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Abstract

This work considers the model reduction of linear time-invariant systems with focus on
good approximation at a particular frequency. A family of frequency-dependent extended
systems preserving some special frequency-dependent properties is constructed first, then the
corresponding controllability and observability Lyapunov equations are defined. Finally, those
results are used to develop the desired frequency-dependent balanced truncation, which gen-
erates the desired reduced-order model with an explicit frequency-dependent approximation
error bound. Both continuous-time and discrete-time systems are considered. Several bench-
mark examples are tested to illustrate the advantage of the proposed frequency-dependent
balanced truncation method.

1 Introduction

Model reduction is of fundamental importance in many modeling and control applications and
has attracted considerable attention in the past three decades [1] [2] [3]. A general idea of model
reduction is to approximate a large-scale system by a much smaller model that captures the input-
output behavior of the original system to a required accuracy and also preserves essential physical
properties such as stability and passivity.
One model reduction scheme that is well grounded in theory and commonly used in the control

community is balanced truncation, first introduced in the systems and control literature by Moore
[5]. The advantages of balanced truncation is preservation of stability, as well as the existence
of a priori known computable entire-frequency approximation error bounds. Unfortunately, the
standard balanced truncation (SBT) [5] is frequency-independent, and many practical model re-
duction problems are inherently frequency dependent (see [12]-[36]) (i.e., the requirement on the
approximation accuracy at some frequency ranges are more important than others). The behavior
of the reduced-order model near resonances or in an a priori known operating frequency interval
should often be as close as possible to that of the high-order model, even at the expense of larger
errors at other frequencies.
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During the past several decades, there have been many attempts at modifying the SBT to deal
with the frequency-dependent model reduction problems. One way is to introduce frequency-
sensitive weighting transfer functions and reformulate the problem into a frequency-weighted one
(eg, see [12]-[29] and the references therein). The other way to take the frequency range into
consideration is to replace the frequency-independent controllability and observability Gramian
matrices involved in SBT by the so-called frequency-dependent Gramians (See [30])-[36] and the
references therein). However, in contrast to the frequency-independent error bound for the stan-
dard balanced truncation, no frequency-dependent approximation error bound can be established
by those methods . Therefore, those generalizations are all not fully successful [37].

On the one hand, it has been revealed that the Kalman-Yakubovich-Popov (KYP) lemma plays
an important role in the development of the standard balanced truncation [7]. On the other
hand, the Generalized KYP (GKYP) lemma, which can be used to treat frequency-dependent
performance analysis and viewed as a comparable fundamental machinery like the KYP Lemma
has emerged in recent years [9]. Therefore, it is a natural idea to further generalize the standard
balanced truncation from a frequency-independent one to a frequency-dependent one with the aid
of the GKYP lemma.
In this paper, we will revisit the frequency-limited model reduction problem inspired by the

GKYP lemma, with focus on a single frequency. First, a group of frequency-dependent extended
systems which preserve many interesting frequency domain properties is introduced. Based on
the frequency-dependent extended systems, corresponding concepts such as frequency-dependent
Gramians, frequency-dependent Lyapunov equations, and frequency-dependent balanced realization
are defined subsequently. Finally, a frequency-dependent balanced truncation method which gen-
erates a reduced-order model with an explicit frequency-dependent approximation error bound is
proposed. Several applications of frequency-dependent balanced truncation for typical examples
are included to illustrate its effectiveness and advantages.

2 Problem Statements and Preliminaries

Let a finite dimensional linear dynamical system be described by the following linear constant
coefficient differential equations:

δ[x(t)] = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (1)

where the symbol δ[.] represents the differential operator for continuous-time and the forward-shift
operator for discrete-time system. Here, x(t) ∈ R

n is the state vector, u(t) ∈ R
m is the input

signal, y(t) ∈ R
p is the output signal. The corresponding transfer function of (1) describing the

mapping u → y in the frequency domain for x(0) = 0 can be represented as:

G(ω) = C(ωI −A)−1B +D (2)

in the continuous-time case and as

G(eθ) = C(eθI −A)−1B +D (3)

in the discrete-time case, respectively. Generally, model reduction schemes aim at finding a proper
low-order system model:

δ[xr(t)] = Arxr(t) +Bru(t), yr(t) = Crxr(t) +Dru(t) (4)

which efficiently approximates the original system (1). In other words, the low-order model should
generate output signals closely similar to the original system under the same input signal, where
Ar ∈ R

r×r, Br ∈ R
r×m, Cr ∈ R

p×r, Dr ∈ R
p×m with r ≪ n. In this paper, we focus on the case

that the frequency of the input signal is pre-known and belongs to a singleton set (i.e. ω = ̟ in the
continuous-time case and θ = ϑ in the discrete-time case). With the single frequency assumption,
the desired specifications for the model reduction problem under consideration can be naturally
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concluded as follows, where ‖M‖2 := σmax(M) denotes the spectral norm, i.e. the largest singular
value of the matrix M .
(1) Preserving the finite gain input-output stability at the pre-specified frequency, i.e.

‖Gr(̟)‖2 < ∞ if ‖G(̟)‖2 < ∞,
∥

∥Gr(e
ϑ)

∥

∥

2
< ∞ if

∥

∥G(eϑ)
∥

∥

2
< ∞.

(2) Small approximation error at the pre-specified frequency, i.e.
‖G(̟)−Gr(̟)‖2 < e̟,

∥

∥G(eϑ)−Gr(e
ϑ)

∥

∥

2
< eϑ.

Obviously, the above two specifications capture the intrinsic demands for approximating the origi-
nal system at a single frequency, and they can also be viewed as a generalization of the counterparts
adopted for the frequency-unlimited model reduction problems. In accordance, the aim of this
paper is to develop a frequency-dependent balanced truncation model reduction method to meet
the above two frequency-dependent specifications.

Proposition 1. ([7]) Given a linear system (1) and the following statements
(1) (A,B) is controllable.
(2) Let λ and x be any eigenvalue and corresponding left eigenvector of A, i.e. x∗A = x∗λ, then
x∗B 6= 0.
(3) (C,A) is observable.
(4) Let λ and y be any eigenvalue and corresponding right eigenvector of A, i.e. Ay = λy, then
Cy 6= 0.
the above statements (1) and (2) are equivalent, and the statements (3) and (4) are equivalent.
Besides, a state space realization (A,B,C,D) of it is minimal if and only if (A,B) is controllable
and (C,A) is observable.

Lemma 1. ([8], KYP Lemma (continuous-time case))
Consider a continuous-time transfer function matrix G(ω) = C(ωI − A)−1B + D, and let a
symmetric matrix Π be given. Then the following statements are equivalent:
(1) The entire frequency inequality

[

G(ω)
I

]∗

Π

[

G(ω)
I

]

≤ 0 holds for all ω ∈ [−∞,+∞]. (5)

(2) There exists a symmetric matrix P > 0 of appropriate dimension satisfying

[

A I
C 0

] [

0 P
P 0

] [

A I
C 0

]T

+

[

B 0
D I

]

Π

[

B 0
D I

]T

≤ 0 . (6)

For our purposes, the following frequency-dependent version of the KYP lemma will play an
essential role.

Lemma 2. ([9], Generalized KYP (GKYP) Lemma (continuous-time case))
Consider a continuous-time transfer function matrix G(ω) = C(ωI − A)−1B + D, and let a
symmetric matrix Π be given. Then the following statements are equivalent:
(1) The finite frequency inequality

[

G(ω)
I

]∗

Π

[

G(ω)
I

]

≤ 0 holds for ω = ̟. (7)

(2) There exist symmetric matrices P and Q of appropriate dimensions, satisfying Q > 0 and

[

A I
C 0

] [

−Q P + ̟Q
P − ̟Q −̟2Q

] [

A I
C 0

]T

+

[

B 0
D I

]

Π

[

B 0
D I

]T

≤ 0. (8)

3 Frequency-dependent Extended Systems

In this section, we first construct a group of frequency-dependent extended systems (FDES)
and present some interesting and important frequency-related frequency domain properties of
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the FDES, and then the corresponding frequency-dependent Lyapunov equations, frequency-
dependent Gramians, frequency-dependent balanced realization are defined, which establish a
foundation of our development for frequency-dependent balanced truncation.

Definition 1: (Frequency-dependent Extended Systems)
(a) Given a linear continuous-time system (1) and a pre-specified operating frequency ̟, then one
can construct a group of related ̟-dependent extended systems as follows:

ẋ(t) = A̟x(t) +B̟u(t),
y(t) = C̟x(t) +D̟u(t),

(9)

where

[

A̟ B̟

C̟ D̟

]

=

[

̟I − ǫ(ǫI + ̟I −A)−1(̟I −A) ǫ(ǫI + ̟I −A)−1B

ǫC(ǫI + ̟I −A)−1 D + C(ǫI + ̟I −A)−1B

]

, (10)

Alternatively, the ̟-dependent extended systems (9) may be represented by a rational transfer-
function matrix

G̟(ω) = C̟(ωI −A̟)−1B̟ +D̟ (11)

(b) Given a linear discrete-time system (1) and a pre-specified operating frequency ϑ, then one can
construct a group of ϑ-dependent extended systems Gϑ(e

θ) as follows:

x(k + 1) = Aϑx(k) +Bϑu(k),
y(k) = Cϑx(k) +Dϑu(k),

(12)

where

[

Aϑ Bϑ

Cϑ Dϑ

]

=

[

eϑI − ǫ(ǫI + eϑI −A)−1(eϑI −A) ǫ(ǫI + eϑI −A)−1B

ǫC(ǫI + eϑI −A)−1 D + C(ǫI + eϑI −A)−1B

]

, (13)

if ϑ ∈ [−π/2, π/2], and

[

Aϑ Bϑ

Cϑ Dϑ

]

=

[

−eϑI − ǫ(ǫI − eϑI −A)−1(−eϑI −A) ǫ(ǫI − eϑI −A)−1B

ǫC(ǫI − eϑI −A)−1 D + C(ǫI − eϑI −A)−1B

]

, (14)

if ϑ ∈ [−π,−π/2] or ϑ ∈ [π/2, π], and ǫ is a positive scalar. Alternatively, the ϑ-dependent
extended systems (12) may be represented by a rational transfer-function matrix

Gϑ(ω) = Cϑ(ωI −Aϑ)
−1B̟ +Dϑ (15)

Theorem 1. (Relationships between the original system and the FDES)
(a) Given a continuous-time system (1) and one of its corresponding ̟-dependent extended systems
(9), then the following statements are true:
(a.1) If G(ω) is stable then G̟(ω) is stable for any ǫ > 0 .
(a.2) If G(ω) is unstable then G̟(ω) is stable for 0 < ǫ < ǫ̟̂, where ǫ̟̂ = min{ǫ̂(λ1), ǫ̂(λ2), . . . ,

ǫ̂(λi), . . . , ǫ̂(λnu
)}, ǫ̂(λi) = (̟ − λi

i)
2/λr

i + λr
i , i = 1, . . . , nu, and λr

i , λ
i
i denote the real and

imaginary parts of the unstable eigenvalue λi = λr
i + λi

i, i = 1, . . . , nu of A, respectively.
(a.3) (A̟, B̟) is controllable if (A,B) is controllable.
(a.4) (A̟, C̟) is observable if (A,C) is observable.
(a.5) (A̟, B̟, C̟, D̟) is a minimal realization of G̟(ω) if (A,B,C,D) is a minimal realization
of G(ω).
(a.6) G̟(̟) = G(̟).
(a.7) If ‖G(ω)‖

∞
≤ γ for all ω ∈ [−∞,+∞], then ‖G̟(ω)‖

∞
≤ γ for all ω ∈ [−∞,+∞].

(a.8) If ‖G̟(ω)‖
∞

≤ γ̟ for all ω ∈ [−∞,+∞], then ‖G(ω)‖2 ≤ γ̟ for ω = ̟.

(b).Given a discrete-time system (1) and its corresponding ϑ-dependent extended systems (12),
then the following statements are true:
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(b.1) If G(eθ) is stable then Gϑ(e
θ) is stable for ǫ > 0.

(b.2) If G(eθ) is unstable then Gϑ(e
θ) is stable for 0 < ǫ < ǫ̂ϑ, where ǫ̂ϑ = min{ǫ̂(λ1), ǫ̂(λ2), . . . ,

ǫ̂(λi), . . . , ǫ̂(λnu
)} and ǫ̂(λi) is the minimal positive solution of the following equation

∣

∣eϑ − ε(eϑ − λ)
/

(ε+ eϑ − λ)
∣

∣ = 1

and λi, i = 1, . . . , nu denote the unstable eigenvalues of A.
(b.3) (Aϑ, Bϑ) is controllable if (A,B) is controllable.
(b.4) (Aϑ, Cϑ) is observable if (A,C) is observable.
(b.5) (Aϑ, Bϑ, Cϑ, Dϑ) is a minimal realization of Gϑ(e

θ) if (A,B,C,D) is a minimal realization
of G(eθ).
(b.6) Geϑ(e

ϑ) = G(eϑ).
(b.7) If

∥

∥G(eθ)
∥

∥

∞
≤ γ ∀θ ∈ [−π,+π], then

∥

∥Gϑ(e
θ)

∥

∥

∞
≤ γ ∀θ ∈ [−π,+π].

(b.8) If
∥

∥Gϑ(e
θ)

∥

∥

∞
≤ γϑ ∀θ ∈ [−π,+π], then

∥

∥G(eθ)
∥

∥

2
≤ γϑ θ = ϑ .

Proof.
(a.1) Let us denote λi, i = 1, 2 . . . , n, and λ̟,i, i = 1, 2 . . . , n as the eigenvalues of the matrices
A and A̟, respectively. According to the mapping between A and A̟ (10), we know that
λ̟,i = ̟ − ǫ(̟ − λi)(ǫ + ̟ − λi)

−1. Noticing that λr
i = Re(λi) < 0 if the system G(ω) is

stable and

λr
̟i = Re(λ̟i) = −(ǫλr

i (ǫ− λr
i )) + ǫ(̟ − λi

i)
2)/((ǫ− λr

i )
2 + (̟ − λi

i)
2) < 0, ∀ǫ > 0, ̟r

i < 0,

thus the proof can be completed.

(a.2) Noticing that the following inequalities

λr
̟,i = Re(λ̟,i) = −(ǫλr

i (ǫ− λr
i )) + ǫ(̟ − λi

i)
2)/((ǫ− λr

i )
2 + (̟ − λi

i)
2) < 0, i = 1, . . . , nu

hold if 0 < ǫ < ǫ̟̂ and ̟r
i > 0, which means for any unstable eigenvalue λi, the corresponding

mapped eigenvalue λ̟i is stable.

(a.3) Let us denote λ and x∗ as any eigenvalue and the corresponding eigenvector of A, i.e.
x∗A = x∗λ. According to (41) we have x∗A̟ = x∗λ̟, where λ̟ is the corresponding mapped
eigenvalue of A̟. On the other side,

x∗B̟ = x∗ǫ(ǫI + ̟I −A)−1B = x∗ǫ(ǫ+ ̟ − λ)−1B = ǫ(ǫ+ ̟ − λ)−1x∗B.

From Proposition 1, we know that x∗B 6= 0 as (A,B) is assumed to be controllable here. This
leads us to x∗B̟ 6= 0 since ǫ(ǫ+ ̟− λ)−1 for any ǫ > 0. Thus, one can conclude that (A̟, B̟)
is controllable.

(a.4) The proof can be completed similarly to the proof of (a.3) by utilizing Proposition 1, the
details are omitted here for brevity.

(a.5) According to Proposition 1, we know that (A,B) is controllable and (C,A) is observable
if (A,B,D,C) is a minimal realization, as proved above, we have (A̟, B̟) is controllable and
(C̟, A̟) is observable, which further implies (A̟, B̟, C̟, D̟) is a minimal realization.

(a.6) The equality G̟(̟) = G(̟) can be easily validated by direct matrix manipulation:

G̟(̟) = C̟(̟I −A̟)−1B̟ +D̟

= C(εI + ̟I −A)−1(̟I −A)−1(εI + ̟I −A)ε(εI + ̟I −A)−1B
+D + C(εI + ̟I −A)−1B

= Cε(εI + ̟I −A)−1(̟I −A)−1B +D + C(εI + ̟I −A)−1B
= C(̟I −A)−1B +D
= G(̟)

(16)
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(a.7) According to the KYP lemma, if ‖G(ω)‖
∞

≤ γ ∀ω ∈ [−∞,+∞], then there exists a positive
symmetric matrix P such that the following equation holds:

Ψ =

[

AP + PA∗ +BB∗ PC∗ +BD∗

∗ DD∗ − γ2I

]

= 0,

defining the Lyapunov variable P̟ as: P̟ = P and denote N = ε(εI + ̟I −A)−1 for simplicity,
then the following equations can be validated:

Ψ̟11 = A̟P̟ + P̟A̟
∗ +B̟B̟

∗

= (̟I − ε(εI + ̟I −A)−1(̟I −A))P
+ P (̟I − jε(εI + ̟I −A)−1(̟I −A))∗

+ ε(εI + ̟I −A)−1BB∗ε(εI + ̟I −A)−∗

= −ε−1N((̟I −A)P (εI + ̟I −A)∗

− (εI + ̟I −A)P (̟I −A)∗)N∗ +NBB∗N∗

= −N((̟I −A)P + P (̟I −A)∗)N∗ +NBB∗N∗

− 2ε−1N(̟I −A)P (̟I −A)∗N∗

= N(AP + PA∗ +BB∗)N∗ − 2ε−1N(̟I −A)P (̟I −A)∗N∗

= NΨ11N
∗ − ε−1NAPA∗N∗,

(17)

Ψ̟12 = P̟C̟
∗ +B̟D̟

∗

= Pε(εI + ̟I −A)−∗C∗ +B̟D∗ +NBB∗(εI + ̟I −A)−∗C∗

= Nε−1(εI + ̟I −A)Pε(εI + ̟I −A)−∗C∗ +NBD∗ +NBB∗(εI + ̟I −A)−∗C∗

= NPε(εI + ̟I −A)−∗C∗ +NBD∗ +Nε−1(̟I −A)Pε(εI + ̟I −A)−∗C∗

+N(̟I −A)P (εI + ̟I −A)−∗C∗ +NP (̟I −A)∗(εI + ̟I −A)−∗C∗

= NPC∗ +NBD∗ + 2ε−1N(̟I −A)PC̟
∗ = NΨ12 + 2ε−1N(̟I −A)PC̟

∗,
(18)

Ψ̟22 = D̟D̟
∗ − γ2I

= DD∗ − γ2I + C(εI + ̟I −A)−1BD∗ +DB∗(εI + ̟I −A)−∗C∗

+ C(εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗C∗

= DD∗ − γ2I − C(εI + ̟I −A)−1PC∗ − CP (εI + ̟I −A)−∗C∗

+ C(εI + ̟I −A)−1((εI + ̟I −A)P + P (εI + ̟I −A)∗)(εI + ̟I −A)−∗C∗

− C(εI + ̟I −A)−1(2εP )(εI + ̟I −A)−∗C∗

= DD∗ − γ2I − 2εC(εI + ̟I −A)−1P (εI + ̟I −A)−∗C∗

= Ψ22 − 2ε−1C̟PC∗

̟.
(19)

Therefore, we have

Ψ̟ =

[

A̟P̟ + P̟Aϑ
∗ +B̟B̟

∗ P̟C∗

̟ +B̟D∗

̟

∗ DD∗ − γ2I

]

= −

[

N(̟I −A)
C̟

]

(2εP )

[

N(̟I −A)
C̟

]

∗

+

[

N 0
0 I

]

Φ

[

N 0
0 I

]

∗

= −

[

N(̟I −A)
C̟

]

(2εP )

[

N(̟I −A)
C̟

]

∗

≤ 0.

According to the KYP Lemma, we have ‖G̟(ω)‖
∞

≤ γ ∀ω ∈ [−∞,+∞].

(a.8). According to the KYP lemma, if ‖G̟(ω)‖
∞

≤ γ̟, ∀ω ∈ [−∞,+∞], then there exists a
positive symmetric matrix P̟ such that the following equation holds:

Ψ̟ =

[

A̟P̟ + P̟A∗

̟ +B̟B∗

̟ P̟C∗

̟ +B̟D∗

̟

∗ D̟D∗

̟ − γ2
̟I

]

= 0.
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Defining two Lyapunov variables Q,P as

Q = 2ε−1P̟, P = P̟,

the following equations can be validated:

Ψ11 = −(̟I −A)Q(̟I −A)∗ − (̟I −A)P − P (̟I −A)∗ +BB∗

= −(̟I −A)2ε−1P̟(̟I −A)∗ − (̟I −A)P̟ − P̟(̟I −A)∗ +BB∗

= −ε−1(̟I −A)P̟(εI + ̟I −A)∗ − (εI + ̟I −A)P̟(̟I −A)∗ +BB∗

= ε−1(εI + ̟I −A)Ψ̟11(εI + ̟I −A)∗ε−∗,

(20)

Ψ12 = (̟I −A)(εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗C∗

+ ε(εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗C∗ +BD∗

+ (̟I −A)(εI + ̟I −A)−1P̟C∗ + ε(εI + ̟I −A)−1P̟C∗ − P̟C∗

+ (εI + ̟I −A)P̟(εI + ̟I −A)−∗C∗

= (εI + ̟I −A)P̟(εI + ̟I −A)−∗C∗ +BB∗(εI + ̟I −A)−∗C∗ +BD∗

= (εI + ̟I −A)Ψ̟12,

(21)

Ψ22 = −CQC∗ +DD∗ − γ̟
2I

= −C(εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗C∗ − C(εI + ̟I −A)−1P̟C∗

− CP̟(εI + ̟I −A)−∗C∗ +DD∗ − γ̟
2I

= −C(εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗C∗

+ C(εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗C∗ + C(εI + ̟I −A)−1BD∗

+ C(εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗C∗ +DB∗(εI + ̟I −A)−∗C∗

+DD∗ − γ̟
2I

= D̟D̟
∗ − γ̟

2I
= Ψ̟22.

(22)

Therefore, we have

Ψ =

[

A I

C 0

] [

−Q P + ̟Q

P − ̟Q −̟2Q

] [

A I

C 0

]∗

+

[

B 0
D I

] [

I 0
0 −γ2

̟
I

] [

B 0
D I

]∗

=

[

(εI + ̟I −A) 0
∗ I

] [

Ψ̟11 Ψ̟12

∗ Ψ̟22

] [

(εI + ̟I −A) 0
∗ I

]∗

= 0

(23)

According to the single frequency GKYP Lemma, we have ‖G(ω)‖2 ≤ γ̟ for ω = ̟.

The discrete-time part can be fulfilled in a similar way and is omitted here.

Remark 1: From the properties proved above, it is clear that the H∞-performance of a linear
system at a given frequency point can be estimated by the KYP lemma instead of the GKYP
lemma. This is advantageous as less Lyapunov variables are involved. Certainly, the H∞-norm
at a single frequency can also be obtained by direct computation without using the KYP lemma
or the GKYP lemma. However, this result points out that there may exist some ways to balance
the complexity and accuracy for frequency-limited performance analysis. If similar results can be
developed for the general interval-type frequency ranges, this will serve as a good bridge between the
GKYP lemma and the KYP lemma. Besides, it is probable that the presented concepts, definitions
and properties about the frequency-dependent extended system may have other interpretations for
the linear system theory.

Definition 2. (Frequency-dependent Lyapunov Equations)
(a) Given a linear continuous-time system (1) and one of its corresponding Hurwitz stable ̟-
dependent extended systems (9), then the following two Lyapunov equation

A̟W̟c +W̟cA
∗

̟ +B̟B∗

̟ = 0
A∗

̟W̟o +W̟oA̟ + C∗

̟C̟ = 0
(24)
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are defined as ̟-dependent controllability and observability Lyapunov equations of the continuous-
time system (1). Furthermore, the solutions W̟c and W̟o will be called ̟-dependent controlla-
bility and observability Gramians of the continuous-time system (1).
(b) Given a linear discrete-time system (1) and one of its corresponding Schur stable ϑ-dependent
extended systems (12), then the following two Lyapunov equations

AϑWϑcA
∗

ϑ −Wϑc +BϑB
∗

ϑ = 0
A∗

ϑWϑoAϑ −Wϑo + C∗

ϑCϑ = 0
(25)

are defined as ϑ-dependent controllability and observability Lyapunov equations of the discrete-
time system (1). Furthermore, the solutions Wϑc and Wϑo will be called ϑ-dependent controlla-
bility and observability Gramians of the discrete-time system (1).

Definition 3. (Frequency-dependent Balanced Realization)
(a) Given a linear continuous-time system (1) and one of its Hurwitz stable ̟-dependent extended
systems (9), the corresponding ̟-dependent controllability and observability Gramians are equal
and diagonal, i.e. the following Lyapunov equations

A̟Σ̟ +Σ̟A∗

̟ +B̟B∗

̟ = 0
A∗

̟Σ̟ +Σ̟A̟ + C∗

̟C̟ = 0
(26)

simultaneously hold, then this particular realization will be referred to as a ̟-dependent balanced
realization.
(b) Given a linear discrete-time system (1) and one of its Schur stable ϑ-dependent extended
systems (12), the corresponding ϑ-dependent controllability and observability Gramians are equal
and diagonal, i.e. the following Lyapunov equations

AϑΣϑA
∗

ϑ +Σϑ +BϑB
∗

ϑ = 0
A∗

ϑΣϑAϑ +Σϑ + C∗

ϑCϑ = 0
(27)

simultaneously hold, then this particular realization will be referred to as a ϑ-dependent balanced
realization.

Theorem 2.
(a) Suppose the linear continuous-time system (1) is Hurwitz stable, and denote its controllability
and observability and balanced Gramian matrices as Wc,Wo,Σ, then for any ̟-dependent extended
system (9), the following statements are true:
(a.1) Wc > W̟c, Wc > W̟c, Σ > Σ̟,
(a.2) lim

ε→0
W̟c = 0, lim

ε→0
W̟o = 0, lim

ε→0
Σ̟ = 0,

(a.3) lim
ε→∞

W̟c = Wc, lim
ε→∞

W̟o = Wo, lim
ε→∞

Σ̟ = Σ.

(b) Suppose the linear discrete-time system (1) is Schur stable, we abuse notation somewhat by
denoting its controllability and observability Gramians matrices as Wc,Wo,Σ, then for any ̟-
dependent extended system (12), the following statements are true:
(b1). Wc > Wϑc, Wc > Wϑc, Σ > Σϑ,
(b.2) lim

ε→0
Wϑc = 0, lim

ε→0
Wϑo = 0, lim

ε→0
Σϑ = 0,

(b.3) lim
ε→∞

Wϑc = Wc, lim
ε→∞

Wϑo = Wo, lim
ε→∞

Σϑ = Σ.

Proof.
(a.1) It is well known that the controllability and observability Gramian matrices Wc,Wo of system
(1) satisfy the following Lyapunov equations:

AWc +WcA
∗ +BB∗ = 0

A∗Wo +WoA+ C∗C = 0.
(28)

Post-and-pre multiply the ̟-dependent Lyapunov Equations (24) by ǫ−1(ǫI + ̟I −A), then we
have

AW̟c +W̟cA
∗ + 2ǫ−1(̟I −A)W̟c(̟I −A)∗ +BB∗ = 0

A∗W̟o +W̟oA+ 2ǫ−1(̟I −A)∗W̟o(̟I −A) +BB∗ = 0.
(29)
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Then the following equations can be derived by subtracting the equations (28) from (29)

A(Wc −W̟c) + (Wc −W̟c)A
∗ + 2ǫ−1(̟I −A)W̟c(̟I −A)∗ = 0

A∗(Wo −W̟o) + (Wo −W̟o)A+ 2ǫ−1(̟I −A)∗W̟o(̟I −A) = 0
(30)

since the system (1) is supposed to be Hurwitz stable, we can conclude that (Wc −W̟c) > 0 and
(Wo −W̟o) > 0 since

2ǫ−1(̟I −A)W̟c(̟I −A)∗ > 0
2ǫ−1(̟I −A)∗W̟o(̟I −A) > 0.

(31)

(a.2) Let us introduce two auxiliary Lyapunov matrices as follow

Ŵ̟c = ε−1W̟c, Ŵ̟o = ε−1W̟o.

This leads to the following Lyapunov equations:

(̟I −A)(εI + ̟I −A)−1Ŵ̟c + Ŵ̟c(εI + ̟I −A)−∗(̟I −A)∗

= (εI + ̟I −A)−1BB∗(εI + ̟I −A)−∗

(̟I −A)∗(εI + ̟I −A)−∗Ŵ̟o + Ŵ̟o(εI + ̟I −A)−1(̟I −A)
= (εI + ̟I −A)−∗C∗C(εI + ̟I −A)−1.

(32)

From (32) one can conclude that:

lim
ε→0

Ŵ̟c =
1
2 (̟I −A)−1BB∗(̟I −A)−∗,

lim
ε→0

Ŵ̟o = 1
2 (̟I −A)−∗C∗C(̟I −A)−1.

Therefore,
lim
ε→0

W̟c = lim
ε→0

εŴ̟c = 0, lim
ε→0

W̟c = lim
ε→0

εŴ̟o = 0.

(a.3) It can be easily observed that the ̟-dependent matrices A̟, B̟, C̟ will recover A,B,C
as ǫ → ∞, i.e.

lim
ε→∞

A̟ = lim
ε→∞

(̟I − ǫ(ǫI + ̟I −A)−1(̟I −A)) = A,

lim
ε→∞

B̟ = lim
ε→∞

ǫ(ǫI + ̟I −A)−1B = B,

lim
ε→∞

C̟ = lim
ε→∞

ǫC(ǫI + ̟I −A)−1 = C.

(33)

Then it is trivial to conclude that

lim
ǫ→∞

W̟c = Wc, lim
ǫ→∞

W̟o = Wo, lim
ǫ→∞

Σ̟ = Σ.

The discrete-time case can be shown in a similar way and is omitted here.

4 Frequency-dependent Balanced Truncation

The following theorem provides the basis for our new model reduction method.

Theorem 3. (Frequency-dependent Balanced Truncation)
(a) Given a linear continuous-time system (1) with a pre-specified operating frequency ̟, then for
any one of its Hurwitz stable ̟-dependent extended systems (9) given in ̟-dependent balanced
realization with respect to the ̟-dependent Gramian Σ̟ = diag(Σ1̟,Σ2̟)

Σ1̟ = diag(σ1̟, σ2̟, . . . , σr̟),Σ2̟ = diag(σ(r+1)̟, σ(r+2)̟, . . . , σn̟),
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and σ1̟ ≥ σ2̟ ≥ . . . ≥ σr̟ ≥ σ(r+1)̟ ≥ σ(r+2)̟ ≥ . . . ≥ σn̟, the desired rth-order model

Gr(ω) :=

[

Ar Br

Cr Dr

]

is given by:

Ar = ̟I − ǫZr(̟I −A̟)ZT
r (ǫI − Zr(̟I −A̟)ZT

r )
−1,

Br = ǫ−1(ǫI + ̟I −Ar)ZrB̟,
Cr = ǫ−1C̟ZT

r (ǫI + ̟I −Ar),
Dr = D̟ − Cr(ǫI + ̟I −Ar)

−1Br,

(34)

where Zr = [Ir×r 0r×(n−r)]. Furthermore, the truncated model Gr(ω) possesses the following
properties:
(a.1) If ‖G(̟)‖2 < +∞, then ‖Gr(̟)‖2 < +∞.
(a.2) The approximation error between the original system model (1) and the truncated model (34)
at the given frequency ̟ satisfies the error bound:

‖G(̟)−Gr(̟)‖2 ≤ 2

n
∑

i=r+1

σi̟. (35)

(b) Given a linear discrete-time system (1) with a pre-specified operating frequency ̟, then for
anyone of its Schur stable ϑ-dependent extended systems (12) given in ϑ-dependent balanced real-
ization with respect to the ϑ-dependent Gramian Σϑ = diag(Σ1ϑ,Σ2ϑ)

Σ1ϑ = diag(σ1ϑ, σ2ϑ, . . . , σrϑ),
Σ2ϑ = diag(σ(r+1)ϑ, σ(r+2)ϑ, . . . , σnϑ),

and σ1ϑ ≥ σ2ϑ ≥ . . . ≥ σrϑ ≥ σ(r+1)ϑ ≥ . . . ≥ σ(n−1)ϑ ≥ σnϑ, the desired rth-order model

Gr(e
θ) :=

[

Ar Br

Cr Dr

]

is given by:

Ar = eϑI − ǫZr(e
ϑI −Aϑ)Z

T
r (ǫI − Zr(e

θI −Aϑ)Z
T
r )

−1,
Br = ǫ−1(ǫI + eϑI −Ar)ZrBϑ,
Cr = ǫ−1CϑZ

T
r (ǫI + eϑI −Ar),

Dr = Dϑ − Cr(ǫI + eϑI −Ar)
−1Br,

(36)

if ϑ ∈ [−π/2, π/2], and

Ar = −eϑI − Zr(−eϑI −Aϑ)Z
T
r (ǫI − Zr(−eϑI −Aϑ)Z

T
r )

−1,
Br = ǫ−1(ǫI − eϑI −Ar)ZrBϑ,
Cr = ǫ−1CϑZ

T
r (ǫI − eϑI −Ar),

Dr = Dϑ − Cr(ǫI − eϑI −Ar)
−1Br,

(37)

if ϑ ∈ [−π,−π/2] or ϑ ∈ [π/2, π], where Zr = [Ir×r 0r×(n−r)]. Furthermore, the truncated model
Gr(e

θ) possesses the following properties
(b.1) If

∥

∥G(eϑ)
∥

∥

2
< +∞, then

∥

∥Gr(e
ϑ)

∥

∥

2
< +∞.

(b.2) The approximation error between the given system model and the truncated model at the
given frequency ϑ satisfies the error bound

∥

∥G(eϑ)−Gr(e
ϑ)

∥

∥

2
≤ 2

n
∑

i=r+1

σiϑ. (38)

Proof.

(a.1) Let denote Gr̟(ω) :=

[

Ar̟ Br̟

Cr̟ Dr̟

]

as the corresponding ̟-dependent extended system of

the truncated reduced-order system Gr(ω) :=

[

Ar Br

Cr Dr

]

, where

[

Arϑ Brϑ

Crϑ Drϑ

]

=

[

̟I − ǫ(ǫI + ̟I −Ar)
−1(̟I −Ar) ǫ(ǫI + ̟I −Ar)

−1Br

ǫCr(ǫI + ̟I −Ar)
−1 Dr + Cr(ǫI + ̟I −Ar)

−1Br

]

, (39)
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According to (34) and (39), we know Ar̟ = ZrA̟ZT
r , therefore Ar̟ is stable since A̟ is stable

(see Theorem 7.1 of [7]). Furthermore, we have ‖Gr(̟)‖2 = ‖Gr̟(̟)‖2 < ∞.

(a.2) The detailed proof for r = n− 1 case will be provided in the sequel, and the r = n− 2, . . . 1
cases can be easily completed step by step [7].

The error system model E(ω) between the original high-order system model G(ω) and the trun-
cated low-order system model Gr(ω) can be represented by

E(ω) = G(ω)−Gr(ω) =:





Ae Be

Ce De



 =







Ar 0 Br

0 A B

−Cr C D −Dr






. (40)

The corresponding ̟-dependent extended error system model E̟(ω) can be represented by

E̟(ω) =:

[

Ae̟ Be̟

Ce̟ De̟

]

=

[

̟I − ǫ(ǫI + ̟I −Ae)
−1(̟I −Ae) ǫ(ǫI + ̟I −Ae)

−1Be

ǫCe(ǫI + ̟I −Ae)
−1 De + Ce(ǫI + ̟I −Ae)

−1Be

]

.

(41)

Combining (42), (40) and (41), we have

Ae̟ẐΣẐT + ẐΣẐTA∗

e̟ + Be̟B∗

e̟ = 0,
A∗

e̟ŽΣŽT + ŽΣŽTAe̟ + C∗

e̟Ce̟ = 0,
(42)

where Ẑ = [ZT I]T and Ž = [−ZT I]T . From the error system E(ω), we can construct a dilated
system E (ω) which is an H∞ performance preserving one with respect to the error system E(ω).
Furthermore, the desired dilated system can be constructed as follow:

E (ω) =





Ae Be

Ce De



 =









Ae Be Bd

Ce De Dd11

Cd Dd12 Dd22









, (43)

where Bd, Cd,Dd12,Dd21,D22 are auxiliary ’dilated’ matrices, and those matrices are constructed
as follows:

Bd = −σn̟(ǫI + ̟I −Ae)ŽΣ−1C∗

̟,

Cd
∗ = −σn̟(ǫI + ̟I −Ae)

T ẐΣ−1B̟,
Dd12 = −Ce(ǫI + ̟I −Ae)

−1Bd + 2σn̟I,
Dd21 = −Cd(ǫI + ̟I −Ae)

−1Be + 2σn̟I,
Dd22 = −Cd(ǫI + ̟I −Ae)

−1Bd.

(44)

Defining the Lyapunov variable Q ≥ 0 and P as follows:

Q = 2ǫ−1ẐΣẐT + 2ǫ−1σ2
n̟ŽΣ−1ŽT ≥ 0,

P = ẐΣẐT + σ2
n̟ŽΣŽT .

(45)

We conclude the following GKYP-form equality:
[

Ae I

Ce 0

] [

−Q P + ̟Q

P − ̟Q −̟2
Q

] [

Ae I

Ce 0

]∗

+

[

Be 0
De I

] [

I 0
0 −(2σn̟)2

] [

Be 0
De I

]∗

= 0,

(46)

which can be validated in detail by referring to the proof of Theorem 1 (a.8) and the con-
structive proof of standard balanced truncation in [7], and the details behind this equation
are omitted here for simplicity of presentation. According to the GKYP Lemma, the dilated
error systems E (ω) satisfies ‖E (̟)‖2 ≤ 2σn̟. Therefore the error system E(ω) satisfies
‖E(̟)‖2 ≤ ‖E (̟)‖2 ≤ 2σn̟.
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The proof of the discrete-time counterparts can be fulfilled in a similar way and is therefore omitted
here for brevity.

Remark 2: According to Theorems 2 and 3, it is clear that the approximation error at a given
frequency can be asymptotically regulated to be zero by adjusting the scalar ǫ → 0. For the single-
frequency model reduction problem, better approximation performance will be obtained with smaller
ǫ, however, adopting an extremely small ǫ in practical implementation may lead to numerical
difficulties due to the rapid rank decay of the corresponding frequency-dependent Gramian matrices
when ǫ → 0. On the other hand, the proposed FDBT can be expected as an alternative way
to deal with interval-type finite frequency (such as ω ∈ [̟1, ̟2]) model reduction problems by
̟ = (̟1 + ̟2). Under such a circumstance, letting the parameter ǫ become very small is not
meaningful since the approximation performance at the frequency points far from ̟. It is an open
question how to obtain an optimal ε.

Remark 3: To transform any minimal realization of system (1) into the frequency-dependent bal-
anced realization, one can resort to the SV D-based simultaneous diagonalization algorithm [10]. If
the given state space realization of (1) is non-minimal, we refer to [39] for the corresponding algo-
rithm. Besides, to overcome the rank-deficient problem of frequency-dependent Gramian matrices
which commonly occurs if the dimension of the original system n is very large or the parameter ǫ is
very small, one can implement the proposed FDBT method by combing the techniques adopted for
implementing the SBT via low rank approximate Gramians (See [40] and the references therein).

Remark 4: There exist other model reduction methods approximating the original system very
well at a single frequency. The approximation error at a single frequency ̟ can be made zero via
moment-matching (MM) model reduction method [41] [42]. Singular perturbation approximation
(SPA) [43] [44] can be used for exact approximation in the case that ̟ = 0. However, the proposed
frequency-dependent balanced truncation theoretically provides an alternative way to eliminate the
single frequency approximation error, it also presents a new viewpoint on the general frequency-
limited model reduction problems.

Remark 5: It should be pointed out that the resulting parameter matrices of the reduced order
model will become complex even if the original system is described by real data for a pre-specified
frequency ̟ 6= 0, which may lead to difficulty for physical implementation. However, this not a
problem if one only uses the reduced-order model to simulate the input-output relationships.

5 Applications of Frequency-dependent Balanced Truncation

5.1 RLC ladder network

We consider an RLC ladder network [45] as depicted in Fig.1.

Figure 1: 5th RLC ladder network

The input is the voltage u and the output is the current y as shown in Fig. 1 (see [45] for more
details). It is assumed that all the capacitors and inductors have unit value, while R1 = 1/2, R2 =
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1/5. A minimal realization for this circuit system is:









A B

C D









=















−2 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1−5 2
0 0 0 0 −2 1















Now, assume the input signal of this ladder RLC network is a direct current voltage signal (i.e. ̟ =
ω(u(t)=0). If we choose the adjusting scalar ǫ as ǫ = 1, the corresponding ̟-dependent extended
system will be Hurwitz stable and can be transformed into ̟-dependent balanced realization as
follows :

[

A̟b B̟b

C̟b D̟b

]

=















1.8768 4.0037 −1.4978 1.5619 0.2400 −1.0368
−4.0037−7.4976 3.1139 −3.2476−0.4991 2.2633
1.4978 3.1139 −2.5871 3.3460 0.5085 −0.8755
1.5619 3.2476 −3.3460 2.7219 0.3684 −0.9130
−0.2400−0.4991 0.5085 −0.3684−1.5140 0.1403
−1.0368−2.2633 0.8755 −0.9130−0.1403 0.3973















and the corresponding balanced Gramian matrix is:

Σ = diag(0.0447, 0.0289, 2.3143, 4.3652 × 10−5, 6.1003× 10−8)

Adopting the proposed frequency-dependent balanced truncation method, we can easily obtain
the parameter matrices of the reduced-order model with any pre-assigned order r, r < n. For
example, we present the detailed 4th reduced-order model as follows:







A4 B4

C4 D4






=











1.8538 3.9561 −1.4492 1.5268 −1.0234
−3.9561−7.3985 3.0130 −3.1744 2.2354
1.4492 3.0130 −2.4843 3.2715 −0.8471
1.5268 3.1744 −3.2715 2.6679 −0.8924
−1.0234−2.2354 0.8471 −0.8924 0.9922











.

To show the advantage of the proposed method, the approximation error bound and the actual
approximation error obtained by frequency-dependent balanced truncation (FDBT) and standard
balanced truncation [5] (SBT) are all listed in the Table I. The sharpness of improving the ap-
proximation (H∞) performance by ̟-dependent balanced truncation can be obviously verified.

Table 1: Comparison of FDBT (letting ǫ = 1) and SBT
r FDBT SBT

error bound actual error‖E(̟)‖ error bound actual error‖E(̟)‖

4 1.2201× 10−7 1.2201× 10−7 0.0006 0.0006
3 8.7426× 10−5 8.7182× 10−5 0.1752 0.1740
2 5.5028× 10−4 3.7568× 10−4 0.3914 0.0421
1 0.0584 0.0582 0.6311 0.1975

As revealed by Theorem 2, the frequency-dependent Gramian matrices W̟c,W̟c and Σ̟ can
be scaled from 0 to the standard Gramian matrices Wc,Wo and Σ by adjusting the parameter ǫ,
to show this conclusion more clearly, the plots of frequency-dependent error bound versus scalar
ǫ are depicted in Fig. 2.

5.2 Butterworth Filters

In this example, we will approximate four types of Butterworth filters [47] by means of SBT,
FDBT, SPA and moment matching. These are:
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Figure 2: error bounds derived by FDBT and SBT

1. ΣBF2–Continuous-time bandstop Butterworth filter of order 100 with the cutoff frequency
being 90− 110rad/sec, which can be generated by MATLAB command:
[A,B,C,D]= butter(50,[90 110],’stop’,’s’).

2. ΣBF3–Discrete-time lowpass Butterworth filter of order 100 with the cutoff frequency being
0.1πrad/sec, which can be generated using the MATLAB command:
[A,B,C,D]=butter(100, 0.1).

3. ΣBF4–Discrete-time bandpass Butterworth filter of order 200 with the cutoff frequency being
0.2π − 0.4πrad/sec, which can be generated using the MATLAB command:
[A,B,C,D]=butter(100,[0.2 0.4]).

For those cases, the approximation performance over the cut-off frequency intervals are all very
important. Although the proposed single frequency FDBT is only designed for the single frequency
case, it can also be treated as an alternative way to solve the model reduction problems in this
example by letting ̟ = 0 for ΣBF1, ̟ = 100 for ΣBF2, ϑ = 0 for ΣBF3 and ϑ = 0.3π for ΣBF4.
We first compute the standard Hankel singular values σi and frequency-dependent Hankel singular
values σ̟i (σϑi) of the four Butterworth filters.
As Fig. 3 illustrates, the standard Hankel singular values σi stay constant at the beginning and

only start to decay until the order gets greater than r̂ (r̂ = 25 for ΣBF1,ΣBF2,ΣBF3 and r̂ = 50
for ΣBF4). In contrast, the decay rate of the frequency-dependent Hankel singular values σ̟i

(σϑi) is fast even for orders smaller than r̂, which implies that better approximation performance
at the assigned frequency point ̟ (ϑ) can be obtained by FDBT compared with SBT.
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Figure 3: Hankel singular values analysis for the four filters

Next we approximate the continuous-time lowpass Butterworth filter ΣBF1 with a model of
order 20 via SBT, SPA, FDBT, moment matching (MM) by expanding the transfer function
G(ω) around ω=0 and multi-point MM by expanding the transfer function G(ω) around ω1 =
−1, ω2 = 0, ω3 = 1 (The moment matching method is implemented via an Arnoldi procedure [41]
throughout the paper). The sigma plots of the original filter system and the reduced systems are
depicted in Fig. 4. Fig. 4 reveals the reduced systems generated by FDBT (ǫ = 0.1) and MM are
very close to each other and they are both much better than the reduced systems obtained via SBT
and SPA. The parameter ǫ has an impact on the quality of approximation. However, as discussed
in Remark 2, there is no systematic way to decide the most appropriate ǫ in this example. Thus,
one has to pick a satisfactory ǫ by trial and error. In the example, using multi-point MM does not
improve the overall approximation performance significantly compared with MM.
Next we approximate the continuous-time bandpass Butterworth filter ΣBF2 with a model of

order 20 via SBT, FDBT and moment matching (MM) by expanding the transfer function G(ω)
around ω=100 [41], multi-point MM by expanding G(ω) around ω1 = 90, ω2 = 100, ω3 = 110 and
multi-point MM by expanding G(ω) around ω1 = 80, ω2 = 100, ω3 = 120. The sigma plots of
the original filter system and the reduced systems are depicted in Fig. 5. Fig. 5 shows that the
reduced systems generated by FDBT (ǫ = 100) matches the original system very well while SBT
failed again as expected. In this example, the approximation performance via FDBT (ǫ = 100) is
even much better than the MM and multi-point MM.
To approximate the discrete-time lowpass filter ΣBF3 with a model of order 20, SBT, FDBT

and moment matching (expanding the transfer function G(eθ) around θ=0) are adopted here.
The sigma plots of the original system and the reduced systems are depicted in Fig. 6. As Fig.
6 shows, the FDBT and MM yield acceptable approximation performance while SBT fails again.
For the discrete-time bandpass filter ΣBF4 case, we assume the desired reduced order is 50 which
is comparably larger then the reduced order in the above three cases. We apply SBT, FDBT and
MM (expanding the transfer function G(eθ) around θ = 0.3π) to compute the reduced models.
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The sigma plots of the original system and the reduced systems are depicted in Fig. 7. As revealed
by Fig. 7, SBT in this case performs better than in the above cases due to the reduced-order r
being larger. FDBT (ǫ = 10) yields the best approximation performance while MM also matches
the original system well.
The results in this example indicate that FDBT is a promising alternative to solve the interval-

type finite frequency model reduction problems.
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Figure 6: σmax plot of original system and reduced systems of the discrete-time lowpass filter ΣBF3
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5.3 CD Player

This system describes the dynamics of a rotating arm compact disc mechanism. The model has 120
states with 2 inputs and 2 outputs. The interesting frequency range here is around̟ = 200rad/sec
[47]. Standard Hankel singular values σi and the corresponding frequency-dependent Hankel
singular values σ̟i are illustrated by Fig. 8.
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Figure 8: Normalized Hankel singular values σi and σ̟i of the CD player example.

We approximate the system with a model of order 12 via SBT, FDBT and moment matching
(expand the transfer function G(ω) around ω = 200). As seen from Fig. 9, all the reduced
systems match the original system well and FDBT and MM can further improve approximation
performance around the pre-specified frequency point ̟ = 200 with a similar level.
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Figure 9: σmax plot of the reduced and error systems of the CD player.
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5.4 ISS (International Space Station)

This is a model of component 1r (Russian service module) of the International Space Station. It
has 270 states, 3 inputs and 3 outputs. The interesting frequency range is [0.5, 100]rad/sec [46],
therefore we select ̟ = 50 for applying FDBT. The Hankel singular values of the original system
and the corresponding frequency-dependent extended systems are illustrated in Fig. 10.
We approximate the system with a model of order 15 via SBT, FDBT and moment matching

(expanding the transfer function G(ω) around ω = 50). As seen from Fig. 11, FDBT not only
performs better than SBT as expected, but also yields better approximation performance around
the selected frequency point ̟ = 50 compared with MM in this example.
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Figure 10: Normalized Hankel singular values σi and σ̟i of the ISS example.

6 Conclusions and Future Work

This paper is mainly dedicated to generalize the frequency-independent standard balanced trun-
cation method to a frequency-dependent one. Under the special case that the operating frequency
is a single value, the generalization was successful fulfilled by the proposed frequency-dependent
balanced truncation. The results also point to the possibility and directions to further develop a
more general frequency-dependent balanced truncation which can be used to solve the more gen-
eral frequency-limited model reduction problems, in which the pre-specified operating frequency
belongs to a known low/middle/high frequency range.
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