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Abstract

A squared Smith type algorithm for solving large-scale discrete-time Stein

equations is developed. The algorithm uses restarted Krylov spaces to com-

pute approximations of the squared Smith iterations in low-rank factored form.

Fast convergence results when very few iterations of the alternating direction

implicit method are applied to the Stein equation beforehand. The convergence

of the algorithm is discussed and its performance is demonstrated by several test

examples.

Key words. Stein equation; squared Smith iteration; block-Arnoldi; low-rank factor;
ADI iteration.

1 Introduction

The Stein equation
X −AXBT = C, (1)

where A, B and C are given real matrices and X is the unknown plays an important
role in areas such as discrete-time control, model reduction of discrete-time dynamical
systems, and restoration of images, see, e.g. [12, 14, 2, 9, 5]. It has a unique solution
if and only if λµ 6= 1 for all

(
λ, µ

)
∈ Λ(A) × Λ(B), where Λ(S) denotes the set of

eigenvalues of the square matrix S. When the size of B is small compared to that of
A, an efficient algorithm for solving (1) is based on the alternating direction implicit
method (ADI) [5]. Note that when B is small and well conditioned, equation (1) can
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be reduced to the classical Sylvester equation AX−X
(
BT

)−1
= −C

(
BT

)−1
for which

efficient methods already exist, see, e.g. [11, 20, 8, 16].
In the present paper we are interested in the case when A and B are large n × n

matrices and C has the low-rank form C = EFT , where E and F are n× p matrices
with p = rank(E) = rank(F ) ≪ n. We assume that A and B are discrete-stable (their
eigenvalues lie inside the open unit disk). Under this assumption, the unique solution
of (1) is given by

X =

∞∑

j=0

AjEFT (Bj)
T
. (2)

In fact, the existence of (2) is ensured under the weaker condition that the spectral
radii ρ(A) and ρ(B) of A and B satisfy ρ(A)ρ(B) < 1. Note that if ρ(A) < 1 < ρ(B) <
1/ρ(A), then we can find ξ such that ρ(B) < ξ < 1/ρ(A) and replace A and B by ξA
and BT /ξ in equation (1).
We assume further that the norms of Aj and Bj decrease as j increases, which

ensures that the solution can be approximated as X ≈ Z1Z
T
2 where Z1 and Z2 have

ranks much smaller than n, see Section 2.
The main aim of the present paper is to describe an effective squared Smith type

algorithm for computing the factors Z1 and Z2. The squared Smith method is an
improvement of Smith’s method initially devised for solving Sylevester equations [21].
In its standard from, the squared Smith method converges quadratically, but necessi-
tates, at each iteration, n× n matrix-matrix operations, which is the reason why it is
mainly confined to matrix equations of small sizes. In this paper we show that these
difficulties can be bypassed. We shall use a Krylov space with a restarting scheme to
generate the squared Smith iterations in low rank factors. This leads to a computa-
tional cost which is linear in n, but the quadratic convergence of the original squared
Smith method may not be maintained. However, the convergence can be made fast
when a simple version of the ADI method, similar to the one proposed in [4], is applied
beforehand. In the special case where B = A and E = F , an adaptation of squared
Smith is developed in [19]. We show that many ideas in this paper can be adapted
here but the presence of B 6= A and E 6= F requires a careful implementation.
The paper is organized as follows. Section 2 gives sufficient conditions under which

a low-rank solution may be expected and derives low-rank squared Smith iterations
from a combination of the squared Smith method and a block variant of the Arnoldi
algorithm. Section 3 estimates the error between the exact solution and its low rank
approximation and expresses the residual in terms of quantities readily computable.
The residual is used in Section 4 to develop a cheap restarting scheme to overcome the
increase in computational cost and memory requirements for the block Arnoldi bases.
The acceleration of convergence due to a simple version of ADI iterations is discussed
in Section 5. Section 6 is devoted to numerical tests, and concluding remarks are given
in Section 7.
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2 Low-rank approximation

The solution (2) can be written as

X =

(
E,AE,A2E, . . .

)(
F,BF,B2F, . . . ,

)T

,

and due to the rank properties and the Cayley-Hamilton theorem, we have

rank(X) ≤ min

(
rank

(
E,AE, . . . , An−1E

)
, rank

(
F,AF, . . . , Bn−1F

))
. (3)

The ranks in the right-hand sides of (3) can be much smaller than n, depending on
the proprieties of A, B, E, and F . For example, if the columns of E (or F ) span an
invariant subspace of A (or B), then rank(X) ≤ p. If the norms of powers of A (or B)
decrease rapidly, then rank(X) is small compared to n. In the general case, X can be
decomposed as

X = Xk,1 +Xk,2,

where Xk,1 =
∑k−1

j=0 AjEFT (Bj)
T

and Xk,2 = X − Xk,1 and k is chosen such that
kp ≤ n− 1. Since

Xk,1 =

(
E,AE, . . . , Ak−1E

)(
F,AF, . . . , Ak−1F

)T

,

it is clear that rank(X1,k) ≤ pk. Let the singular values of X be labeled so that
σ1(X) ≥ σ2(X) . . . ≥ σn(X). Then the Schmidt-Mirsky theorem [22] gives σkp+1(X) ≤
‖X −Xk,1‖, and therefore

σkp+1(X) ≤

∥∥∥∥
∞∑

j=k

AjEFT (Bj)
T

∥∥∥∥

=
∥∥AkX(Bk)T

∥∥ ≤
∥∥Ak

∥∥∥∥Bk
∥∥∥∥X

∥∥.

This yields the upper bound

σkp+1(X)

σ1(X)
≤

∥∥Ak
∥∥∥∥Bk

∥∥. (4)

None of the bounds (3), (4) is sharp but they both show that a solution with a
(numerical) low-rank can be expected provided that the norms of the powers of A or
B decrease rapidly.

2.1 Low-rank squared Smith approximation

The solution X can be approximated by the partial sum

Xk =
2k−1∑

j=0

AjEFT (BT )
j

(5)
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with large k.
We see that X0 = EFT and for k ≥ 1

Xk =

2k−1−1∑

j=0

AjEFT (BT )
j
+A2k−1

( 2k−1−1∑

j=0

AjEFT (BT )
j
)
(BT )2

k−1

,

= Xk−1 +A2k−1

Xk−1(B
T )2

k−1

and

A2k =

(
A2k−1

)2

, (BT )2
k

=

(
(BT )2

k−1

)2

.

Hence, the squared Smith scheme can be written as

X0 = EFT , A0 = A, B0 = B,

Xk = Xk−1 +Ak−1Xk−1B
T
k−1, Ak = A2

k−1, Bk = B2
k−1, k ≥ 1. (6)

It is clear that (6) should not be used as such since the matrix sequences Ak and Bk

are large and dense. However, from (5) we have

Xk =
(
E,AE, . . . , A2k−1E

)(
F,BF, . . . , B2k−1F

)T
(7)

and then
Xk ≈ ZE

k (ZF
k )T , (8)

where ZE
k and ZF

k are matrices of small rank that can be constructed from the Krylov
spaces

Kk(A,E) = range
(
E,AE, . . . , A2k−1E

)
,

Kk(A,F ) = range
(
F,BF, . . . , B2k−1F

)
.

A natural way to compute ZE
k and ZF

k is the block Arnoldi algorithm applied to A
and B and starting with E and F , respectively. The following algorithm is the version
applied to A and started with E.

For the implementation issues, see the discussion after Algorithm 2.
For j = 1, . . . , 2m, let

QE
j = (QE

1 , . . . , Q
E
j ), QE

j+1 = (QE
j QE

j+1),

HE
j = (HE

i,l)1≤i,l≤j , H
E
j =

(
HE

j

HE
j+1,jI

T
j

)
,

where ITj = (0 0 . . . I) and 0 and I denote the zero and identity matrices of appropriate
sizes.
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Algorithm 1 Block Arnoldi method

INPUT: A ∈ Rn,n, E ∈ Rn,p, an integer m such that 2m ≪ n.
OUTPUT: Arnoldi basis (QE

1 , . . . , Q
E
2m+1), and blocks HE

i,j of corresponding Hessen-
berg matrix.

1: QR factorize E = QE
1 R

E
1

2: for j = 1, . . . , 2m do

3: WE
j = AQE

j

4: for i = 1, . . . , j do

5: HE
i,j = (QE

i )
T
WE

j

6: WE
j := WE

j −QE
i H

E
i,j

7: end fori
8: QR factorize WE

j = QE
j+1H

E
j+1,j

9: end forj

It is known (see, e.g. [17]) that HE
j is block upper Hessenberg and the columns of

QE
2m form an orthonormal basis of Km(A,QE

1 ) if no deflation occurs (which we assume
for clarity of presentation — in the actual implementation, this is taken care of). From
Algorithm 1 and the equalities above we obtain

AQE
j = QE

j+1H
E
j . (9)

We will often need operations of type AlQ
E
j where Al = A2

l−1 = A2l is defined in (6).
From (9) we have

AlQ
E
j = A

(
A
(
. . .

(
A

︸ ︷︷ ︸
2l times

QE
j

)))
= QE

j+2l

j∏

k=j+2l−1

H
E
k . (10)

The same algorithm applied to B and started with F leads to similar formulas as
above. We will refer to these by the superscript F .
The approximation (8) is then obtained as follows:

X0 = EFT ≡ ZE
0 ZF

0

T
with ZE

0 = QE
1 R

E
1 and ZF

0 = QF
1 R

F
1 , (11)

X1 = X0 +AX0B
T = (E,AE)(F,BF )T (12)

with

(E,AE) = (QE
1 R

E
1 , AQ

E
1 R

E
1 )

= (QE
1 R

E
1 ,Q

E
2 H

E
1 R

E
1 )

= QE
2

((
RE

1

0

)
,HE

1 R
E
1

)
.
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Similarly, for (F,BF ) we have

(F,BF ) = QF
2

((
RF

1

0

)
,HF

1 R
F
1

)
.

The low-rank approximation of (E,AE) and (F,AF ) are then obtained through SVDs

of the small matrices 1

((
RE

1

0

)
,HE

1 R
E
1

)
and

((
RF

1

0

)
,HF

1 R
F
1

)
obtained by deleting the

singular values which are smaller than a threshold tol1:

((
RE

1

0

)
,HE

1 R
E
1

)
= UE

1 SE
1 (V E

1 )T +∆E
1 , (13)

((
RF

1

0

)
,HF

1 R
F
1

)
= UF

1 SF
1 (V F

1 )T +∆F
1 , (14)

with
‖∆E

1 ‖ < tol1 and ‖∆F
1 ‖ < tol1, (15)

where the matrices UE
1 , UF

1 , V E
1 and V F

1 have orthonormal columns, and SE
1 and

SF
1 are diagonal matrices whose diagonals contain the singular values which are larger

than tol1. Here and throughout the paper, the symbol ‖ ‖ denotes the spectral norm.
Care must be taken when deleting the smaller singular values to make the operation

(V E
1 )TV F

1 possible. In our implementation, the number of singular values deleted
equals the maximum of the number of singular values that are smaller than tol1 in both((

RE

1

0

)
,HE

1 R
E
1

)
and

((
RF

1

0

)
,HF

1 R
F
1

)
. Then we have the first low-rank approximation:

X1 ≈ ZE
1

(
ZF
1

)T
with ZE

1 = QE
2 U

E
1 SE

1 (V E
1 )TV F

1 and ZF
1 = QF

2 U
F
1 SF

1 . (16)

Note that the choice ZE
1 = QE

2 U
E
1 SE

1 (V E
1 )T and ZF

1 = QF
2 U

F
1 SF

1 (V F
1 )T is not rec-

ommended since the numbers of columns of the factors ZE
k and ZF

k are intended to
increase at each iteration k, see Algorithm 2.
The same procedure leads us to the second step:

X2 = X1 +A1X1B
T
1

≈ ZE
1 ZF

1

T
+A1Z

E
1 ZF

1

T
BT

1

= (ZE
1 , A1Z

E
1 ) (ZF

1 , B1Z
F
1 )T

with

(ZE
1 , A1Z

E
1 ) = (QE

2 U
E
1 SE

1 (V E
1 )TV F

1 , A2QE
2 U

E
1 SE

1 (V E
1 )TV F

1 )

= (QE
2 U

E
1 SE

1 (V E
1 )TV F

1 ,QE
4 H

E
3 H

E
2 U

E
1 SE

1 (V E
1 )TV F

1 )

= QE
4

((
UE
1 SE

1 (V E
1 )TV F

1

0

)
,HE

3 H
E
2 U

E
1 SE

1 (V E
1 )TV F

1

)
.

1A cheaper alternative is the rank revealing QR algorihtm, see e.g. [1]
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and similarly for (ZF
1 , B1Z

F
1 ):

(ZF
1 , B1Z

F
1 ) = QF

4

((
UF
1 SF

1

0

)
,HF

3 H
F
2 U

F
1 SF

1

)
.

As before the SVDs
((

UE
1 SE

1 (V E
1 )TV F

1

0

)
,HE

3 H
E
2 U

E
1 SE

1 (V E
1 )TV F

1

)
= UE

2 SE
2 (V E

2 )T +∆E
2 , (17)

((
UF
1 SF

1

0

)
,HF

3 H
F
2 U

F
1 SF

1

)
= UF

2 SF
2 (V F

2 )T +∆F
2 , (18)

with a threshold tol2 such that

‖∆E
2 ‖ < tol2 and ‖∆F

2 ‖ < tol2 (19)

lead to the second low-rank approximation:

X2 ≈ ZE
2 ZF

2

T
with ZE

2 = QE
4 U

E
2 SE

2 (V E
2 )TV F

2 and ZF
2 = QF

4 U
F
2 SF

2 . (20)

More generally, at step k we have:

Xk ≈ (ZE
k−1, Ak−1Z

E
k−1)(Z

F
k−1, Bk−1Z

F
k−1)

T

with
(ZE

k−1, Ak−1Z
E
k−1) =

(QE
2k−1U

E
k−1S

E
k−1(V

E
k−1)

TV F
k−1, A

2k−1

QE
2k−1U

E
k−1S

E
k−1(V

E
k−1)

TV F
k−1) =

QE
2k

((
UE
k−1S

E
k−1(V

E
k−1)

TV F
k−1

0

)
,

2k−1∏

j=2k−1

HE
j U

E
k−1S

E
k−1(V

E
k−1)

TV F
k−1

)

and

(ZF
k−1, Bk−1Z

F
k−1) = (QF

2k−1U
F
k−1S

F
k−1, B

2k−1

QF
2k−1U

F
k−1S

F
k−1)

= QF
2k

((
UF
k−1S

F
k−1

0

)
,

2k−1∏

j=2k−1

H
F
j U

F
k−1S

F
k−1

)
.

Then we compute, with a tolerance tolk, the reduced SVDs

((
UE
k−1S

E
k−1(V

E
k−1)

TV F
k−1

0

)
,

2k−1∏

j=2k−1

H
E
j U

E
k−1S

E
k−1(V

E
k−1)

TV F
k−1

)
=

UE
k SE

k (V E
k )T +∆E

k , (21)
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((
UF
k−1S

F
k−1

0

)
,

2k−1∏

j=2k−1

H
F
j U

F
k−1S

F
k−1

)
= UF

k SF
k (V F

k )T +∆F
k (22)

with
‖∆E

k ‖ < tolk and ‖∆F
k‖ < tolk (23)

and we obtain the low rank approximation

Xk ≈ ZE
k (ZF

k )T with ZE
k = QE

2kU
E
k SE

k (V E
k )TV F

k and ZF
k = QF

2kU
F
k SF

k . (24)

3 Error and residual estimates

In this section we estimate the error

X − ZE
k (ZF

k )T (25)

between the exact and the computed solution and the residual

Γk = EFT +AZE
k (ZF

k )TBT − ZE
k (ZF

k )T (26)

associated with the computed solution.
The estimates in Propositions 1–4, though complicated to compute, will provide a

reasonable indication of the error due to the Krylov space approximation and the SVD
truncations. Proposition 4 shows that the norm of the residual can be computed at a
lower cost. As we will see in Algorithm 2, it will be used to stop and/or restart the
iterations.

3.1 Estimation of the error

From (2) and (5) we obtain

X −Xk =
∑

j≥2k

AjEFF (Bj)T . (27)

Since the eigenvalues of A lie in the open unit disk, they are certainly inside some
circle |z| = ρa of center 0 and radius ρa < 1. The Cauchy integral formula [10] gives

Aj =
1

2iπ

∫

|z|=ρa

zj(zI −A)−1dz =
ρj+1
a

2π

∫ 2π

0

ei(j+1)θ(ρae
iθI −A)−1dθ

and a similar formula for Bj can be derived. Thus

‖Aj‖ ≤ Caρ
j+1
a , ‖Bj‖ ≤ Cbρ

j+1
b (28)

with
Ca = max

0≤θ≤2π
‖(ρae

iθI −A)−1‖, Cb = max
0≤θ≤2π

‖(ρbe
iθI −B)−1‖.

Taking the norm in (27) and using (28) we obtain the following proposition.
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Proposition 1. For k ≥ 0 we have

‖X −Xk‖ ≤
CaCb‖EFT ‖

1− ρaρb

(
ρaρb

)2k+1
.

This proposition holds true if we only assume that ρaρb < 1 and it clearly shows that
‖X−Xk‖ tends to zero as k increases. However, the convergence may be slowed down
if ρaρb is very close to 1 or if the constants Ca or Cb are too large. In the first case,
a simple variant of the ADI iteration can be used to minimize the spectral radii, see
Section 5. In the second case, the pseudospectra of A or B may significantly protrude
from the unit circle [23] and a low-rank approximate solution may not exist.

Next, we estimate the error between Xk and ZE
k (ZF

k )T .

Proposition 2. For k ≥ 0 we have

‖Xk − ZE
k (ZF

k )T ‖ ≤ µk

with µ0 = 0 and for k ≥ 1

µk ≤ δk +

∥∥∥∥
((

I

0

)
,

2k−1∏

j=2k−1

H
E
j

)∥∥∥∥
∥∥∥∥
((

I

0

)
,

2k−1∏

j=2k−1

H
F
j

)∥∥∥∥δk−1 (29)

with
δ0 = 0 and for k ≥ 1, δk =

(
‖SE

k ‖+ ‖SF
k ‖

)
tolk + tol2k,

where tol1, tol2, . . . are the SVD thresholds defined in (15), (19), . . . , (23).

Proof. For k = 0, the bound is satisfied since X0 = EFT = ZE
0 (ZF

0 )T .
For k = 1, we have from (13) and (14)

(E,AE) = QE
2

(
UE
1 SE

1 (V E
1 )T +∆E

1

)
,

(F,BF ) = QF
2

(
UF
1 SF

1 (V F
1 )T +∆F

1

)
.

Hence

X1 = (E,AE)(F,BF )T

= QE
2

(
UE
1 SE

1 (V E
1 )T +∆E

1

)(
UF
1 SF

1 (V F
1 )T +∆F

1

)T
(QF

2 )
T

= ZE
1 (ZF

1 )T + X̃1

with

X̃1 = QE
2

(
UE
1 SE

1 (V E
1 )T (∆F

1 )
T +∆E

1 V
F
1 SF

1 (UF
1 )T +∆E

1 (∆
F
1 )

T

)
(QF

2 )
T

and hence
‖X̃1‖ ≤

(
‖SE

1 ‖+ ‖SF
1 ‖

)
tol1 + tol21 = δ1,

which shows the proposition for k = 1.
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The general case is straightforward but tedious. From (21)–(23) we have

(
E,AE, . . . , A2k−1

E
)
=

QE
2k

((
UE
k−1S

E
k−1(V

E
k−1)

T

0

)
,

2k−1∏

j=2k−1

H
E
j U

E
k−1S

E
k−1(V

E
k−1)

T

)
+

QE
2k

((
∆E

k−1

0

)
,

2k−1∏

j=2k−1

H
E
j ∆

E
k−1

)

and (
F,BF, . . . , B2k−1

F

)
=

QF
2k

((
UF
k−1S

F
k−1(V

F
k−1)

T

0

) 2k−1∏

j=2k−1

H
F
j U

F
k−1S

F
k−1(V

F
k−1)

T

)
+

QF
2k

((
∆F

k−1

0

)
,

2k−1∏

j=2k−1

H
F
j ∆

F
k−1

)
.

Hence

Xk =

(
E,AE, . . . , A2k−1

E

)(
F,BF, . . . , B(2k−1

F

)T

= ZE
k (ZF

k )T + X̃k

with

X̃k = QE
2k

(
ΥE,F

0 +ΥE
1

(
ΥF

2

)T
+ΥE

2

(
ΥF

1

)T
+ΥE

2

(
ΥF

2

)T
)
(QF

2k)
T ,

where

ΥE,F
0 = UE

k SE
k (V E

k )T (∆F
k )

T +∆E
k V

F
k SF

k (UF
k )T +∆E

k (∆
F
k )

T

and for G = E or F

ΥG
1 =

((
I

0

)
,

2k−1∏

j=2k−1

H
G
j

)(
UG
k−1S

G
k−1(V

G
k−1)

T 0
0 UG

k−1S
G
k−1(V

G
k−1)

T

)

ΥG
2 =

((
I

0

)
,

2k−1∏

j=2k−1

H
G
j

)(
∆G

k−1 0
0 ∆G

k−1

)
.

10



We clearly have

‖ΥE,F
0 ‖ ≤

(
‖SE

k ‖+ ‖SF
k ‖

)
tolk + tol2k = δk,

‖ΥG
1 ‖ ≤

∥∥∥∥
((

I

0

)
,

2k−1∏

j=2k−1

H
G
j

)∥∥∥∥‖S
G
k−1‖,

‖ΥG
2 ‖ ≤

∥∥∥∥
((

I

0

)
,

2k−1∏

j=2k−1

H
G
j

)∥∥∥∥tolk−1,

from which the proposition follows.

By combining Propositions 1 and 2 we obtain

Proposition 3. For k ≥ 0 we have

‖X − ZE
k

(
ZF
k

)T
‖ ≤

CaCb‖EFT ‖

1− ρaρb

(
ρaρb

)2k+1
+ µk.

When the constant CaCb is not large and ρaρb is not close to 1, the proposition
shows that for large k, the error and the residual norms behave respectively as µk and∥∥EFT +AXkB

T −Xk

∥∥.

Remark 3.1. In the special case where B = A and F = E, the factor ZE
k is entirely

defined from
(
E,AE, . . . , A2k−1

E
)
and this helps to improve the error estimate. To

illustrate this point, consider the simple case k = 1. Then, from (13)–(15) we have,
when B = A and F = E

(
E,AE

)
= QE

2

(
UE
1 SE

1 (V E
1 )T +∆E

1

)
.

Since ∆E
1 V

E
1 = 0, we obtain

X1 =
(
E,AE

)(
E,AE

)T
= ZE

1 (ZE
1 )T +QE

2 ∆
E
1

(
QE

2 ∆
E
1

)T

with ZE
1 = QE

2 U
E
1 SE

1 .
In the general case (B 6= A, F 6= E), the expressions of ZE

1 and ZF
1 are given in

(16).

Remark 3.2. Propositions 1 and 2 produce actually worst-case bounds. In practical
computations, the convergence can be much better than these bounds predict.
The choice of tolk may be difficult to tune, in our experiments we use the same tolerance
threshold, that is, for all k, tolk = tolsvd.

3.2 Estimation of the residual

The following proposition relates the residual to the powers of A and B and the error
incurred in Xk − ZE

k ZF
k .

11



Proposition 4. For k ≥ 0, we have for the residual Γk defined in (26),

‖Γk‖ ≤ ‖E‖‖F‖

∥∥∥∥A
2k(B2k)T

∥∥∥∥+ (1 + ‖A‖‖B‖)µk,

where µk is defined in Proposition 2.

Proof.

Γk = EFT +AXkB
T −Xk +A(ZE

k (ZF
k )T −Xk)B

T − (ZE
k (ZF

k )T −Xk),

thus
‖Γk‖ ≤ ‖EFT +AXkB

T −Xk‖+ (1 + ‖A‖‖B‖)‖ZE
k (ZF

k )T −Xk‖.

From (5) we obtain

EFT +AXkB
T −Xk = A2kEFT (B2k)T (30)

and the proof is completed by using Proposition 2.

The following proposition shows that the norm of the residual involves quantities
readily computable. In particular, it will be used as a stopping criterion in Algorithm
2.

Proposition 5. We have ‖Γ0‖ = ‖
(
H

E
1 R

E
1

)(
H

F
1 R

F
1

)T
‖and for k ≥ 1 ,

‖Γk‖ =

∥∥∥∥
(
RE

1

0

)((
RF

1

)T
0
)
+
(
H

E
2kU

E
k SE

k (V E
k )TV F

k

)(
H

F
2kU

F
k SF

k

)T

−

(
UE
k SE

k (V E
k )TV F

k

0

)(
SF
k

(
UF
k

)T
0
)∥∥∥∥.

Proof. We have

Γ0 = (AE)(BF )T = (QE
2 H

E
1 R

E
1 )(Q

F
2 H

F
1 R

F
1 )

T .

Hence ‖Γ0‖ = ‖
(
H

E
1 R

E
1

)(
H

F
1 R

F
1

)
‖.

For k ≥ 1, using (26), (24) and (9) the residual Γk can be written

Γk = (QE
1 R

E
1 )(Q

F
1 R

F
1 )

T +A(QE
2kU

E
k SE

k (V E
k )TV F

k )(QF
2kU

F
k SF

k )TBT −

(QE
2kU

E
k SE

k (V E
k )TV F

k )(QF
2kU

F
k SF

k )T

= QE
2k+1

[(
RE

1

0

)((
RF

1

)T
0
)
+

(
H

E
2kU

E
k SE

k V E
k

T
V F
k

)(
H

F
2kU

F
k SF

k

)T

−

(
UE
k SE

k V E
k

T
V F
k

0

)(
SF
k

(
UF
k

)T
0
)]

(QF
2k+1)

T

and the proposition follows by taking the norm.

In practice we cannot use Algorithm 1 with large m since the computational cost
and memory storage become prohibitive. On the other hand, with a too small m, the
Krylov spaces thus obtained will not contain sufficient information to allow a good
approximation of the solution. To remedy this, we will use in the next two sections a
restarting technique and a simple version of the ADI iteration.
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4 Restarting the low-rank approximation

As in iterative methods for large linear systems [17], restarting is based on the residual.
Our residual Γk has a special form. From (30) we see that its rank is not larger than
p. Its smallest singular values decrease as the number of iterations increases. We will
use this information to construct new Erst and F rst that will be used in place of E
and F for the next restart. The construction is based on an incomplete SVD of the
residual Γk computed with the help of Proposition 4 at a lower cost.
Consider the reduced SVD(

RE
1

0

)((
RF

1

)T
0
)
+
(
H

E
2kU

E
k SE

k V E
k

T
V F
k

)(
H

F
2kU

F
k SF

k

)T

−

(
UE
k SE

k V E
k

T
Vk

0

)(
UF
k SF

k 0
)
= UkSkV

T
k +Θk,

where Uk and Vk have orthonormal columns, Sk is diagonal whose elements are larger
than some convergence threshold tolcvg and Θk contains the rest of the SVD with
‖Θk‖ ≤ tolcvg. Then from the proof of Proposition 5 we have the decomposition

Γk = QE
2k+1(UkSkV

T
k +Θk)(Q

F
2k+1)

T

= Erst(F rst)T + Θ̃k (31)

with Erst = QE
2k+1UkS

1

2

k , F
rst = QF

2k+1VkS
1

2

k and Θ̃k = QE
2k+1Θk(Q

F
2k+1)

T , ‖Θ̃k‖ =
‖Θk‖ ≤ tolcvg.
Denote

Qrst,E
1 = QE

2k+1Uk , Qrst,F
1 = QF

2k+1Vk, Rrst,E
1 = Rrst,F

1 = S
1

2

k ,

then we have the QR factorizations

Erst = Qrst, E
1 Rrst, E

1 and F rst = Qrst, F
1 Rrst, F

1 . (32)

Applying Algorithm 1 with A and Qrst,E
1 and with B and Qrst,F

1 and proceeding as

in Section 2, we obtain factors of the form Zrst,E
k and Zrst,F

k . The residual associated

with Zrst,E
k

(
Zrst,F
k

)T
is

Γrst
k = Erst

(
F rst

)T
+AZrst,E

k

(
Zrst,F
k

)T
BT − Zrst,E

k

(
Zrst,F
k

)T
(33)

and its norm is computed by Proposition 5.
If this norm is smaller than tolcvg, then the iterations can be stopped and the new

approximate solution is

Xnew
k ≈

(
ZE
k , Zrst, E

k

)(
ZF
k , Zrst, F

k

)T
. (34)

The corresponding residual is given by

Γnew
k = EF +A

(
ZE
k , Zrst, E

k

)(
ZF
k , Zrst, F

k

)T
BT −

(
ZE
k , Zrst, E

k

)(
ZF
k , Zrst, F

k

)T

= Γk + Γrst
k − Erst

(
F rst

)T

= Γrst
k + Θ̃k,
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from which we see that ‖Γnew
k ‖ ≤ ‖Γrst

k ‖ + ‖Θ̃k‖ ≤ 2 tolcvg, so that Γnew
k may have a

norm slightly larger than tolcvg.
If the norm of Γrst

k is larger than tolcvg, then Γrst
k is decomposed as in (31) and a

new restart is used. The process is repeated until the norm of the restarted residual
becomes smaller than tolcvg. We summarize this discussion in the following algorithm,
which will be referred to as Low-Rank Krylov Squared Smith (LRKSS).
A few comments are in order. Algorithm LRKSS computes QE

1 and QF
1 from QR

decompositions of E and F and applies a variant Algorithm 1 to A starting with QE
1

and to B starting with QF
1 . In fact, our block Arnoldi implementation is based on

Ruhe’s version with elimination, see [17, p.197] or [16, Algorithm 6.1]. Then, at each
iteration j, the matrices QE

j+1, Q
F
j+1, H

E
j and H

F
j are computed. If j = 1, then ZE

0 = E

and ZF
0 = F and the residual norm ‖Γ0‖ is computed as in Proposition 5. Else, if j is

a power of 2, then the reduced SVDs are computed as in (21)–(23) by eliminating the
same number of singular values which are smaller than tolsvd. The factors Z

E
k and ZF

k

are then computed as well as the corresponding residual norm. If the residual norm
is larger than tolcvg and the size of the Krylov bases reaches its maximum mmax, the
factors ZE

k and ZF
k are updated and the algorithm is restarted with new matrices QE

1

and QF
1 obtained from a reduced SVD of the residual as in (32).

It seems difficult to find optimal choices of tolsvd and tolcvg. We notice, however,
that tolcvg should not be chosen too small compared to tolsvd for the SVDs in (21)
and (22) would be such that ‖SE

k ‖ < tolsvd and ‖SF
k ‖ < tolsvd, which leads to no

improvement of the approximate solution.
With this way of restarting, the proposed squared Smith version can be applied to

large matrices and this was our primary objective. However, the quadratic convergence
of the original squared Smith method may be lost. The purpose of the next section
is to accelerate the convergence by replacing equation (1) with an equivalent one with
matrices having smaller spectral radii.

5 ADI iteration

The ADI method is an important iterative process for solving Lyapunov and Sylvester
equations [24, 25, 5, 6, 15, 18, 4, 3, 13, 7]. An ADI iteration suited for equation (1) is
proposed in [6], see also [4]. It is given, for i = 0, 1, . . . , by

Xi+ 1

2

(I − δiB
T ) = (A− δiI)XiB

T + EFT ,

(I − ηiA)Xi+1 = AXi+ 1

2

(BT − ηiI) + EFT ,

where X0 is an initial approximate solution of (1) and µi and ηi are parameters cho-
sen to accelerate the convergence. Eliminating Xi+ 1

2

from these two equations and
rearranging the terms, we obtain

Xi+1 = (I − ηiA)
−1A(A− δiI)XiB

T (I − δiB
T )−1(BT − ηiI) +

(I − ηiA)
−1((1− δiηi)AEFTBT )(I − δiB

T )−1 + EFT .
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Algorithm 2 LRKSS

INPUT: A,B ∈ Rn,n, E, F ∈ Rn,p, an integer mmax, tolerances tolsvd, tolcvg, and an
initial value of ‖Γ‖ > tolcvg.

OUTPUT: Approximate solution to (1) in factored form ZE
s

(
ZF
s

)T
1: QR factorize E = QE

1 R
E
1 and F = QF

1 R
F
1 .

2: Set UE = I, UF = I, V E = I, V F = I, SE
1 = RE

1 , S
F
1 = RF

1 , Z
E
s = [ ], ZF

s = [ ],
pE = dim(QE

1 ), p
F = dim(QF

1 ),
3: j = 0, iter = 0, rst = 0.
4: while (‖Γ‖ > tolcvg) do
5: j := j + 1
6: Update H

E
j , H

F
j , Q

E
j+1 and QF

j+1.

7: if j = 2k then

8: if k = 0 then

9: ZE = E, ZF = F, ‖Γ‖ = ‖
(
H

E
1 R

E
1

)(
H

F
1 R

F
1

)T
‖

10: else

11: compute the reduced SVDs

UESE(V E)T :=

((
UESE(V E)TV F

0

)
,

2k−1∏

j=2k−1

H
E
j U

ESE(V E)TV F

)

and

UFSF (V F )T :=

((
UFSF

0

)
,

2k−1∏

j=2k−1

H
F
j U

FSF

)

by eliminating the same number of singular values of SE and SF which are
less than tolsvd.

12: ZE = QE
j U

ESE(V E)TV F , ZF = QF
j U

FSF

13: ‖Γ‖ =

∥∥∥∥
(

RE
1 (R

F
1 )

T 0
0 0

)
+

(
H

E
j U

ESE(V E)TV F
)(

H
F
j U

FSF
)T

−

(
UESE(V E)TV F (UF )T (SF )T 0

0 0

)∥∥∥∥
14: end if

15: iter := iter + 1
16: end if

17: if (j + 1)pE > mmax or ‖Γ‖ ≤ tolcvg then

18: Set ZE
s := (ZE

s , ZE), ZF
s := (ZF

s , ZF ).
19: Compute the reduced SVD

UESE(V E)T :=

(
RE

1 (R
F
1 )

T 0
0 0

)
+
(
H

E
j U

ESE(V E)TV F
)(

H
F
j U

FSF
)T

−

(
UESE(V E)TV F (UF )T (SF )T 0

0 0

)

with σmin(S) > tolsvd.

20: Set RE
1 = S

1

2 , RF
1 = S

1

2 , QE
1 = QE

j+1U, QF
1 = QF

j+1V .

21: Set UE = I, UF = I, V E = I, V F = I, SE
1 = RE

1 , SF
1 = RF

1 , j = 0,
rst := rst+ 1, pE = dim(QE

1 ), p
F = dim(QF

1 ).
22: end if

23: end while
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Let
Ai = (I − ηiA)

−1A (A− δiI), Bi = (I − δiB)−1B (B − ηiI),

Ei = (E , (I − ηiA)
−1AE

√
1− δiηi), Fi = (F , (I − δiB)−1BF

√
1− δiηi).

Then the sequence
(
Xi

)
i≥0

satisfies the iteration

Xi+1 = AiXiB
T
i + EiF

T
i . (35)

A straightforward calculation shows that the solutionX is a fixed point of this iteration
and hence the error is given by

Xi+1 −X = Ai

(
Xi −X

)
BT
i .

A repetition of this iteration gives

Xi+1 −X =
(
Πi

j=0Ai

)(
X0 −X

)(
Πi

j=0Bi

)T
.

The convergence Xi+1 − X → 0 is fast if the spectral radii of Πi
j=0Aj and Πi

j=0Bj

are as small as possible. Ideally, this will be the case if the parameters µi and ηi,
i = 0, 1, . . . , i, are chosen to satisfy

min
δi ∈ C

ηi ∈ C

max
λ ∈ Λ(A)
µ ∈ Λ(B)

∣∣∣∣Π
i
j=0

λ(λ− δj)µ(µ− ηj)

(1− ηjλ)(1− δjµ)

∣∣∣∣ . (36)

However, this problem is hard to solve and computationally expensive. Since we are
only interested in parameters that help reduce the spectral radii, we will consider only
two parameters µ and η which approximate the minimax problem

min
δ ∈ C

η ∈ C

max
λ ∈ Λ(Ã)

µ ∈ Λ(B̃)|

|λ(λ− δ)µ(µ− η)|

|(1− ηλ)(1− δµ)|
, (37)

where the sets Λ(Ã) and Λ(B̃) contain a few smallest and/or largest approximate
eigenvalues of A and B. The numerical tests show that this simple choice gives a
satisfactory acceleration.
Once δ and η are computed, the matrices A, B, E and F of equation (1) are replaced

by
A = (I − ηA)−1A(A− δI), B = (I − δB)−1B(B − ηI) (38)

E =
(
E, (I − ηA)−1AE

√
1− δη

)
, F =

(
F, (I − δB)−1BF

√
1− δη

)
(39)

on which algorithm LRKSS is applied.
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6 Numerical Tests

We present numerical tests to illustrate the key points crucial for the convergence of
algorithm LRKSS and its ADI acceleration.

Test 1: This test shows the convergence behavior when the spectral radii of A and
B approach 1. The matrices A and B are n×n, Toeplitz tridiagonal. A has −α, 0 and
+α respectively on its subdiagonal, diagonal and superdiagonal and B has the same
structure with −β, 0 and +β, where α and β are positive parameters to be varied.
The matrix E is n × 2 formed by the first two vectors of the canonical basis, that is,
E11 = E22 = 1 and zero elsewhere, and F = −E. The eigenvalues of A and B are
given by λj = 2iα cos πj

n+1 and µj = 2iβ cos πj
n+1 , j = 1, ..., n. For large n we see that

ρ(A) ≈ 2α and ρ(B) ≈ 2β.
Table 1 shows the results obtained with n = 103, tolcvg = tolsvd = 10−10 and

different values of α, β and the maximum dimension of the Krylov spaces mmax. The
table also indicates the corresponding spectral radii ρ(A) and ρ(B), residual norms,
total number of iterations and restarts. As expected, the closer the spectral radii get
to 1, the slower the convergence is. Also, note that the restart, while it remedies the
problem of storage requirements and computational cost, slows down the convergence.
The numbers of restarts and iterations are almost doubled when the dimension of the
Krylov spaces is divided by 2.

α ρ(A) mmax res.norm iter rst
β ρ(B)

0.45 0.9 32 5.96× 10−11 20 4
0.445 0.89 64 5.96× 10−11 14 2

128 5.96× 10−11 10 1
0.499 0.998 32 9.94× 10−11 268 66
0.495 0.99 64 8.24× 10−11 171 33

128 5.35× 10−11 102 16
0.4999 0.9998 32 9.93× 10−11 1205 296
0.499 0.998 64 9.93× 10−11 753 148

128 9.93× 10−11 452 74

Table 1: Results of LRKSS with different values of α, β and mmax (Test 1)

Test 2: We use the matrices as in the previous test with fixed α = 0.499, β = 0.495,
mmax = 64 and consider three values of n, n = 103, n = 104, and n = 105. The
corresponding spectral radii are almost the same

(
ρ(A) ≈ 2α, ρ(B) ≈ 2β

)
meaning that

the convergence behavior is almost the same, see Proposition 3. For the three tests,
the numbers of iterations and restarts are respectively 171 and 33. The convergence
behaviors are shown in Figure 1.

17



20 40 60 80 100 120 140 160 180
10

−15

10
−10

10
−5

re
si

du
al

 n
or

m

iteration

LRKSS

Figure 1: Residual norms vs the number of iterations (Test 2, n = 10p, p = 3, 4, 5)

Test 3: We consider now Test 1 with ADI acceleration. The parameters δ and η of
the minimax problem (37) are obtained from the 10 largest (in modulus) eigenvalues of
A and B. The parameters δ and η are computed by the MATLAB function fminsearch

as proposed in [4]. The linear systems in (38) and (39) are solved by GMRES with
restart value 20 and tolerance 10−10. The results are summarized in Table 2. An
improvement can be noticed compared to Table 1. Note that the parameters η and µ
are close to zero, which means that the matrices A, B, E and F in (38) and (39) are
close to A2, B2,

(
E,AE

)
and

(
F,BF

)
.

α δ ρ(A) mmax res.norm iter rst
β η ρ(B)

0.45 −7.877 10−9 0.8099 32 7.15× 10−11 13 3
0.445 −7.877 10−9 0.7921 64 7.15× 10−11 11 2

128 7.15× 10−11 8 1
0.499 −4.3315 10−8 0.9959 32 8.30× 10−11 159 43
0.495 3.5532 10−8 0.9801 64 9.74× 10−11 102 22

128 6.70× 10−11 66 11
0.4999 1.5357 10−7 0.9995 32 9.76× 10−11 670 173
0.499 −1.1153 10−7 0.99959 64 9.76× 10−11 424 86

128 9.76× 10−11 256 42

Table 2: Results of LRKSS and ADI with different values of α, β and mmax (Test 3)
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Test 4: We consider now the equivalent equation

X −A2X(B2)T =
(
E,AE

)(
F,AF

)T

on which we apply ADI iterations and algorithm LRKSS, n = 103, tolsvd = tolcvg =
10−10. GMRES is used with the same parameters as in Test 3. Note that the param-
eters η and µ allow now a significant improvement compared to the previous results,
see Table 3.

α δ ρ(A) mmax res.norm iter rst
β η ρ(B)

0.45 −8.0986 10−1 0.2565 32 9.43× 10−11 4 0
0.445 −7.9195 10−1 0.2453 64 9.43× 10−11 3 0

128 9.43× 10−11 3 0
0.499 −9.9582 10−1 0.7427 32 2.10× 10−11 16 6
0.495 −9.7992 10−1 0.7192 64 1.62× 10−12 13 3

128 7.59× 10−11 9 2
0.4999 −9.9583 10−1 0.8742 32 4.04× 10−11 31 12
0.499 −9.9942 10−1 0.8679 64 7.12× 10−11 24 7

128 1.30× 10−11 17 3

Table 3: Results of LRKSS and ADI with different values of α, β and mmax (Test 4)

Figure 2 draws the convergence behaviors when n = 103, n = 104 and n = 105. For
the three cases, α = 0.499, β = 0.495 and mmax = 64. The three indistinguishable
curves in this figure show that the convergence behavior is the same.

19



2 4 6 8 10 12

10
−15

10
−10

10
−5

iteration

re
si

du
al

 n
or

m

 

 

LRKSS+ADI

Figure 2: Residual norms vs the number of iterations, (Test 4, n = 10p, p = 3, 4, 5)

Test 5: In this test we solve the equation

X −AXA = EFT ,

where A = QT ÂQ, Q is an orthogonal matrix constructed with the MATLAB function

orth, Â = diag

((
0.999 ei

π

n

)k
, 1 ≤ k ≤ n

)
, and the matrices E and F are the same

as in the previous tests.
Taking η = δ in (37) and omitting the spectral part due to B, the minimax problem

simplifies to

min
|δ|<1

max
λ∈Λ(Ã)

|λ(λ− δ)|

|(1− δλ)|
. (40)

The matrices in (38) and (39) become

A = (I − δA)−1A(A− δI), (41)

E =
(
E, (I − δA)−1AE

√
1− δ2

)
, F =

(
F, (I − δAT )−1ATF

√
1− δ2

)
(42)

Taking n = 103 we obtain δ = 9.8280×10−1, ρ(A) = 8.9335×10−1. The parameters
tolsvd and tolcvg are fixed at 10−10 and mmax = 32. Figure 3 on the left shows the
convergence of LRKSS with and without ADI preconditioning. The figure on the right
shows the singular values of the exact and computed solutions. The smallest singular
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values differ by a factor of order 10−10(= tolsvd). Figure 4 shows the convergence with
different values of mmax and confirms again that the larger the values of mmax is, the
smaller the number of iterations.
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Figure 3: Residual norms and singular values of the exact and the computed solutions
(Test 5)
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Figure 4: Convergence behaviors of LKRSS (left) and LKRSS+ADI(right) with differ-
ent values of mmax (Test 5)

7 Conclusions

The main purpose of this work was to show one way of adapting the Squared Smith
method to large-scale Stein equations. The adaptation requires the use of Krylov
spaces to build approximations of the squared Smith iterates in low-rank factors. As
expected, the quadratic convergence in the original squared Smith algorithm is not
maintained, but the association with the proposed adaptation with a simple version of
the ADI iteration as a preconditioner allows a great acceleration of the convergence.
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This is consistent with the numerical results in [13, 7] where the “optimal” number
of ADI iterations is less than 3 in [13] and around 4 in [7]. The acceleration depends
largely on the ADI parameters and to a lesser extend on the other parameters of the
algorithm. Improvements can still be made if these parameters can be chosen in a
cheap and nearly optimal way.
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