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On the Squared Smith Method for
Large-Scale Stein Equations

Peter Benner*  Grece El Khoury!  Miloud Sadkane?
September 11, 2012

Abstract

A squared Smith type algorithm for solving large-scale discrete-time Stein
equations is developed. The algorithm uses restarted Krylov spaces to com-
pute approximations of the squared Smith iterations in low-rank factored form.
Fast convergence results when very few iterations of the alternating direction
implicit method are applied to the Stein equation beforehand. The convergence
of the algorithm is discussed and its performance is demonstrated by several test
examples.

Key words. Stein equation; squared Smith iteration; block-Arnoldi; low-rank factor;
ADI iteration.

1 Introduction

The Stein equation
X - AXBT =, (1)

where A, B and C are given real matrices and X is the unknown plays an important
role in areas such as discrete-time control, model reduction of discrete-time dynamical
systems, and restoration of images, see, e.g. [12, 14, 2, 9, 5]. It has a unique solution
if and only if A # 1 for all (A, u) € A(A) x A(B), where A(S) denotes the set of
eigenvalues of the square matrix S. When the size of B is small compared to that of
A, an efficient algorithm for solving (1) is based on the alternating direction implicit
method (ADI) [5]. Note that when B is small and well conditioned, equation (1) can
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be reduced to the classical Sylvester equation AX — X(BT) o —C(BT) ! for which
efficient methods already exist, see, e.g. [11, 20, 8, 16].

In the present paper we are interested in the case when A and B are large n X n
matrices and C' has the low-rank form C = EFT, where E and F are n X p matrices
with p = rank(E) = rank(F') < n. We assume that A and B are discrete-stable (their
eigenvalues lie inside the open unit disk). Under this assumption, the unique solution
of (1) is given by

oo
X =Y WEFT(B) (2)
j=0
In fact, the existence of (2) is ensured under the weaker condition that the spectral
radii p(A) and p(B) of A and B satisfy p(A)p(B) < 1. Note that if p(A) < 1 < p(B) <
1/p(A), then we can find € such that p(B) < £ < 1/p(A) and replace A and B by £A
and BT /¢ in equation (1).

We assume further that the norms of A7 and B’ decrease as j increases, which
ensures that the solution can be approximated as X ~ leQT where Z; and Z5 have
ranks much smaller than n, see Section 2.

The main aim of the present paper is to describe an effective squared Smith type
algorithm for computing the factors Z; and Z;. The squared Smith method is an
improvement of Smith’s method initially devised for solving Sylevester equations [21].
In its standard from, the squared Smith method converges quadratically, but necessi-
tates, at each iteration, n X m matrix-matrix operations, which is the reason why it is
mainly confined to matrix equations of small sizes. In this paper we show that these
difficulties can be bypassed. We shall use a Krylov space with a restarting scheme to
generate the squared Smith iterations in low rank factors. This leads to a computa-
tional cost which is linear in n, but the quadratic convergence of the original squared
Smith method may not be maintained. However, the convergence can be made fast
when a simple version of the ADI method, similar to the one proposed in [4], is applied
beforehand. In the special case where B = A and E = F, an adaptation of squared
Smith is developed in [19]. We show that many ideas in this paper can be adapted
here but the presence of B # A and F # F requires a careful implementation.

The paper is organized as follows. Section 2 gives sufficient conditions under which
a low-rank solution may be expected and derives low-rank squared Smith iterations
from a combination of the squared Smith method and a block variant of the Arnoldi
algorithm. Section 3 estimates the error between the exact solution and its low rank
approximation and expresses the residual in terms of quantities readily computable.
The residual is used in Section 4 to develop a cheap restarting scheme to overcome the
increase in computational cost and memory requirements for the block Arnoldi bases.
The acceleration of convergence due to a simple version of ADI iterations is discussed
in Section 5. Section 6 is devoted to numerical tests, and concluding remarks are given
in Section 7.



2 Low-rank approximation

The solution (2) can be written as
T
X = <E,AE,A2E,...> (F,BF,BQF,...,) ,
and due to the rank properties and the Cayley-Hamilton theorem, we have
rank(X) < min (rank (E,AE,..., A" 'E),rank (F, AF, ... ,B"_lF)). (3)

The ranks in the right-hand sides of (3) can be much smaller than n, depending on
the proprieties of A, B, F, and F. For example, if the columns of E (or F') span an
invariant subspace of A (or B), then rank(X) < p. If the norms of powers of A (or B)
decrease rapidly, then rank(X) is small compared to n. In the general case, X can be
decomposed as
X =Xp1+ Xi 2,

where Xj1 = Y070 AVEFT(BI)"
kp <n — 1. Since

and X3 o = X — X} 1 and k is chosen such that

T
Xp1 = (E,AE,...,A’“E) (F AF, .. .,A’“F) ,

it is clear that rank(X; ;) < pk. Let the singular values of X be labeled so that
01(X) > 09(X) ... > 0,(X). Then the Schmidt-Mirsky theorem [22] gives ogp41(X) <
|| X — Xk 1|, and therefore

o (X) < | Y AEFT(BY)"
Jj=k
= [[AX BT < [l B* X1
This yields the upper bound
Tkp+1(X) ,
2100 < a8 @

None of the bounds (3), (4) is sharp but they both show that a solution with a
(numerical) low-rank can be expected provided that the norms of the powers of A or
B decrease rapidly.

2.1 Low-rank squared Smith approximation
The solution X can be approximated by the partial sum

2k 1 .
Xy = > AEF"(B") (5)
=0



with large k.
We see that Xo = EFT and for k> 1

ok—1_1q 4 gk—1_14 4
Xe = > AEFTBTY + 47 (Y AjEFT(BT)]>(BT)2k,
§=0 j=0

2k71

= Xp+ AT X (BY)

A% = <A2’”>2, (BT)? = <(BT)2“)2.

Hence, the squared Smith scheme can be written as

and

Xo=EFT, Ay=A, By =B,

Xp=Xp-1+ Ap1Xp1Bl_y, Ay =A5_,, By=B;_,, k> 1. (6)
It is clear that (6) should not be used as such since the matrix sequences Ay and By,
are large and dense. However, from (5) we have
Xy = (E,AE,...,A*'E)(F,BF,...,B*~'F)" (7)
and then
Xy~ Zi (Zi)T, (8)

where Z ,f and Z ,f are matrices of small rank that can be constructed from the Krylov
spaces

Kp(AE) = 1range(E’,AE,...,AQk_lE)7
Ki(A,F) = range(F,BF,...,B* ~'F).

A natural way to compute ZF and Z[" is the block Arnoldi algorithm applied to A
and B and starting with E and F', respectively. The following algorithm is the version
applied to A and started with E.

For the implementation issues, see the discussion after Algorithm 2.
For j=1,...,2™, let

QF =(QF, ..., QF), QF,=@F @F,),

E E E HF
H; = (Hi))1<ii<s, H; :( J >
J i1 )1<i1<]5 j gE T )
j+1,jIj

where IJT = (00 ... I)and 0 and I denote the zero and identity matrices of appropriate
sizes.



Algorithm 1 Block Arnoldi method
INPUT: A€ R™"™ E € R™P, an integer m such that 2™ < n.
OUTPUT: Arnoldi basis (QF,...,Q%. ), and blocks HlEj of corresponding Hessen-
berg matrix.
1: QR factorize E = Q¥ RF
2: for j=1,...,2™ do

E _ AOE
3 Wi = AQ;
4 fori=1,...,jdo
w HE=@F)WE

E._wE E7E

7. end fori
8: QR factorize WJE = ;E+1Hj€-1,j
9: end for;j

It is known (see, e.g. [17]) that Hf is block upper Hessenberg and the columns of
QF.. form an orthonormal basis of K, (A, QF) if no deflation occurs (which we assume
for clarity of presentation — in the actual implementation, this is taken care of). From
Algorithm 1 and the equalities above we obtain

E
A@JE = JEJrIMj : )
We will often need operations of type Al(@f where 4; = A? | = A?" is defined in (6).
From (9) we have

J
AQF =A(A(...(AQ7))) =QFn [ B (10)
2! times k=j+21-1

The same algorithm applied to B and started with F' leads to similar formulas as
above. We will refer to these by the superscript F'.
The approximation (8) is then obtained as follows:

Xo = BFT = zE 77 with ZF = QFRE and zF' = QFRF, (11)
X, = Xo+ AXoBT = (E, AE)(F, BF)T (12)
with
(E.AE) = (QTR{, AQTRY)

= (QYRf,QFHIRY)

of () merr).



Similarly, for (F, BF') we have
r (R F pF
(F,BF) = Q, << 0 )aHl R1)-

The low-rank approximation of (E, AE) and (F, AF') are then obtained through SVDs
of the small matrices ' (%f),ﬂfR{f and (P;}F),ﬂfRf obtained by deleting the

singular values which are smaller than a threshold tol;:

RE
() menrr) = uFstaey +af, (13)
Rf F pF F oF (1;F\T F
<(O)7H1R1> = Ui 51(V1) +A1, (14)
with
HA‘F” < tol; and ||Af|| < toly, (15)

where the matrices UF, UF, VP and Vif' have orthonormal columns, and S¥ and
SF are diagonal matrices whose diagonals contain the singular values which are larger
than tol;. Here and throughout the paper, the symbol || || denotes the spectral norm.

Care must be taken when deleting the smaller singular values to make the operation
(VEYTVE possible. In our implementation, the number of singular values deleted
equals the maximum of the number of singular values that are smaller than tol; in both

((ng), H{ERF) and ((ROlF) , HfRf) . Then we have the first low-rank approximation:

T .
X1~ 2 (Z{)" with Z{ = QYUFSE(VE)' VI and Z{ = QSUY ST (16)

Note that the choice Zf = Q¥UEFSE(VE)T and ZF = QL UFSF(VIF)T is not rec-
ommended since the numbers of columns of the factors ZZ and Z} are intended to
increase at each iteration k, see Algorithm 2.

The same procedure leads us to the second step:

X, = X +AX,B]
T T
~ ZEzF" 4 A zFzFP BT
= (2F, A20) (2, B z{)"
with
(ZF, A Zf) = (QFUESE(VE)TVE, A2QFUFSE(VP)Tvi)
= (QFUESE(VE) VI, QIHEHS UP SE(ViP)TV)

UESE VE TvF
= o (U mempusE o),

LA cheaper alternative is the rank revealing QR algorihtm, see e.g. [1]



and similarly for (Z{', By Z¥):

(17 1 1)-@4 0 yikz I Y1 PF1 -

As before the SVDs

<(U1ES{E(V1E)TV1F

0 )H?H?U{ESF (le)TVF) = Uy Sy (V)" + A7,

Uf'st FrnFrrF oF F QF (1, F\T F
(( 0 >,H3H2U1 51> =U; 55 (Vo' )" + 4y,
with a threshold toly such that
|AF]| < toly and [|AY] < toly
lead to the second low-rank approximation:
Xy~ 28 ZE" with ZF = QPUESE(VE)TVE and 2§ = QY UL S§.
More generally, at step k we have:

Xi ~ (21, Aer ZE ) ZE 1, Bra Z1 )"

with
(Zlgfl’Akflzlfll) =
k—1
(ng—lUlilslfq(vk]il)TVkFiuA2 QgﬂflUlfflslffl(VkEil)TVinl):
k—1
UESEL(VE)TVE L 2
o (PSR T mpug sE Lm0 )
j=2k—1
and
k—1
(Zlfflkaflzlf;l) = (@5’9*1[]]5‘715571732 ngflUlilSlfq)
k—1
Uf sF .\ 2
= Q§k<< k lok 1)7 H HfU,f_lS;f_1>~
j=2k—1

Then we compute, with a tolerance toly, the reduced SVDs

k—1
UE SE (VE )TVE 2
(( o1kl Ok vk 1>, H HEU51551(V1€E1)TV1¢F1) =

j=2k—1



2k—1

0 ) Hy Ug—19k—1 | = Y Ok (Vi k
j=2k—1
with
|AZ]| < toly and |Af] < tolx (23)

and we obtain the low rank approximation

X~ ZE(ZE)T with ZF = QERUESEWVEY ' ViEand Z] = QhUL S{. (24)

3 Error and residual estimates

In this section we estimate the error
X —zFPzhT (25)
between the exact and the computed solution and the residual
Ty =EFT + AZF(zEY'BT — ZE(ZE)T (26)

associated with the computed solution.

The estimates in Propositions 1-4, though complicated to compute, will provide a
reasonable indication of the error due to the Krylov space approximation and the SVD
truncations. Proposition 4 shows that the norm of the residual can be computed at a
lower cost. As we will see in Algorithm 2, it will be used to stop and/or restart the
iterations.

3.1 Estimation of the error

From (2) and (5) we obtain
X-X,=>» AEFF(B) (27)
j=>2k
Since the eigenvalues of A lie in the open unit disk, they are certainly inside some
circle |z| = p, of center 0 and radius p, < 1. The Cauchy integral formula [10] gives
1 J+1

A= — zj(zI— A)fldz —Pa_
24m |z|=pa m

2m
/ 6i(j+1)0(pa8i91 _ A)71d9
0

and a similar formula for B? can be derived. Thus
|A7]| < Caph™, | B?|| < Cyp}™ (28)
with
i0 1 i0 ~1
Ca oA [ (pac )7 Gy > [ (pve )|

Taking the norm in (27) and using (28) we obtain the following proposition.



Proposition 1. For k > 0 we have

C,Cy||[EFT||
L= papy

k
(Pan)2 +1~

X = Xl <

This proposition holds true if we only assume that p,p, < 1 and it clearly shows that
[| X — Xk tends to zero as k increases. However, the convergence may be slowed down
if papp is very close to 1 or if the constants C, or Cj are too large. In the first case,
a simple variant of the ADI iteration can be used to minimize the spectral radii, see
Section 5. In the second case, the pseudospectra of A or B may significantly protrude

from the unit circle [23] and a low-rank approximate solution may not exist.
Next, we estimate the error between X, and ZF(Z)T.

Proposition 2. For k > 0 we have

1 Xk — ZEZD)T|| < i

1 =) [J(6)

with po = 0 and for k> 1

216—1
T &)

1
e < Ok + H<(0>, k-1
j=2k—1 j=2k—1
with
So=0 and for k>1, & = (|SF|l+S{|)tol + toly,
where toly, tols, ... are the SVD thresholds defined in (15), (19), ..., (23).

Proof. For k = 0, the bound is satisfied since Xo = EFT = ZE(Z{)T.
For k = 1, we have from (13) and (14)

(B.AE) = QF(UESPWE) +AP),
(F,BF) = Qi (U{S{ (Vi)' +A7).
Hence
X, = (E,AE)(F,BF)T
T
= QF(UFST(VP)T + A7) (UT ST (V)T + A7) (@)
= 2P+ X
with
X = QF (UESEVET(ATYT + AFVESTUF)T + AFADT ) @6
and hence

1] < (ISEN + 15T 1)toly + tolf = 6,

which shows the proposition for k = 1.



The general case is straightforward but tedious. From (21)—(23) we have

k—1

(E,AE,...,A* E)=
k—1
UE SE (VE T 2
of (VS V) T w0 07+
j=2k—1
o (). 1 =rse)
j=2F—1
and
(R BR...,BQ“F) -
k—1
UF SF (VF )T\ 2
of (T3 M ) T mro st )+
j=2k-1
QQk(( 07 )a H ﬂj Ak71>‘
j=2k—1
Hence
k—1 k—1 T
X, = (E,AE,...,A2 E)(F,BF,...,B(2 F)
= ZFEzZhT + X,
with
ad T T T
K= @5 (TEF 4 TE (1) 4 YE(0)) 4 XE (X)) @B
where

TEF = UESE(ET(ART + APVESEUE)T + AE(AL)T

and for G = F or F

2k—1
I UG s8¢ (v )T 0
¢ — (( )7 HG)( k=1"k—1\YVk—1 )
! 0 j—12_k‘[1 J 0 Ud  SE L (vEDT
I Qk—l AG 0
G _ G k—1
TQ - ((0)7'1;[1Hj> ( 0 AkG—l )
j=2k—

10



We clearly have

E.F
1To"" |l

IN

(ISE1l + 115% 1) toli + toli = di,

k—1
I 2
en < |((5) II m9)[isean,

j=2k—1
I 2k—1
i< ((5) T 7)ot
j=2k—1
from which the proposition follows. O

By combining Propositions 1 and 2 we obtain

Proposition 3. For k > 0 we have

CaCy| EFT||
< -

2k 41
= L= paps (par) + i

IX - zF(zE)")

When the constant C,C is not large and p,pp is not close to 1, the proposition
shows that for large k, the error and the residual norms behave respectively as p; and
|EFT + AX; BT — X;||.

Remark 3.1. In the special case where B = A and F = E, the factor Z,‘:J s entirely

defined from (E,AE, . ,A2k_1E) and this helps to improve the error estimate. To
illustrate this point, consider the simple case k = 1. Then, from (13)-(15) we have,
when B=A and F = F

(E,AE) = Q¥ (UFSE (V)T + AT).
Since AFVIE =0, we obtain
X, = (B, AE)(E,AE)" = ZF(ZP)T + QFAF (QFAF)”

with ZF = QEUESE.
In the general case (B # A, F # E), the expressions of Z¥ and ZI are given in

(16).

Remark 3.2. Propositions 1 and 2 produce actually worst-case bounds. In practical
computations, the convergence can be much better than these bounds predict.

The choice of tol, may be difficult to tune, in our experiments we use the same tolerance
threshold, that is, for all k, tolx = tolgyq-

3.2 Estimation of the residual

The following proposition relates the residual to the powers of A and B and the error
incurred in X — Z,fZ,f.

11



Proposition 4. For k > 0, we have for the residual Ty, defined in (26),

Il < ||E|||F|HA2'<32 RN

where py, is defined in Proposition 2.
Proof.
I, =FEFT + AX,.BT — X3, + A(ZE(Z]YT — X)) BT — (ZE(Z])T — X4),

thus
Tkl < |EFT + AX BT — Xio|| + (L+ [ A BINIZE (ZE)T = Xull.

From (5) we obtain
EFT + AX,B” — X, = A2 EFT(B*)" (30)
and the proof is completed by using Proposition 2. ]

The following proposition shows that the norm of the residual involves quantities
readily computable. In particular, it will be used as a stopping criterion in Algorithm
2.

Proposition 5. We have ||T'g| = ||(EFR{5) (ﬂfRf)THand fork>1,
R¥ T
= | (8) ()™ o) + (BvEsEwEvE) (whurst) -
UESE(VE)TVF T
(VS (s wry” o) |
Proof. We have

Iy = (AE)(BF)T = (QFHY RY)(QYHY RI)T.

Hence Lo = ||(HY RY) (H{ Rl
For k > 1, using (26), (24) and (9) the residual I'y, can be written

T (QTYRP)(QTRY)" + AQRUZSE(VEHTVENQLUL ST BT -
QEUESEWVE VI Qu.UESHT

- @[ (%) (o)« (mtopstve™ve) (storst) -

T

0
and the proposition follows by taking the norm. O

In practice we cannot use Algorithm 1 with large m since the computational cost
and memory storage become prohibitive. On the other hand, with a too small m, the
Krylov spaces thus obtained will not contain sufficient information to allow a good
approximation of the solution. To remedy this, we will use in the next two sections a
restarting technique and a simple version of the ADI iteration.

12



4 Restarting the low-rank approximation

As in iterative methods for large linear systems [17], restarting is based on the residual.
Our residual Ty has a special form. From (30) we see that its rank is not larger than
p. Its smallest singular values decrease as the number of iterations increases. We will
use this information to construct new E™' and F™! that will be used in place of FE
and F' for the next restart. The construction is based on an incomplete SVD of the
residual I'y, computed with the help of Proposition 4 at a lower cost.

Consider the reduced SVD

RF T T
( 01) ((Rf)T o) + (ﬂiU,fS,f’vkE VkF) (ﬂgkU,fS,f) _
EqEy/ET
(Uk St (‘)/k Vk) (UFSE 0) = UpSiViT + Oy,
where Uy, and Vj, have orthonormal columns, Sy is diagonal whose elements are larger

than some convergence threshold tolcy, and ©j contains the rest of the SVD with
19kl < toleys. Then from the proof of Proposition 5 we have the decomposition

Iy = Q5€+1(Uk5kva+9k)(@§f+1)T
— Erst(Frst)T + ék (31)
1 ~
with Erst = Qgc+1UkS]€27 FrSt - 2k+1VkS2 and ®k - 2k+1®1€( 2k+1 7 H@kH =
19k < toleyg-
Denote

rbt E rst F F rst, rst, ' 1
= Q2k+1Uk ) = Q2k+1Vk7 Ry =R =57,
then we have the QR factorizations
Erst _ rst ERlist E and Frst rst FRTt F (32)

Applying Algorithm 1 with A and Q7™* and with B and Q™" and proceeding as
in Section 2, we obtain factors of the form Z;St’E and ZIZSt’F. The residual associated
with 259 F (78I

Fr,:t _ prst (Frst)T + AZ;st,E(le;st,F)TBT o Z]ZSt’E (Z;st,F)T (33)

and its norm is computed by Proposition 5
If this norm is smaller than tol.,s, then the iterations can be stopped and the new
approximate solution is

Xpev (2, 2050 ) (2F, 75 )T (34)
The corresponding residual is given by
D = BE+A(ZE 2P (2 50 T BT - (28 4t P (2 )
= Dyt Bt (Fn)t
= TP 40y,

13



from which we see that [|[Te%|| < [[T5t]| + ||O]| < 2 tolevg, so that I'}*Y may have a
norm slightly larger than tolcy,.

If the norm of I'}** is larger than tolyg, then '} is decomposed as in (31) and a
new restart is used. The process is repeated until the norm of the restarted residual
becomes smaller than toleys. We summarize this discussion in the following algorithm,
which will be referred to as Low-Rank Krylov Squared Smith (LRKSS).

A few comments are in order. Algorithm LRKSS computes Q¥ and QI from QR
decompositions of £ and F and applies a variant Algorithm 1 to A starting with Q¥
and to B starting with QI". In fact, our block Arnoldi implementation is based on
Ruhe’s version with elimination, see [17, p.197] or [16, Algorithm 6.1]. Then, at each
iteration j, the matrices Qﬁ_h Qf_H, ﬂ]E and ﬂf are computed. If j = 1, then ZF = E
and ZF = F and the residual norm ||T|| is computed as in Proposition 5. Else, if j is
a power of 2, then the reduced SVDs are computed as in (21)—(23) by eliminating the
same number of singular values which are smaller than tols,q. The factors Z E and Z ,f
are then computed as well as the corresponding residual norm. If the residual norm
is larger than tol.,, and the size of the Krylov bases reaches its maximum 1.y, the
factors ZF and ZI" are updated and the algorithm is restarted with new matrices Q¥
and QI obtained from a reduced SVD of the residual as in (32).

It seems difficult to find optimal choices of tolsvq and tolevs. We notice, however,
that toleyg should not be chosen too small compared to tolsq for the SVDs in (21)
and (22) would be such that ||SF| < tolsya and ||S}|| < tolsya, which leads to no
improvement of the approximate solution.

With this way of restarting, the proposed squared Smith version can be applied to
large matrices and this was our primary objective. However, the quadratic convergence
of the original squared Smith method may be lost. The purpose of the next section
is to accelerate the convergence by replacing equation (1) with an equivalent one with
matrices having smaller spectral radii.

5 ADI iteration

The ADI method is an important iterative process for solving Lyapunov and Sylvester
equations [24, 25, 5, 6, 15, 18, 4, 3, 13, 7]. An ADI iteration suited for equation (1) is
proposed in [6], see also [4]. It is given, for ¢ =0,1,..., by

Xipt(I=6;B") = (A= 6D)X;B" + EFT,

(I = miA)Xis1 = AX; 1 (BT —n,D) + EF",
where X is an initial approximate solution of (1) and p; and n; are parameters cho-
sen to accelerate the convergence. Eliminating X, 1 from these two equations and

rearranging the terms, we obtain

Xign = (I—-mA)TAA-6D)X;BT (I —6;BTY Y (BT —n,I) +
(I —n A1 = 6m)AEFTBTY(I - 6;BT)~! + EFT.

14



Algorithm 2 LRKSS

INPUT: A,B € R*", E, I € R™P, an integer mmyax, tolerances tolsya, toleve, and an

initial value of |

Il > toleyg.

OUTPUT: Approximate solution to (1) in factored form ZF (ZSF)T
1: QR factorize E = Q¥ RF and F = QI'RY.
28t Ul =1, U =1, VE=1,VFE =1, SF =RF SF =R ZF =[], zF =[],

S

P =dim(Qf), p" = dim(Q),

3: 7 =0,1iter =0, rst =0.
4: while (||T|| > tolcyg) do

5:
6
7
8:
9

10:
11:

12:

13:

14:
15:
16:
17:
18:
19:

20:
21:

22:

jr=j+1
Update HY, HY', QF,, and QF,.
if j = 2% then
if k=0 then
78 = B, 7 = F, |U|| = | (BF RE) (B RY)” |
else

compute the reduced SVDs

EQE(VE\TyFN 27
j=2k_1

and

Fgry 277

Ut stviT .= ((U OS ) HfUFSF>
j=2k—1

by eliminating the same number of singular values of S¥ and S¥ which are

less than tolg,q.

ZE — QJEUESE(VE)TVF, ZF — QJFUFSF

RY(R{)T 0

e H o o )+ (BPUESE(VETVE) (B URST)
B 0 0
end if
iter ;= iter + 1
end if

if (.] + 1)pE > Mmax O ”FH < tOlcvg then
Set ZF .= (ZF zF), zF .= (ZF zF).
Compute the reduced SVD

UPSE(VET (R{E(gf)T 8)+(HJ_EUESE(VE)TVF)(HfUFSF)T_
(UEsE(VE)TvF(UF)T(SF)T 0>
0 0

with omin(S) > tolsyq-
1 1
Set REZSEv RF:S§7 1E: ]E+1U7 QF:Qf—&-lV'
Set UF =1, U =1, VE =1,V =1, SE = RF, SF = RF j =0,
rst :=rst+ 1, pf = dim(QF), pf15 dim(QL).
end if

23: end while




Let
Ai = (I —nA) A (A—6;1), Bi=(I—-6B)"'B (B—nl),
E=(E, (I-nA) " AE /1 —6m;), Fi=(F, (I-6B) *BF \/1—d;n).

Then the sequence (Xl) o satisfies the iteration

i>

X1 = AXBT + &FF. (35)

A straightforward calculation shows that the solution X is a fixed point of this iteration
and hence the error is given by

Xip1 — X = A(X; — X)B].
A repetition of this iteration gives
i i T
Xip1 — X = (g Ai) (Xo — X) (I B;) .
The convergence X1 — X — 0 is fast if the spectral radii of ITj_y.A; and TI;_,B;

are as small as possible. Ideally, this will be the case if the parameters p; and n;,
i=0,1,...,14, are chosen to satisfy

min max [T, A = 65)pp — ;)
5;ieC XeA(A) (L=mA)(A = d;p)
ni€C peAB)

(36)

However, this problem is hard to solve and computationally expensive. Since we are
only interested in parameters that help reduce the spectral radii, we will consider only
two parameters p and n which approximate the minimax problem

min max PO =)l — 1)
5eC reA(d) =m0 —=du)|’
n€C e AB)

(37)

where the sets A(A) and A(B) contain a few smallest and/or largest approximate
eigenvalues of A and B. The numerical tests show that this simple choice gives a
satisfactory acceleration.
Once 0 and n are computed, the matrices A, B, E and F of equation (1) are replaced
by
A= (I-nA)"AA-6I), B=(-6B)"'B(B—nl) (38)

&= (BE,(I-nA)"AE\/1-6n), F=(F,(I1-6B)'BF\/1-4n)  (39)

on which algorithm LRKSS is applied.
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6 Numerical Tests

We present numerical tests to illustrate the key points crucial for the convergence of
algorithm LRKSS and its ADI acceleration.

Test 1:  This test shows the convergence behavior when the spectral radii of A and
B approach 1. The matrices A and B are n x n, Toeplitz tridiagonal. A has —«, 0 and
+a respectively on its subdiagonal, diagonal and superdiagonal and B has the same
structure with —f3, 0 and +03, where « and [ are positive parameters to be varied.
The matrix E is n x 2 formed by the first two vectors of the canonical basis, that is,

E11 = Eg3 = 1 and zero elsewhere, and F' = —E. The eigenvalues of A and B are
given by \; = 2ia cos n”—_gl and p; = 2if cos nﬂ—_gl, j=1,..,n. For large n we see that

p(A) = 2« and p(B) =~ 20.

Table 1 shows the results obtained with n = 103, toleyg = tolsya = 10710 and
different values of «, 8 and the maximum dimension of the Krylov spaces mmyax. The
table also indicates the corresponding spectral radii p(A) and p(B), residual norms,
total number of iterations and restarts. As expected, the closer the spectral radii get
to 1, the slower the convergence is. Also, note that the restart, while it remedies the
problem of storage requirements and computational cost, slows down the convergence.
The numbers of restarts and iterations are almost doubled when the dimension of the
Krylov spaces is divided by 2.

« P(A) | Mumax res.norm iter | rst

B p(B)
0.45 0.9 32 5.96 x 10~ 11 20 4
0.445 0.89 64 5.96 x 10~ 1T 14 2
128 5.96 x 10711 10 1
0.499 0.998 32 0.94 x 10~ | 268 66
0.495 0.99 64 824 x 10711 | 171 | 33
128 5.35 x 10711 102 16
0.4999 | 0.9998 32 0.93 x 10~ | 1205 | 296
0.499 | 0.998 64 9.93 x 10~ | 753 | 148
128 9.93 x 10711 | 452 74

Table 1: Results of LRKSS with different values of «, 8 and myax (Test 1)

Test 2:  We use the matrices as in the previous test with fixed o = 0.499, 5 = 0.495,
Mmax = 64 and consider three values of n, n = 103, n = 10%, and n = 10°>. The
corresponding spectral radii are almost the same (p(A) ~ 2a, p(B) =~ 25) meaning that
the convergence behavior is almost the same, see Proposition 3. For the three tests,
the numbers of iterations and restarts are respectively 171 and 33. The convergence
behaviors are shown in Figure 1.
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residual norm
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o
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20 40 60 80 100 120 140 160 180
iteration

Figure 1: Residual norms vs the number of iterations (Test 2, n = 107, p = 3,4,5)

Test 3:  We consider now Test 1 with ADI acceleration. The parameters § and 7 of
the minimax problem (37) are obtained from the 10 largest (in modulus) eigenvalues of
A and B. The parameters ¢ and n are computed by the MATLAB function fminsearch
as proposed in [4]. The linear systems in (38) and (39) are solved by GMRES with
restart value 20 and tolerance 107'°. The results are summarized in Table 2. An
improvement can be noticed compared to Table 1. Note that the parameters n and pu
are close to zero, which means that the matrices A, B, £ and F in (38) and (39) are
close to A%, B2, (E, AE) and (F, BF).

o 0 p(A) Mmax res.norm iter | rst
B n p(B)
0.45 —7.877 1077 0.8099 32 7.15 x 10~ 1 13 3

0.445 | —7.8771079 | 0.7921 64 715 x 107 | 11 2

128 [ 715 x 10| 8§ 1

0.499 | —4.3315107% | 0.9959 32 [ 830x10~1' | 159 | 43
0.495 | 3.553210~% | 0.9801 64 | 9.74x 10T [ 102 | 22
128 [ 6.70x 107 | 66 | 11
0.4999 | 1.5357 10~7 | 0.9995 32 [9.76 x 10~ [ 670 | 173
0.499 | —1.1153 1077 | 0.99959 | 64 | 9.76 x 10~ | 424 | 86
128 | 9.76 x 10T | 256 | 42

Table 2: Results of LRKSS and ADI with different values of o, 5 and muyax (Test 3)
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Test 4:

on which we apply ADI iterations and algorithm LRKSS, n = 103, tolyq = tolevg =
10719, GMRES is used with the same parameters as in Test 3. Note that the param-
eters n and p allow now a significant improvement compared to the previous results,

We consider now the equivalent equation

X — A2X(B*)T = (E, AE) (F, AF)"

see Table 3.

Q@ 0 p(A) | Mmax res.norm iter | rst

B n p(B)
0.45 | —8.0986 1071 | 0.2565 | 32 | 9.43x10~' | 4 0
0.445 | —7.9195107! | 02453 | 64 [ 943 x 10" [ 3 0
128 [ 943 x 10710 [ 3 0
0.499 | —9.9582 10~ ' | 0.7427 | 32 [210x10~'t [ 16 | 6
0.495 | —9.7992 10~! | 0.7192 | 64 1.62x 1072 ] 13 | 3
128 [ 759 x 10711 [ 9 2
0.4999 | —9.9583 10T [ 0.8742 | 32 [4.04x 10T 31 | 12
0.499 | —9.994210~' | 0.8679 | 64 [ 7.12x10" T [ 24 | 7
128 [ 1.30x 10711 [ 17 [ 3

Table 3: Results of LRKSS and ADI with different values of «, 8 and muyax (Test 4)

Figure 2 draws the convergence behaviors when n = 103, n = 10* and n = 10°. For
the three cases, @ = 0.499, 5 = 0.495 and mpy.x = 64. The three indistinguishable

curves in this figure show that the convergence behavior is the same.
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Figure 2: Residual norms vs the number of iterations, (Test 4, n = 107, p = 3,4,5)

Test 5: In this test we solve the equation
X - AXA=EFT,

where A = QTAQ, Q is an orthogonal matrix constructed with the MATLAB function
orth, A= diag<(0.999 ei%)k, 1<Ek<L n>, and the matrices F and F' are the same

as in the previous tests.
Taking n = ¢ in (37) and omitting the spectral part due to B, the minimax problem
simplifies to

A = 9)|

min max . 40
[6]<1 XeA(A) ‘(175)\” ( )

The matrices in (38) and (39) become
A= (I—-6A4)""A(A =61, (41)

£=(E,(I-6A)""AEV1-02), F=(F,(I-0AT)"'ATF\/1-4?) (42)

Taking n = 103 we obtain § = 9.8280x 1071, p(A) = 8.9335x 10~. The parameters
tolsya and toleye are fixed at 10710 and mmax = 32. Figure 3 on the left shows the
convergence of LRKSS with and without ADI preconditioning. The figure on the right
shows the singular values of the exact and computed solutions. The smallest singular
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values differ by a factor of order 107°(= tolsyq). Figure 4 shows the convergence with
different values of myax and confirms again that the larger the values of myax is, the
smaller the number of iterations.

10°

—sing. val. X
- - -sing. val. X (LRKSS)
‘== sing. val. X (ADI+LRKSS)|{

residual norm
=
o

ADI+LRKSS

107} s
-12
10 ‘ ‘ ‘ ‘ ‘ »
0 100 200 300 400 500 600 10 : : : :
iteration 0 200 400 600 800 1000

Figure 3: Residual norms and singular values of the exact and the computed solutions
(Test 5)

residual norm
residual norm
=
o

128

0 100 200 300 400 500 600 10 0

300 5 10 15 20 25 30
iteration iteration

Figure 4: Convergence behaviors of LKRSS (left) and LKRSS+ADI(right) with differ-
ent values of muyax (Test 5)

7 Conclusions

The main purpose of this work was to show one way of adapting the Squared Smith
method to large-scale Stein equations. The adaptation requires the use of Krylov
spaces to build approximations of the squared Smith iterates in low-rank factors. As
expected, the quadratic convergence in the original squared Smith algorithm is not
maintained, but the association with the proposed adaptation with a simple version of
the ADI iteration as a preconditioner allows a great acceleration of the convergence.
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This is consistent with the numerical results in [13, 7] where the “optimal” number
of ADI iterations is less than 3 in [13] and around 4 in [7]. The acceleration depends
largely on the ADI parameters and to a lesser extend on the other parameters of the
algorithm. Improvements can still be made if these parameters can be chosen in a
cheap and nearly optimal way.
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