannot
be improved any more even if the new max = 2 and min = 0.5 is used. This means that the
inaccuracy of the reduced model is not be due to the large range [min, max]. A more efficient
modification scheme for estimating more accurate tested points for the MIMO systems is
therefore still an open problem.

In Table 4-Table 10, we show the expansion points used, and the moments matched for each
expansion point according to different tol for each example. To obtain a clearer view, we show
the frequency points fi corresponding to each expansion point si = 2π j fi, i = 1,2, . . . instead
of si. As we can see, in some cases the expansion points are not equidistantly distributed. The
moments matched are not equal from one point to the next either. Especially from Table 9, we
can easily see the expansion points are also not the direct result of using the bisection princi-
ple. This is because the modification scheme in Subsection 3.3 has been used during model
reduction, where the mid tested points may have been modified to other tested points which
are again the candidates for the new expansion points if the error of the reduced model is not
small enough. One can imagine how often model reduction would need to be repeated (with a
scheme such as PRIMA) in order to obtain a reduced model satisfying the same accuracy and
the same order.
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Table 4: Expansion points and moments matched for the clock tree n = 6134
tol = 1×10−3 tol = 1×10−4

expansion points moments expansion points moments
0 4 0 4
1.5000×109 4 1.5000×109 4
3.0000×109 4 3.000×109 4

tol = 1×10−5 tol = 1×10−6

expansion points moments expansion points moments
0 1 0 1
0.3750×109 1 0.1875×109 1
0.7500×109 1 0.3750×109 1
1.1250×109 1 0.5625×109 1
1.5000×109 1 0.7500×109 1
1.8750×109 1 0.9375×109 1
2.2500×109 j 1 1.1250×109 1
2.6250×109 1 1.3125×109 1
2.8125×109 1 1.5000×109 1
3.0000×109 1 1.6875×109 1

1.8750×109 1
2.0625×109 1
2.2500×109 j 1
2.3438×109 1
2.4375×109 1

—— 2.5313×109 1
2.6250×109 1
2.7188×109 1
2.8125×109 1
2.9062×109 1
3.0000×109 1
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Table 5: Expansion points and moments matched for the clock tree n = 6134 (continued)
tol = 1×10−7 tol = 1×10−8

expansion points moments expansion points moments
0 1 0 1
0.1875×109 1 0.1875×109 1
0.3750×109 1 02813×109 1
0.5625×109 2 0.3750×109 1
0.75×109 1 0.4687×109 1
0.9375×109 1 0.5625×109 1
1.1250×109 1 0.6563×109 1
1.3125×109 1 0.7500×109 1
1.5000×109 2 0.8437×109 1
1.6875×109 2 0.9375×109 1
1.8750×109 j 1 1.0312×109 1
2.0625×109 2 1.1250×109 1
2.2500×109 2 1.2188×109 1
2.4375×109 2 1.3125×109 1
2.6250×109 2 1.4063×109 1
2.8125×109 2 1.5000×109 1
3.0000×109 2 1.5938×109 1

1.6875×109 1
1.7812×109 1
1.8750×109 1
1.9687×109 1
2.0625×109 1

——- 2.1563×109 1
2.2500×109 1
2.2438×109 1
2.4375×109 1
2.5313×109 1
2.6250×109 1
2.7188×109 1
2.8125×109 1
2.9062×109 2
3.0000×109 2
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Table 6: Expansion points and moments matched for the clock tree n = 24566
tol = 1×10−3 tol = 1×10−4

expansion points moments expansion points moments
0 4 0 4

1.5000×109 4 1.5000×109 3
3.0000×109 4 2.2500×109 3

3.0000×109 4
tol = 1×10−5 tol = 1×10−6

expansion points moments expansion points moments
0 1 0 1

0.1875×109 1 0.1875×109 1
0.3750×109 1 0.3750×109 1
0.5625×109 1 0.5625×109 1

0.75×109 1 0.7500×109 1
0.9375×109 1 0.9375×109 1
1.1250×109 1 1.1250×109 1
1.3125×109 1 1.3125×109 1
1.5000×109 1 1.5000×109 1
1.6875×109 1 1.6875×109 1
1.8750×109 j 1 1.7812×109 1
2.0625×109 1 1.8750×109 1
2.2500×109 1 1.9687×109 1
2.4375×109 1 2.0625×109 1
2.6250×109 1 2.2500×109 1
2.8125×109 1 2.4375×109 1
3.0000×109 4 2.5313×109 1

2.6250×109 1
2.7188×109 1

——- 2.8125×109 1
2.8594×109 1
2.9062×109 1
2.9531×109 1
3.0000×109 1
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Table 7: Expansion points and moments matched for the clock tree n = 24566 (continued)
tol = 1×10−7 tol = 1×10−8

expansion points moments expansion points moments
0 1 0 2

0.1875×109 1 0.1875×109 2
0.3750×109 2 0.3750×109 2
0.5625×109 2 0.5625×109 2
0.7500×109 2 0.7500×109 2
0.9375×109 2 0.9375×109 2
1.1250×109 2 1.1250×109 2
1.3125×109 2 1.3125×109 2
1.5000×109 2 1.5000×109 2
1.6875×109 2 1.6875×109 2
1.8750×109 2 1.8750×109 2
2.0625×109 2 2.0625×109 2
2.2500×109 2 2.2500×109 2
2.4375×109 2 2.4375×109 2
2.6250×109 2 2.6250×109 2
2.8125×109 2 2.8125×109 2
3.0000×109 2 3.0000×109 2

Table 8: Expansion points and moments matched for the busline example n = 147
tol = 1×10−3 tol = 1×10−4

expansion points moments expansion points moments
0 3 same as tol = 1×10−3

tol = 1×10−5 tol = 1×10−6

expansion points moments expansion points moments
same as tol = 1×10−3 same as tol = 1×10−3

tol = 1×10−7 tol = 1×10−8

expansion points moments expansion points moments
same as tol = 1×10−3 same as tol = 1×10−3
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Table 9: Expansion points and moments matched for the spiral inductor example n = 1434
tol = 1×10−3 tol = 1×10−4

expansion points moments expansion points moments
0 3 0 4

1.0000×1010 3 1.0000×1010 4
tol = 1×10−5 tol = 1×10−6

expansion points moments expansion points moments
0 5 0 6

1.0000×1010 5 1.0000×1010 6
tol = 1×10−7 tol = 1×10−8

expansion points moments expansion points moments
0 4 0 4

0.0158×1010 3 0.0158×1010 4
1.0000×1010 3 1.0000×1010 4

Table 10: Expansion points and moments matched for the MIMO example n = 980
tol = 1×10−3 tol = 1×10−4

expansion points moments expansion points moments
0 4 0 4

3.0000×109 4 3.0000×109 4
tol = 1×10−5 tol = 1×10−6

expansion points moments expansion points moments
0 3 0 3

0.4218×109 3 1.5000×109 3
1.5000×109 3 3.0000×109 3
3.0000×109 3

tol = 1×10−7 tol = 1×10−8

expansion points moments expansion points moments
0 3 0 5

0.4218×109 3 0.0067×109 1
1.5000×109 3 0.4218×109 1
3.0000×109 3 0.6913×109 1

0.9609×109 1
1.5000×109 1

—— 1.8750×109 1
2.2500×109 1
2.6250×109 1
3.0000×109 1
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Figure 12: Resistance of the spiral inductor.

4.6 Comparison with PRIMA
We use the clock tree model with n = 24566 and the spiral inductor model to compare our
adaptive scheme with PRIMA. We set tol = 1× 10−5 and rmax = 20 for both methods. In
Fig. 15, the errors of the reduced transfer function of the clock tree model are compared. Our
adaptive scheme uses 2 expansion points and the order of the reduced model is r = 18. The
error is below tol = 1× 10−5. If single expansion s0 = sl is used in PRIMA, and if q = 20
moments are matched, the reduced model is of order r = 20, but with large error (max

si
eR(si) =

0.8767, si = 2π fi, i = 1,2, . . . ,2000 are the frequency samples) at high frequencies. If we
increase the matched moments to q = 30, the reduced model of order r = 30 has smaller
errors, but is still not acceptable (max

si
eR(si) = 0.015). If using q = 40 moments, the reduced

model is of order r = 40 and the accuracy is acceptable. However, the reduced model is more
than double the size of the one derived by the adaptive scheme.

We compare the results for the spiral inductor in Fig. 16. Two expansion points s0 = sl and
s1 = sh have been adaptively selected by our adaptive scheme. The resistance computed by
the reduced model is indistinguishable from the results by full simulation. However if we use
q = 15, and s0 = sl in PRIMA, the reduced model is of order r = 15, but with remarkably high
error at high frequencies. Even if we increase q to q = 20, the reduced model with r = 20 does
not have the required accuracy.

5 Conclusions
A fully adaptive scheme for reduced order modeling of large scale linear time invariant sys-
tems is proposed. The adaptive scheme is based on a bisection principle for the interested
frequency range. Given the desired accuracy and the acceptable order of the reduced model,
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Figure 13: Inductance of the spiral inductor.

the adaptive scheme automatically generates the required reduced model by adaptively choos-
ing the expansion points for the transfer function as well as the number of moments for each
expansion point. If the given rmax is too small, the adaptive scheme can also automatically
determine a proper order of the reduced model, which is kept as small as possible. The addi-
tional computations for the error control are reasonable. Various examples have been tested,
which show the robustness of the adaptive scheme.
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via the Lanczos process,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 14:639–
649, 1995.

[9] T. Bechtold, E. B. Rudnyi and J. G. Korvink, “Error indicators for fully automatic extrac-
tion of heat-transfer macromodels for MEMS,” Journal of Micromechanics and Micro-
engineering, 15(3):430-440, 2005.

[10] T. Bui-Thanh, K. Willcox, and O. Ghattas,“Model Reduction for Large- Scale Systems
with High-Dimensional Parametric Input Space”, SIAM Journal on Scientific Computing,
30(6):3270-3288, 2008.

28



Figure 15: Comparison with PRIMA for the model of clock tree.

[11] G. Rozza, D. B. P. Huynh, and A. T. Patera,“Reduced Basis Approximation and a Pos-
teriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential
Equations”, Arch Comput Methods Eng, 15:229-275, 2008. DOI 10.1007/s11831-008-
9019-9

[12] J.-R. Li, F. Wang, and J. White, “An efficient Lyapunov equation-based approach for
generating reduced-order models of interconnect”, In Proc. of 36th Design Automation
Conference, 1-6, 1999.

29



Figure 16: Comparison with PRIMA for the model of spiral inductor.

30



Max Planck Institute Magdeburg Preprints


