
Max Planck Institute Magdeburg
Preprints

Peter Benner Vasile Sima Matthias Voigt

FORTRAN 77 Subroutines for the Solution

of Skew-Hamiltonian/Hamiltonian

Eigenproblems – Part II: Implementation

and Numerical Results

MPIMD/13-11 July 29, 2013

FÜR DYNAMIK KOMPLEXER
TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Abstract

Skew-Hamiltonian/Hamiltonian matrix pencils λS −H appear in many applica-
tions, including linear quadratic optimal control problems, H∞-optimization, cer-
tain multi-body systems and many other areas in applied mathematics, physics,
and chemistry. In these applications it is necessary to compute certain eigenvalues
and/or corresponding deflating subspaces of these matrix pencils. Recently devel-
oped methods exploit and preserve the skew-Hamiltonian/Hamiltonian structure
and hence increase reliability, accuracy and performance of the computations.
In this paper we describe the implementation of the algorithms in the style of
subroutine included in the Subroutine Library in Control Theory (SLICOT) de-
scribed in Part I of this work [7] and address various details. Furthermore, we
perform numerical tests using real-world examples to demonstrate the superiority
of the new algorithms compared to standard methods.

Impressum:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for

Dynamics of Complex Technical Systems

Address:
Max Planck Institute for

Dynamics of Complex Technical Systems

Sandtorstr. 1

39106 Magdeburg

www.mpi-magdeburg.mpg.de/preprints

1 Introduction

In this paper we discuss algorithms for the solution of generalized eigenvalue problems
with skew-Hamiltonian/Hamiltonian structure. Usually, we are interested in a certain
subset of the spectrum, e.g., the eigenvalues with negative real part, or the purely
imaginary eigenvalues; or corresponding deflating subspaces. In Part I of this paper we
summarize structure-preserving algorithms for the computation of the desired spectral
information. All definitions, theoretical considerations and applications can be found
there. In this part we address certain implementation details and give a detailed
documentation of the subroutines. Finally, we perform a series of numerical tests to
illustrate the efficiency and robustness of the algorithms and their implementation.

2 Implementation Details

In this section we focus on the description of our implementation of the algorithms
presented in Part I of this paper. We describe inputs and outputs of each individual
main subroutine and certain implementation details.

2.1 General Remarks

Our subroutines are written by employing the rigorous implementation and documen-
tation standards of the Subroutine Library in Control Theory (SLICOT1), see [2, 1].
The parameters of each SLICOT routine can be classified as follows:

• mode parameters,

• input/output parameters,

• tolerances,

• workspace,

• error/warning indicator.

Mode parameters specify, e.g., what outputs we want to compute or what method we
want to use for computations. Input/output parameters are usually the dimension of
the involved matrices and the matrices themselves with their leading dimensions. In
the sequel, LDx usually denotes the leading dimension of the array “x”. The workspace
consists of memory for different data types. Here, integer workspace is denoted by
IWORK with size LIWORK, similarly for logical (boolean) workspace BWORK of size LBWORK,
double precision workspace DWORK of size LDWORK, and double complex workspace ZWORK
of size LZWORK. The error indicator INFO tells the user if an illegal value was used
as input (INFO takes negative values) or if there occurred an error during program
execution (INFO takes positive values). A warning indicator IWARN informs the user
about possibly unreliable or inaccurate results or additional information about the

1http://www.slicot.org

1

http://www.slicot.org

Hamiltonian skew-Hamiltonian

DE =











e11 d11 d12 d13 . . .
e21 e22 d22 d23 . . .
e31 e32 e33 d33 . . .
...

...
...

...
. . .











DE =











⋆ ⋆ d12 d13 . . .
e21 ⋆ ⋆ d23 . . .
e31 e32 ⋆ ⋆ . . .
...

...
...

...
. . .











Figure 1: Storage layout for the (skew-)symmetric submatrices D and E

results. We omit these parameters in the following interface description since they
occur in every routine in a similar way. We refer to the comments within every
individual subroutine for more details.

2.2 Storage Layout

Since Hamiltonian and skew-Hamiltonian matrices have certain block structures we
use a packed storage layout proposed in [4] to avoid saving redundant data. More

specifically, if a real 2n × 2n Hamiltonian matrix H =

[

A D
E −AT

]

is given, we save

the submatrix A in a conventional n × n array A, the symmetric submatrices D and
E are stored in an n × (n + 1) array DE such that the upper triangular part of D is
stored in DE(1:n,2:n+1) and the lower triangular part of E is stored in DE(1:n,1:n).
The skew-symmetric parts of a skew-Hamiltonian matrix are similarly stored with the
notable difference that the parts containing the diagonal and the first superdiagonal
of the array DE are not referenced. See also Figure 1 for a visualization. Similarly,
as every orthogonal or unitary symplectic 2n × 2n matrix has the block structure

U =

[

U1 U2

−U2 U1

]

, we only store the matrix U1 is an n× n array U1 and the matrix U2

is an n× n array U2.
A similar storage format is also applied to complex skew-Hamiltonian or Hamiltonian

matrices. In contrast to the real case, for skew-Hamiltonian matrices, also the parts
containing the diagonal and the first superdiagonal of the array DE are referenced.

2.3 Panel Blocking for Larger Problems

The problems considered here are usually based on applying sequences of Givens ro-
tations. When updating the involved matrices we successively have to transform the
corresponding rows and columns in each step. However, for larger matrices this kind
of transformations can become very inefficient due to FORTRAN’s memory and cache
management. FORTRAN uses a column-major memory layout, i.e., elements of a
column are internally stored one after the other. On the other hand, the distance in

2

perform
column

transformations
in each step

block size NB

perform transformations
on diagonal block

separately

remaining
smaller block

Figure 2: Panel blocking technique for an upper triangular matrix

the internal memory between two successive elements in a row is exactly the leading
dimension of that array. Therefore, rows can only be put into the cache memory by
caching also the remaining parts of the columns that contain elements of the rows
under consideration. For larger arrays, this easily leads to chunk sizes that do not
fit into cache memory anymore. Therefore, our idea is to store the information of a
certain number of Givens rotations and apply the row transformations only on panels
of block size NB which fit into the cache.
An example for such a panel update is depicted in Figure 2. It illustrates the blocking

technique for an update of a triangular matrix. Updates on columns are always directly
applied after the generation of the Givens rotation, whereas rows are split into certain
subpanels of maximum block size NB. Note that updates on the diagonal block are done
separately as then the remaining parts of the rows have equal size and can therefore
be easily decomposed into subblocks. We note that each part of the code has to be
blocked in a different way. This is due to different matrix structures or dependencies
of the updates and generation of the next Givens rotations. Therefore sometimes parts
of rows have to be updated in each step. We have blocked versions for some of our
codes and we will compare them with the unblocked versions in Section 4.

3

3 Interface Description

This section gives a brief overview over the main individual routines and their inter-
faces. For brevity we only describe the most important parameters and omit, e.g.,
leading dimensions and error or warning indicators. If we say that an array contains
a matrix we mean that this matrix is stored in the leading part of this array. This
is important because sometimes arrays can be larger than the matrices themselves.
Table 1 gives an overview about the algorithms presented in [7] and the corresponding
FORTRAN routines described in this paper. The structure of the calling graph for

Table 1: Overview of algorithms and FORTRAN routines

Algorithm # in [7] FORTRAN routine

1 ZGHFDF

2 DGHFST

3 ZGHFXC

4 ZGHUDF

5 DGHUST

6 ZGHUXC

7 DGHFDF

8 DGHURV

9 DGHFYR

10 DGHFXC

11 DGHUDF

12 DGHUTR

13 DGHUYR

14 DGHUXC

the unfactored case is similar and depicted in Figure 4.

3.1 The Complex Case

In this subsection we describe the interfaces of the subroutines needed for computing
the eigenvalues and stable deflating subspaces of a complex skew-Hamiltonian/Ha-
miltonian matrix pencil. We begin with the factored case. In Figure 3, the corre-
sponding calling graph with all needed subroutines is depicted. For brevity we only
show the needed driver routines and elementary subroutines that deal with skew-
Hamiltonian/Hamiltonian pencils of elementary size, i.e., up to size 4 × 4. Further
called SLICOT subroutines are omitted.

4

ZGHFDF

ZGHFXCDGHFST

ZGHFEYZGHFEX

driver
routines

elementary
subroutines

Figure 3: Calling graph for the the computation of the eigenvalues and stable deflat-
ing subspace of a complex skew-Hamiltonian/Hamiltonian matrix pencil in
factored form

ZGHUDF

ZGHUXCDGHUST

ZGHUEYZGHUEX

driver
routines

elementary
subroutines

Figure 4: Calling graph for the the computation of the eigenvalues and stable deflat-
ing subspace of a complex skew-Hamiltonian/Hamiltonian matrix pencil in
unfactored form

3.1.1 Subroutine ZGHFDF (implements Algorithm 1)

Specification:

SUBROUTINE ZGHFDF(COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG,

$ LDFG, NEIG, D, LDD, C, LDC, Q, LDQ, U, LDU,

$ ALPHAR, ALPHAI, BETA, IWORK, LIWORK, DWORK,

$ LDWORK, ZWORK, LZWORK, BWORK, INFO)

Purpose:

5

To compute the eigenvalues of a complex N-by-N skew-Hamiltonian/Hamiltonian
pencil λS −H, with

S = JZHJ TZ and H =

[

B F
G −BH

]

, Z =

[

Z11 Z12

Z21 Z22

]

. (1)

The structured Schur form of the embedded real skew-Hamiltonian/skew-Hamilto-
nian pencil, λBS − BT , with BS = JBH

Z
J TBZ ,

BZ =









Re(Z11) − Im(Z11) Re(Z12) − Im(Z12)
Im(Z11) Re(Z11) Im(Z12) Re(Z12)
Re(Z21) − Im(Z21) Re(Z22) − Im(Z22)
Im(Z21) Re(Z21) Im(Z22) Re(Z22)









,

BT =









− Im(B) −Re(B) − Im(F) −Re(F)
Re(B) − Im(B) Re(F) − Im(F)
− Im(G) −Re(G) − Im(BT) Re(BT)
Re(G) − Im(G) −Re(BT) − Im(BT)









, T = iH,

is determined and used to compute the eigenvalues. Optionally, an orthonormal
basis of the right deflating subspace, Def−(S,H), of the pencil λS−H in (1), corre-
sponding to the eigenvalues with strictly negative real part, is computed. Namely,
after transforming λBS − BH, in the factored form, by unitary matrices, we have
BS,out = JBH

Z,outJ
TBZ,out,

BZ,out =

[

BA BD

0 BC

]

and BH,out =

[

BB BF

0 −BH
B

]

, (2)

and the eigenvalues with strictly negative real part of the complex pencil λBS,out−
BH,out are moved to the top. Optionally, an orthonormal basis of the companion
subspace, range(PU) [5], which corresponds to the eigenvalues with negative real
part, is computed. The embedding doubles the multiplicities of the eigenvalues of
the pencil λS −H.

Arguments:
Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether to compute the right deflating sub-
space and the companion subspace corresponding to the eigenvalues of λS−H
with strictly negative real part, respectively.
= ’N’: do not compute the corresponding subspace;
= ’C’: compute the corresponding subspace.

• ORTH (CHARACTER*1): Specifies the technique for computing the orthonormal
bases of the deflating subspace and companion subspace (if needed).
= ’P’: QR factorization with column pivoting;
= ’S’: singular value decomposition.

6

Input/Output Parameters:

• N (input INTEGER): Order of the pencil λS −H. N ≥ 0, even.

• Z (input/output COMPLEX*16 array, dimension (LDZ, N)): On entry,
this array must contain the factor Z in the factorization S = JZHJ TZ
of the skew-Hamiltonian matrix S. Optionally, on exit, this array contains
the matrix BA in (2).

• B (input/output COMPLEX*16 array, dimension (LDB, N)): On entry,
this array must contain the matrix B. Optionally, on exit, this array con-
tains the matrix BB in (2).

• FG (input/output COMPLEX*16 array, dimension (LDFG, N)):On entry,
this array must contain the upper/lower triangular parts of the Hermitian ma-
trices F and G, respectively. Optionally, on exit, this array contains the upper
triangular matrix BF in (2).

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H
with strictly negative real part.

• D (output COMPLEX*16 array, dimension (LDD, N)),

C (output COMPLEX*16 array, dimension (LDC, N)):Optionally, these ar-
rays contain the matrices BD and BC in (2), respectively.

• Q (output COMPLEX*16 array, dimension (LDQ, 2*N)),

U (output COMPLEX*16 array, dimension (LDU, 2*N)):Optionally, these
arrays contain orthonormal bases of the right deflating subspace and the com-
panion subspace corresponding to the eigenvalues of the pencil λS − H with
strictly negative real part.

• ALPHAR (output DOUBLE PRECISION array, dimension (N)),

ALPHAI (output DOUBLE PRECISION array, dimension (N)),

BETA (output DOUBLE PRECISION array, dimension (N)): The scalars
that define the eigenvalues of the pencil λS − H. Together, the quantities
α = (ALPHAR(j),ALPHAI(j)) and β = BETA(j) represent the j-th eigenvalue
of the pencil λS −H, in the form λ = α/β. Since λ may overflow, the ratios
should not, in general, be computed.

3.1.2 Subroutine DGHFST (implements Algorithm 2)

Specification:

SUBROUTINE DGHFST(JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG,

$ Q, LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI,

$ BETA, IWORK, LIWORK, DWORK, LDWORK, INFO)

7

Purpose:
To compute the eigenvalues of a real N-by-N skew-Hamiltonian/skew-Hamiltonian
pencil λS − T with

S = JZTJ TZ and T =

[

B F
G BT

]

.

Optionally, the pencil λS−T will be transformed to the structured Schur form: an
orthogonal transformation matrix Q and an orthogonal symplectic transformation

matrix U =

[

U1 U2

−U2 U1

]

are computed, such that

UTZQ =

[

Z11 Z12

0 Z22

]

= Zout, and JQTJ TT Q =

[

Bout Fout

0 BT
out

]

, (3)

where Z11 and ZT
22

are upper triangular and Bout is upper quasi-triangular.
Arguments:

Mode Parameters:

• JOB (CHARACTER*1): Specifies whether only the eigenvalues should be com-
puted, or whether the matrices Z and T should be also transformed into the
forms in (3).
= ’E’: compute the eigenvalues only;
= ’T’: put Z and T into the forms in (3), and return the eigenvalues.

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether or not the orthogonal and orthog-
onal symplectic transformations should be accumulated in the arrays Q, U1,
and U2, respectively.
= ’N’: the corresponding transformation matrix is not computed;
= ’I’: the corresponding transformation matrix is computed;
= ’U’: the corresponding transformation matrix is computed but multiplied
by a given input matrix as described below.

Input/Output Parameters:

• N (input INTEGER): Order of the pencil λS − T . N ≥ 0, even.

• Z (input/output DOUBLE PRECISION array, dimension (LDZ, N)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)):

On entry, these arrays must contain the matrices Z and B, respectively. Op-
tionally, on exit, these arrays contain the matrices Zout and Bout, respectively.

• FG (input/output DOUBLE PRECISION array, dimension (LDFG, N/2+1)):

On entry, this array must contain the strictly lower triangular part of the
skew-symmetric matrix G, and the strictly upper triangular part of the skew-
symmetric matrix F . Optionally, on exit, this array contains the strictly upper
triangular part of the skew-symmetric matrix Fout.

8

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Op-
tionally, on entry, this array must contain a given matrix Q0, and on exit, this
array contains the product of the input matrix Q0 and the transformation
matrix Q used to transform the matrices Z and T . Optionally, on exit, this
array contains only the orthogonal transformation matrix Q.

• U1 (input/output COMPLEX*16 array, dimension (LDU1, N/2)),

U2 (input/output COMPLEX*16 array, dimension (LDU2, N/2)): Option-
ally, on entry, these arrays must contain the upper left and right blocks of a
given matrix U0, and on exit, these arrays contain the updated upper left and
right blocks U1 and U2 of the product of the input matrix U0 and the trans-
formation matrix U used to transform the matrices Z and T . Optionally, on
exit, these arrays contain only the upper left and right blocks U1 and U2 of
the orthogonal symplectic transformation matrix U , respectively.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The sca-
lars that define the eigenvalues of the pencil λS −T . Together, the quantities
α = (ALPHAR(j),ALPHAI(j)) and β = BETA(j) represent the j-th eigenvalue
of the pencil λS − T , in the form λ = α/β. Since λ may overflow, the ratios
should not, in general, be computed. Due to the skew-Hamiltonian/skew-
Hamiltonian structure of the pencil, every eigenvalue occurs twice and thus it
has only to be saved once in ALPHAR, ALPHAI and BETA.

3.1.3 Subroutine ZGHFXC (implements Algorithm 3)

Specification:

SUBROUTINE ZGHFXC(COMPQ, COMPU, N, A, LDA, C, LDC, D, LDD, B,

$ LDB, F, LDF, Q, LDQ, U1, LDU1, U2, LDU2, NEIG,

$ TOL, INFO)

Purpose:
To move the eigenvalues with strictly negative real parts of an N-by-N complex
skew-Hamiltonian/Hamiltonian pencil λS −H in structured Schur form, with

S = JZHJ TZ

to the leading principal subpencil, while keeping the triangular form. On entry, we
have

Z =

[

A D
0 C

]

, H =

[

B F
0 −BH

]

where A and B are upper triangular and C is lower triangular. Z and H are
transformed by a unitary symplectic matrix U and a unitary matrix Q such that

Zout = UHZQ =

[

Aout Dout

0 Cout

]

, and Hout = JQHJ THQ =

[

Bout Fout

0 −BH
out

]

,

(4)

9

where Aout, Bout and Cout remain in triangular form. Optionally, the unitary

matrix Q and the unitary symplectic matrix U =

[

U1 U2

−U2 U1

]

that fulfill (4) are

computed.
Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether or not the unitary and unitary sym-
plectic transformations should be accumulated in the arrays Q, U1, and U2,
respectively.
= ’N’: the corresponding transformation matrix is not computed;
= ’I’: the corresponding transformation matrix is computed;
= ’U’: the corresponding transformation matrix is computed but multiplied
by a given input matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output COMPLEX*16 array, dimension (LDA, N/2)),

C (input/output COMPLEX*16 array, dimension (LDC, N/2)),

D (input/output COMPLEX*16 array, dimension (LDD, N/2)),

B (input/output COMPLEX*16 array, dimension (LDB, N/2)): On entry,
these arrays must contain the matrices A, C, D, and B, respectively. On exit,
these arrays contain the transformed matrices Aout, Cout, Dout, and Bout,
respectively.

• F (input/output COMPLEX*16 array, dimension (LDF, N/2)): On entry,
this array must contain the upper triangular part of the matrix F . On exit,
this array contains the transformed matrix Fout.

• Q (input/output COMPLEX*16 array, dimension (LDQ, N)): Optionally,
on entry, this array must contain a given matrix Q0, and on exit, this array
contains the product of the input matrix Q0 and the transformation matrix
Q used to transform the matrices Z and H. Optionally, on exit, this array
contains only the unitary transformation matrix Q.

• U1 (input/output COMPLEX*16 array, dimension (LDU1, N/2)),

U2 (input/output COMPLEX*16 array, dimension (LDU2, N/2)): Option-
ally, on entry, these arrays must contain the upper left and right blocks of a
given matrix U0, and on exit, these arrays contain the updated upper left and
right blocks U1 and U2 of the product of the input matrix U0 and the trans-
formation matrix U used to transform the matrices Z and H. Optionally, on
exit, these arrays contain only the upper left and right blocks U1 and U2 of
the unitary symplectic transformation matrix U , respectively.

10

• NEIG (output INTEGER): The number of eigenvalues in λS −H with strictly
negative real part.

Tolerances:

• TOL (DOUBLE PRECISION): The tolerance used to decide the sign of the eigen-
values. If the user sets TOL > 0, then the given value of TOL is used. If the
user sets TOL ≤ 0, then an implicitly computed, default tolerance, defined by
min{N, 10}ε, is used instead, where ε is the machine precision. A larger value
might be needed for pencils with multiple eigenvalues.

3.1.4 Subroutine ZGHUDF (implements Algorithm 4)

Specification:

SUBROUTINE ZGHUDF(COMPQ, ORTH, N, A, LDA, DE, LDDE, B, LDB, FG,

$ LDFG, NEIG, Q, LDQ, ALPHAR, ALPHAI, BETA,

$ IWORK, DWORK, LDWORK, ZWORK, LZWORK, BWORK,

$ INFO)

Purpose:
To compute the eigenvalues of a complex N-by-N skew-Hamiltonian/Hamiltonian
pencil λS −H, with

S =

[

A D
E AH

]

and H =

[

B F
G −BH

]

.

The structured Schur form of the embedded real skew-Hamiltonian/skew-Hamilto-
nian pencil λBS − BT , defined as

BS =









Re(A) − Im(A) Re(D) − Im(D)
Im(A) Re(A) Im(D) Re(D)
Re(E) − Im(E) Re(AT) Im(AT)
Im(E) Re(E) − Im(AT) Re(AT)









,

BT =









− Im(B) −Re(B) − Im(F) −Re(F)
Re(B) − Im(B) Re(F) − Im(F)
− Im(G) −Re(G) − Im(BT) Re(BT)
Re(G) − Im(G) −Re(BT) − Im(BT)









, T = iH,

is determined and used to compute the eigenvalues. Optionally, an orthonormal
basis of the right deflating subspace of the pencil λS − H, corresponding to the
eigenvalues with strictly negative real part, is computed. Namely, after transform-
ing λBS − BH by unitary matrices, we have

BS,out =

[

BA BD

0 BH
A

]

and BH,out =

[

BB BF

0 −BH
B

]

, (5)

11

and the eigenvalues with strictly negative real part of the complex pencil λBS,out−
BH,out are moved to the top. The embedding doubles the multiplicities of the
eigenvalues of the pencil λS −H.

Arguments:
Mode Parameters:

• COMPQ (CHARACTER*1): Specifies whether to compute the deflating subspace
corresponding to the eigenvalues of λS −H with strictly negative real part.
= ’N’: do not compute the corresponding subspace;
= ’C’: compute the corresponding subspace.

• ORTH (CHARACTER*1): Specifies the technique for computing an orthonormal
basis of the deflating subspace (if needed).
= ’P’: QR factorization with column pivoting;
= ’S’: singular value decomposition.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output COMPLEX*16 array, dimension (LDA, N)),

B (input/output COMPLEX*16 array, dimension (LDB, N)): On entry,
these arrays must contain the matrices A and B. Optionally, on exit, these
arrays contain the upper triangular matrices BA and BB in (5), respectively.

• DE (input/output COMPLEX*16 array, dimension (LDDE, N)),

FG (input/output COMPLEX*16 array, dimension (LDFG, N)):On entry,
these arrays must contain the (strictly) upper/lower triangular parts of the
skew-Hermitian matrices D and E, and the Hermitian matrices F and G,
respectively. Optionally, on exit, these arrays contain the upper triangular
parts of the matrices BD and BF in (5), respectively.

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H
with strictly negative real part.

• Q (output COMPLEX*16 array, dimension (LDQ, 2*N)): Optionally, on
exit, this array contains an orthonormal basis of the right deflating subspace
corresponding to the eigenvalues of the pencil λS − H with strictly negative
real part.

• ALPHAR (output DOUBLE PRECISION array, dimension (N)),

ALPHAI (output DOUBLE PRECISION array, dimension (N)),

BETA (output DOUBLE PRECISION array, dimension (N)): The scalars
that define the eigenvalues of the pencil λS − H. Together, the quantities
α = (ALPHAR(j),ALPHAI(j)) and β = BETA(j) represent the j-th eigenvalue
of the pencil λS −H, in the form λ = α/β. Since λ may overflow, the ratios
should not, in general, be computed.

12

3.1.5 Subroutine DGHUST (implements Algorithm 5)

Specification:

SUBROUTINE DGHUST(JOB, COMPQ, N, A, LDA, DE, LDDE, B, LDB,

$ FG, LDFG, Q, LDQ, ALPHAR, ALPHAI, BETA, DWORK,

$ LDWORK, INFO)

Purpose:
To compute the eigenvalues of a real N-by-N skew-Hamiltonian/skew-Hamiltonian
pencil λS − T with

S =

[

A D
E AT

]

and T =

[

B F
G BT

]

.

Optionally, the pencil λS − T will be transformed to the structured Schur form:
an orthogonal transformation matrix Q is computed such that

JQTJ TSQ =

[

Aout Dout

0 AT
out

]

and JQTJ TT Q =

[

Bout Fout

0 BT
out

]

, (6)

Aout is upper triangular, and Bout is upper quasi-triangular.
Arguments:

Mode Parameters:

• JOB (CHARACTER*1): Specifies whether only the eigenvalues should be com-
puted, or whether the matrices S and T should be also transformed into the
forms in (6).
= ’E’: compute the eigenvalues only;
= ’T’: put S and T into the forms in (6), and return the eigenvalues.

• COMPQ (CHARACTER*1): Specifies whether or not the orthogonal transforma-
tions should be accumulated in the array Q.
= ’N’: the transformation matrix is not computed;
= ’I’: the transformation matrix is computed;
= ’U’: the transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS − T . N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)):

On entry, these arrays must contain the matrices A and B. Optionally, on
exit, these arrays contain the matrices Aout and Bout, respectively.

13

• DE (input/output DOUBLE PRECISION array, dimension (LDDE, N/2+1)),

FG (input/output DOUBLE PRECISION array, dimension (LDFG, N/2+1)):

On entry, these arrays must contain the strictly upper/lower triangular parts
of the skew-symmetric matrices D and E, and F and G, respectively. Op-
tionally, on exit, these arrays contain the strictly upper triangular part of the
matrices Dout and Fout.

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Op-
tionally, on entry, this array must contain a given matrix Q0, and on exit, this
array contains the product of the input matrix Q0 and the transformation
matrix Q used to transform the matrices S and H. Optionally, on exit, this
array contains only the orthogonal transformation matrix Q.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The sca-
lars that define the eigenvalues of the pencil λS −T . Together, the quantities
α = (ALPHAR(j),ALPHAI(j)) and β = BETA(j) represent the j-th eigenvalue
of the pencil λS − T , in the form λ = α/β. Since λ may overflow, the ratios
should not, in general, be computed. Due to the skew-Hamiltonian/skew-
Hamiltonian structure of the pencil, every eigenvalue occurs twice and thus it
has only to be saved once in ALPHAR, ALPHAI and BETA.

3.1.6 Subroutine ZGHUXC (implements Algorithm 6)

Specification:

SUBROUTINE ZGHUXC(COMPQ, N, A, LDA, D, LDD, B, LDB, F, LDF, Q,

$ LDQ, NEIG, TOL, INFO)

Purpose:
To move the eigenvalues with strictly negative real parts of an N-by-N complex skew-
Hamiltonian/Hamiltonian pencil λS − H in structured Schur form to the leading
principal subpencil, while keeping the triangular form. On entry we have

S =

[

A D
0 AH

]

and H =

[

B F
0 −BH

]

.

with A and B upper triangular. S and H are transformed by a unitary matrix Q
such that

Sout = JQHJ TSQ =

[

Aout Dout

0 AH
out

]

and Hout = JQHJ THQ =

[

Bout Fout

0 −BH
out

]

,

(7)
where Aout and Bout are upper triangular. Optionally, the matrix Q that fulfills
(7) is computed.

Arguments:
Mode Parameters:

14

• COMPQ (CHARACTER*1): Specifies whether or not the unitary transformations
should be accumulated in the array Q.
= ’N’: the transformation matrix is not computed;
= ’I’: the transformation matrix is computed;
= ’U’: the transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output COMPLEX*16 array, dimension (LDA, N/2)),

B (input/output COMPLEX*16 array, dimension (LDB, N/2)): On entry,
these arrays must contain the matrices A and B. On exit, these arrays contain
the transformed matrices Aout and Bout, respectively.

• D (input/output COMPLEX*16 array, dimension (LDD, N/2)),

F (input/output COMPLEX*16 array, dimension (LDF, N/2)): On entry,
these arrays must contain the upper triangular parts of the matrices D and F .
On exit, these arrays contain the upper triangular parts of the transformed
matrices Dout and Fout, respectively.

• Q (input/output COMPLEX*16 array, dimension (LDQ, N)): Optionally,
on entry, this array must contain a given matrix Q0, and on exit, this array
contains the product of the input matrix Q0 and the transformation matrix
Q used to transform the matrices S and H. Optionally, on exit, this array
contains only the unitary transformation matrix Q.

• NEIG (output INTEGER): The number of eigenvalues in λS −H with strictly
negative real part.

Tolerances:

• TOL (DOUBLE PRECISION): The tolerance used to decide the sign of the eigen-
values. If the user sets TOL > 0, then the given value of TOL is used. If the
user sets TOL ≤ 0, then an implicitly computed, default tolerance, defined by
min{N, 10}ε, is used instead, where ε is the machine precision. A larger value
might be needed for pencils with multiple eigenvalues.

3.2 The Real Case

In this subsection we describe the interfaces of the subroutines needed for computing
the eigenvalues and stable deflating subspaces of a real skew-Hamiltonian/Hamiltonian
matrix pencil. The calling graphs for the factored and the unfactored case are depicted
in Figures 5 and 6, respectively.

15

DGHFDF

DGHFYRDGHURV DGHFXC

DGHFEXDGHFET DGHFEY

driver
routines

elementary
subroutines

Figure 5: Calling graph for the the computation of the eigenvalues and stable deflating
subspace of a real skew-Hamiltonian/Hamiltonian matrix pencil in factored
form

DGHUDF

DGHUYRDGHUTR DGHUXC

DGHUEXDGHUET DGHUEY

driver
routines

elementary
subroutines

Figure 6: Calling graph for the the computation of the eigenvalues and stable deflating
subspaces of a real skew-Hamiltonian/Hamiltonian matrix pencil in unfac-
tored form

3.2.1 Subroutine DGHFDF (implements Algorithm 7)

Specification:

SUBROUTINE DGHFDF(COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG,

$ LDFG, NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI,

$ BETA, IWORK, LIWORK, DWORK, LDWORK, BWORK,

$ IWARN, INFO)

Purpose:

16

To compute the relevant eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltoni-
an pencil λS −H, with

S = T Z = JZTJ TZ and H =

[

B F
G −BT

]

.

Optionally, an orthonormal basis of the right deflating subspace of λS − H corre-
sponding to the eigenvalues with strictly negative real part is computed. Optionally,
an orthonormal basis of the companion subspace, range(PU) [5], which corresponds
to the eigenvalues with strictly negative real part, is computed.

Arguments:
Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether to compute the right deflating sub-
space and companion subspace corresponding to the eigenvalues of λS − H
with strictly negative real part, respectively.
= ’N’: do not compute the corresponding subspace;
= ’C’: compute the corresponding subspace.

• ORTH (CHARACTER*1): Specifies the technique for computing the orthogonal
basis of the deflating subspace, and/or of the companion subspace (if needed).
= ’P’: QR factorization with column pivoting;
= ’S’: singular value decomposition.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• Z (input/output DOUBLE PRECISION array, dimension (LDZ, N)): On
entry, this array must contain the non-trivial factor Z in the factorization
S = JZTJ TZ of the skew-Hamiltonian matrix S. On exit, this array is
overwritten by some intermediate results, depending on the values of COMPQ
and COMPU.

• B (input DOUBLE PRECISION array, dimension (LDB, N/2)): On entry,
this array must contain the matrix B.

• FG (input DOUBLE PRECISION array, dimension (LDFG, N/2+1)): On
entry, this array must contain the upper/lower triangular parts of the Hermi-
tian matrices F and G, respectively.

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H
with strictly negative real part.

• Q (output DOUBLE PRECISION array, dimension (LDQ, 2*N)),

U (output DOUBLE PRECISION array, dimension (LDU, 2*N)):Optional-
ly, on exit, these arrays contain orthogonal bases of the right deflating subspace
and the companion subspace corresponding to the eigenvalues of λS −H with
strictly negative real part.

17

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The sca-
lars that define the eigenvalues of the pencil λS −H. If INFO = 0, the quan-
tities α = (ALPHAR(j),ALPHAI(j)), and β = BETA(j) represent together the
j-th eigenvalue of the pencil λS − H, in the form λ = α/β. Since λ may
overflow, the ratios should not, in general, be computed. Due to the skew-
Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is
saved in ALPHAR, ALPHAI and BETA. Specifically, the eigenvalues with positive
real parts or with non-negative imaginary parts, when real parts are zero, are
returned. The remaining eigenvalues have opposite signs. If IWARN = 1, one
or more BETA(j) is not representable. Therefore, the j-th eigenvalue is rep-
resented by the quantities α = (ALPHAR(j),ALPHAI(j)), β = BETA(j), and
γ = IWORK(j) in the form λ = (α/β) ·bγ , where b is the machine base (often
2.0), returned in DWORK(2).

3.2.2 Subroutine DGHURV (implements Algorithm 8)

Specification:

SUBROUTINE DGHURV(JOB, COMPQ1, COMPQ2, COMPU1, COMPU2, N, Z, LDZ,

$ H, LDH, Q1, LDQ1, Q2, LDQ2, U11, LDU11, U12,

$ LDU12, U21, LDU21, U22, LDU22, T, LDT, ALPHAR,

$ ALPHAI, BETA, IWORK, LIWORK, DWORK, LDWORK,

$ INFO)

Purpose:
To compute the eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltonian pencil
λS−H with S = T Z = JZTJ TZ via generalized symplectic URV decomposition.
That is, orthogonal matrices Q1 and Q2 and orthogonal symplectic matrices U1 and
U2 are computed such that

QT
1
T U1 = QT

1
JZTJ TU1 =

[

T11 T12

0 T22

]

= Tout,

UT
2
ZQ2 =

[

Z11 Z12

0 Z22

]

= Zout,

QT
1
HQ2 =

[

H11 H12

0 H22

]

= Hout,

(8)

where T11, T
T
22
, Z11, Z

T
22
,H11 are upper triangular andHT

22
is upper quasi-triangular.

Optionally, the orthogonal transformation matrices Q1 and Q2, and the orthogo-

nal symplectic transformation matrices U1 =

[

U11 U12

−U12 U11

]

and U2 =

[

U21 U22

−U22 U21

]

will be computed.
Arguments:

Mode Parameters:

18

• JOB (CHARACTER*1): Specifies whether only the eigenvalues should be com-
puted, or whether the matrices Z, T , and H should be also transformed into
the forms in (8).
= ’E’: compute the eigenvalues only;
= ’T’: put Z, T , and J into the forms in (8), and return the eigenvalues.

• COMPQ1 (CHARACTER*1),

COMPQ2 (CHARACTER*1),

COMPU1 (CHARACTER*1),

COMPU2 (CHARACTER*1): Specify whether or not the orthogonal and orthog-
onal symplectic transformations should be accumulated in the arrays Q1, Q2,
U11, U12, U21, and U22, respectively.
= ’N’: the corresponding transformation matrix is not computed;
= ’I’: the corresponding transformation matrix is computed;
= ’U’: the corresponding transformation matrix is computed but multiplied
by a given input matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• Z (input/output DOUBLE PRECISION array, dimension (LDZ, N)),

H (input/output DOUBLE PRECISION array, dimension (LDH, N)): On
entry, these arrays must contain the matrices Z and H. Optionally, on exit,
this arrays contain the matrices Zout and Hout.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)),

Q2 (input/output DOUBLE PRECISION array, dimension (LDQ2, N)):

Optionally, on entry, these arrays must contain given matrices Q01 and Q02,
and on exit, these arrays contain the product of the input matrices Q01 and
Q02 and the transformation matrices Q1 and Q2, respectively, used to trans-
form the matrices Z, T , and H. Optionally, on exit, these arrays contain only
the orthogonal transformation matrices Q1 and Q2.

• U11 (input/output DOUBLE PRECISION array, dimension (LDU11, N/2)),

U12 (input/output DOUBLE PRECISION array, dimension (LDU12, N/2)),

U21 (input/output DOUBLE PRECISION array, dimension (LDU21, N/2)),

U22 (input/output DOUBLE PRECISION array, dimension (LDU22, N/2)):

Optionally, on entry, these arrays must contain the upper left and right blocks
of given matrices U01 and U02, and on exit, these arrays contain the updated
upper left and right blocks U11, U12, U21, and U22 of the product of the input
matrices U01 and U02 and the transformation matrices U1 and U2, respectively,
used to transform the matrices Z and H. Optionally, on exit, these arrays
contain only the upper left and right blocks U11, U12, U21, and U22 of the
orthogonal symplectic transformation matrices U1 and U2, respectively.

• T (output DOUBLE PRECISION array, dimension (LDT, N)): Optionally,
on exit, this array contains the matrix Tout.

19

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The sca-
lars that define the eigenvalues of the pencil λS −H. If INFO = 0, the quan-
tities α = (ALPHAR(j),ALPHAI(j)), and β = BETA(j) represent together the
j-th eigenvalue of the pencil λS − H, in the form λ = α/β. Since λ may
overflow, the ratios should not, in general, be computed. Due to the skew-
Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is
saved in ALPHAR, ALPHAI and BETA. Specifically, the eigenvalues with positive
real parts or with non-negative imaginary parts, when real parts are zero, are
returned. The remaining eigenvalues have opposite signs. If INFO = 3, one
or more BETA(j) is not representable. Therefore, the j-th eigenvalue is rep-
resented by the quantities α = (ALPHAR(j),ALPHAI(j)), β = BETA(j), and
γ = IWORK(j) in the form λ = (α/β) ·bγ , where b is the machine base (often
2.0). This is not an error.

3.2.3 Subroutine DGHFYR (implements Algorithm 9)

Specification:

SUBROUTINE DGHFYR(COMPQ1, COMPQ2, COMPQ3, N, A, LDA, B, LDB, D,

$ LDD, Q1, LDQ1, Q2, LDQ2, Q3, LDQ3, IWORK,

$ LIWORK, DWORK, LDWORK, BWORK, INFO)

Purpose:
To compute the transformed matrices A, B and D, using orthogonal matrices Q1,
Q2 and Q3 for a real N-by-N regular pencil

λAB −D = λ

[

A11 0
0 A22

] [

B11 0
0 B22

]

−

[

0 D12

D21 0

]

, (9)

where A11, A22, B11, B22, and D12 are upper triangular, D21 is upper quasi-
triangular and the generalized matrix product A−1

11
D12B

−1

22
A−1

22
D21B

−1

11
is in peri-

odic Schur form, such that QT
3
AQ2, Q

T
2
BQ1 are upper triangular, QT

3
DQ1 is upper

quasi-triangular, and the pencil λQT
3
ABQ1−QT

3
DQ1 is in generalized Schur form.

Arguments:
Mode Parameters:

• COMPQ1 (CHARACTER*1),

COMPQ2 (CHARACTER*1),

COMPQ3 (CHARACTER*1): Specify whether or not the orthogonal transforma-
tions should be accumulated in the arrays Q1, Q2, Q3.
= ’N’: the corresponding transformation matrix is not computed;
= ’I’: the corresponding transformation matrix is computed;
= ’U’: the corresponding transformation matrix is computed but multiplied
by a given input matrix as described below.

20

Input/Output Parameters:

• N (input INTEGER): Order of the pencil λAB −D. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N)),

D (input/output DOUBLE PRECISION array, dimension (LDD, N)): On
entry, these arrays must contain the matrices A, B, and D in (9). The zero
(off-)diagonal blocks need not be set to zero. On exit, these arrays contain
the transformed upper (quasi-)triangular matrices.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)),

Q2 (input/output DOUBLE PRECISION array, dimension (LDQ2, N)),

Q3 (input/output DOUBLE PRECISION array, dimension (LDQ3, N)):

Optionally, on entry, these arrays must contain given matrices Q01, Q02, and
Q03 and on exit, these arrays contain the product of the input matrices Q01,
Q02, and Q03 and the transformation matrices Q1, Q2, and Q3, respectively,
used to transform the matrices A, B, and D. Optionally, on exit, these ar-
rays contain only the orthogonal transformation matrices Q1, Q2, and Q3,
respectively.

3.2.4 Subroutine DGHFXC (implements Algorithm 10)

Specification:

SUBROUTINE DGHFXC(COMPQ, COMPU, N, A, LDA, C, LDC, D, LDD, B,

$ LDB, F, LDF, Q, LDQ, U1, LDU1, U2, LDU2, NEIG,

$ IWORK, LIWORK, DWORK, LDWORK, INFO)

Purpose:
To move the eigenvalues with strictly negative real parts of an N-by-N real skew-
Hamiltonian/Hamiltonian pencil λS − H in structured Schur form, with S =
JZTJ TZ,

Z =

[

A D
0 C

]

, and H =

[

B F
0 −BT

]

to the leading principal subpencil, while keeping the triangular form. Above, A
is upper triangular, B is upper quasi-triangular, and C is lower triangular. The
matrices Z and H are transformed by an orthogonal symplectic matrix U and an
orthogonal matrix Q such that

Zout = UTZQ =

[

Aout Dout

0 Cout

]

and Hout = JQTJ THQ =

[

Bout Fout

0 −BT
out

]

,

(10)
where Aout, Bout, and Cout remain in triangular form. Optionally, the orthogonal

matrix Q and the orthogonal symplectic matrix U =

[

U1 U2

−U2 U1

]

that fulfill (10)

are computed.

21

Arguments:
Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether or not the orthogonal and orthog-
onal symplectic transformations should be accumulated in the arrays Q, U1,
and U2.
= ’N’: the corresponding transformation matrix is not computed;
= ’I’: the corresponding transformation matrix is computed;
= ’U’: the corresponding transformation matrix is computed but multiplied
by a given input matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

C (input/output DOUBLE PRECISION array, dimension (LDC, N/2)),

D (input/output DOUBLE PRECISION array, dimension (LDD, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)):

On entry, these arrays must contain the matrices A, C, D, and B, respec-
tively. On exit, these arrays contain the transformed matrices Aout, Cout,
Dout, and Bout, respectivly.

• F (input/output DOUBLE PRECISION array, dimension (LDF, N/2)):

On entry, this array must contain the upper triangular part of the matrix
F . On exit, this array contains the transformed upper triangular part of the
matrix Fout.

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Op-
tionally, on entry, this array must contain a given matrix Q0, and on exit, this
array contains the product of the input matrix Q0 and the transformation
matrix Q used to transform the matrices Z and H. Optionally, on exit, this
array contains only the orthogonal transformation matrix Q.

• U1 (input/output DOUBLE PRECISION array, dimension (LDU1, N/2)),

U2 (input/output DOUBLE PRECISION array, dimension (LDU2, N/2)):

Optionally, on entry, these arrays must contain the upper left and right blocks
of a given matrix U0, and on exit, these arrays contain the updated upper left
and right blocks U1 and U2 of the product of the input matrix U0 and the
transformation matrix U used to transform the matrices Z and H. Optionally,
on exit, these arrays contain only the upper left and right blocks U1 and U2

of the orthogonal symplectic transformation matrix U , respectively.

• NEIG (output INTEGER): The number of eigenvalues in λS −H with strictly
negative real part.

22

3.2.5 Subroutine DGHUDF (implements Algorithm 11)

Specification:

SUBROUTINE DGHUDF(COMPQ, ORTH, N, A, LDA, DE, LDDE, B, LDB, FG,

$ LDFG, NEIG, Q, LDQ, ALPHAR, ALPHAI, BETA,

$ IWORK, LIWORK, DWORK, LDWORK, BWORK, INFO)

Purpose:
To compute the relevant eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltoni-
an pencil λS −H, with

S =

[

A D
E AT

]

and H =

[

B F
G −BT

]

.

Optionally, an orthogonal basis of the right deflating subspace of λS − H corre-
sponding to the eigenvalues with strictly negative real part is computed.

Arguments:
Mode Parameters:

• COMPQ (CHARACTER*1): Specifies whether to compute the right deflating sub-
space corresponding to the eigenvalues of λS − H with strictly negative real
part.
= ’N’: do not compute the corresponding subspace;
= ’C’: compute the corresponding subspace.

• ORTH (CHARACTER*1): Specifies the technique for computing the orthogonal
basis of the deflating subspace (if needed).
= ’P’: QR factorization with column pivoting;
= ’S’: singular value decomposition.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)):

On entry, these arrays must contain the matrices A and B. On exit, these
arrays are overwritten by some intermediate results, depending on the value
of COMPQ.

• DE (input/output DOUBLE PRECISION array, dimension (LDDE, N/2+1)),

FG (input/output DOUBLE PRECISION array, dimension (LDFG, N/2+1)):

On entry, these arrays must contain the (strictly) upper/lower triangular parts
of the skew-symmetric matrices D and E, and the symmetric F and G. On
exit, these arrays are overwritten by some intermediate results, depending on
the value of COMPQ.

23

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H
with strictly negative real part.

• Q (output DOUBLE PRECISION array, dimension (LDQ, 2*N)):Optional-
ly, on exit, this array contains an orthogonal basis of the right deflating sub-
space corresponding to the eigenvalues of λS − H with strictly negative real
part.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The sca-
lars that define the eigenvalues of the pencil λS − H. Together, the quan-
tities α = (ALPHAR(j),ALPHAI(j)), and β = BETA(j) represent the j-th
eigenvalue of the pencil λS − H, in the form λ = α/β. Since λ may over-
flow, the ratios should not, in general, be computed. Due to the skew-
Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is
saved in ALPHAR, ALPHAI and BETA. Specifically, the eigenvalues with positive
real parts or with non-negative imaginary parts, when real parts are zero, are
returned. The remaining eigenvalues have opposite signs.

3.2.6 Subroutine DGHUTR (implements Algorithm 12)

Specification:

SUBROUTINE DGHUTR(JOB, COMPQ1, COMPQ2, N, A, LDA, DE, LDDE, C1,

$ LDC1, VW, LDVW, Q1, LDQ1, Q2, LDQ2, B, LDB, F,

$ LDF, C2, LDC2, ALPHAR, ALPHAI, BETA, IWORK,

$ LIWORK, DWORK, LDWORK, INFO)

Purpose:
To compute the eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltonian pencil
λS −H with

S =

[

A D
E AT

]

and H =

[

C V
W −CT

]

.

Optionally, decompositions of S and H will be computed via orthogonal transfor-
mations Q1 and Q2 such that

QT
1
SJQ1J

T =

[

Aout Dout

0 AT
out

]

,

JQT
2
J TSQ2 =

[

Bout Fout

0 BT
out

]

= T ,

QT
1
HQ2 =

[

C1,out Vout

0 CT
2,out

]

,

(11)

and Aout, Bout, C1,out are upper triangular, C2,out is upper quasi-triangular and
Dout and Fout are skew-symmetric. Optionally, the orthogonal transformation ma-
trices Q1 and Q2 will be computed.

24

Arguments:
Mode Parameters:

• JOB (CHARACTER*1): Specifies whether only the eigenvalues should be com-
puted, or whether the matrices S and H should be also transformed into the
forms in (11).
= ’E’: compute the eigenvalues only;
= ’T’: put S and H into the forms in (11), and return the eigenvalues.

• COMPQ1 (CHARACTER*1):

• COMPQ2 (CHARACTER*1): Specify whether or not the orthogonal transforma-
tions should be accumulated in the arrays Q1, Q2.
= ’N’: the corresponding transformation matrix is not computed;
= ’I’: the corresponding transformation matrix is computed;
= ’U’: the corresponding transformation matrix is computed but multiplied
by a given input matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

C1 (input/output DOUBLE PRECISION array, dimension (LDC1, N/2)):

On entry, these arrays must contain the matrices A and C. Optionally, on
exit, these arrays contain the matrices Aout and C1,out, respectively.

• DE (input/output DOUBLE PRECISION array, dimension (LDDE, N/2+1)),

VW (input/output DOUBLE PRECISION array, dimension (LDVW, N/2+1)):

On entry, these arrays must contain the upper/lower triangular parts of the
skew-symmetric matrices D and E, and the symmetric matrices V and W ,
respectively. Optionally, on exit, these arrays contain the matrices Dout and
Vout, respectively.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)):

Optionally, on entry, this array must contain a given matrix Q, and on exit,
this array contains the product of the input matrix Q and the transformation
matrix Q1 used to transform the matrices S and H. Optionally, on exit, this
array contains only the orthogonal transformation matrix Q1.

• Q2 (output DOUBLE PRECISION array, dimension (LDQ2, N)):Optional-
ly, on exit, this array contains the product of the matrix JQJ T and the trans-
formation matrix Q2 used to transform the matrices S and H. Optionally, on
exit, this array contains only the orthogonal transformation matrix Q2.

• B (output DOUBLE PRECISION array, dimension (LDB, N/2)),

C2 (output DOUBLE PRECISION array, dimension (LDC2, N/2)): Optio-
nally, on exit, these arrays contain the matrices Bout and C2,out, respectively.

25

• F (output DOUBLE PRECISION array, dimension (LDF, N/2)): Option-
ally, on exit, this array contains the strictly upper triangular part of the
matrix Fout.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The sca-
lars that define the eigenvalues of the pencil λS − H. Together, the quan-
tities α = (ALPHAR(j),ALPHAI(j)), and β = BETA(j) represent the j-th
eigenvalue of the pencil λS − H, in the form λ = α/β. Since λ may over-
flow, the ratios should not, in general, be computed. Due to the skew-
Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is
saved in ALPHAR, ALPHAI and BETA. Specifically, the eigenvalues with positive
real parts or with non-negative imaginary parts, when real parts are zero, are
returned. The remaining eigenvalues have opposite signs.

3.2.7 Subroutine DGHUYR (implements Algorithm 13)

Specification:

SUBROUTINE DGHUYR(COMPQ1, COMPQ2, N, A, LDA, B, LDB, Q1, LDQ1,

$ Q2, LDQ2, IWORK, LIWORK, DWORK, LDWORK, BWORK,

$ INFO)

Purpose:
To compute the transformed matrices A and B, using orthogonal matrices Q1 and
Q2 for a real N-by-N regular pencil

λA− B = λ

[

A11 0
0 A22

]

−

[

0 B12

B21 0

]

, (12)

where A11, A22 and B12 are upper triangular, B21 is upper quasi-triangular and
the generalized matrix product A−1

11
B12A

−1

22
B21 is in periodic Schur form, such

that QT
2
AQ1 is upper triangular, QT

2
BQ1 is upper quasi-triangular, and the matrix

pencil λQT
2
AQ1 −QT

2
BQ1 is in generalized Schur form.

Arguments:
Mode Parameters:

• COMPQ1 (CHARACTER*1),

COMPQ2 (CHARACTER*1): Specify whether or not the orthogonal transforma-
tions should be accumulated in the arrays Q1 and Q2, respectively.
= ’N’: the corresponding transformation matrix is not computed;
= ’I’: the corresponding transformation matrix is computed;
= ’U’: the corresponding transformation matrix is computed but multiplied
by a given input matrix as described below.

Input/Output Parameters:

26

• N (input INTEGER): Order of the pencil λA− B, N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N)): On
entry, these arrays must contain the matrices A and B in (12). The zero
(off-)diagonal blocks need not be set to zero. On exit, these arrays contain
the transformed upper (quasi-)triangular matrices.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)),

Q2 (input/output DOUBLE PRECISION array, dimension (LDQ2, N)):

Optionally, on entry, these arrays must contain given matrices Q01 and Q02,
and on exit, these arrays contain the product of the input matrices Q01 and
Q02, and the transformation matrices Q1 and Q2, respectively, used to trans-
form the matrices A and B. Optionally, on exit, these arrays contain only the
orthogonal transformation matrices Q1 and Q2.

3.2.8 Subroutine DGHUXC (implements Algorithm 14)

Specification:

SUBROUTINE DGHUXC(COMPQ, N, A, LDA, D, LDD, B, LDB, F, LDF, Q,

$ LDQ, NEIG, IWORK, LIWORK, DWORK, LDWORK, INFO)

Purpose:
To move the eigenvalues with strictly negative real parts of an N-by-N real skew-
Hamiltonian/Hamiltonian pencil λS −H in structured Schur form with

S =

[

A D
0 AT

]

and H =

[

B F
0 −BT

]

to the leading principal subpencil while keeping the triangular form. Above, A
is upper triangular and B upper quasi-triangular. The matrices S and H are
transformed by an orthogonal matrix Q such that

Sout = JQTJ TSQ =

[

Aout Dout

0 AT
out

]

, and

Hout = JQTJ THQ =

[

Bout Fout

0 −BT
out

]

,

(13)

where Aout is upper triangular and Bout is upper quasi-triangular. Optionally, the
matrix Q that fulfills (13) is computed.

Arguments:
Mode Parameters:

• COMPQ (CHARACTER*1): Specifies whether or not the orthogonal transforma-
tions should be accumulated in the array Q.
= ’N’: the transformation matrix is not computed;

27

= ’I’: the transformation matrix is computed;
= ’U’: the transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)):

On entry, these arrays must contain the matrices A and B. On exit, these
arrays contain the transformed matrices Aout and Bout, respectively.

• D (input/output DOUBLE PRECISION array, dimension (LDD, N/2)),

F (input/output DOUBLE PRECISION array, dimension (LDF, N/2)):

On entry, these arrays must contain the (strictly) upper triangular parts of the
matrices D and F . On exit, these arrays contain the transformed (strictly)
upper triangular parts of the matrices Dout and Fout, respectively.

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Op-
tionally, on entry, this array must contain a given matrix Q0, and on exit, this
array contains the product of the input matrix Q0 and the transformation
matrix Q used to transform the matrices S and H. Optionally, on exit, this
array contains only the orthogonal transformation matrix Q.

• NEIG (output INTEGER): The number of eigenvalues in λS −H with strictly
negative real part.

4 Numerical Results

In this section we present some numerical results of our implementations. The tests
have been performed on a 2.6.32-31-generic Ubuntu machine with Intel R©CoreTM2
Quad CPU Q9550 with 2.83GHz per core and 8GB RAM. All codes have been com-
piled using gfortran with the optimization level -O2 (safe optimizations). For better
handling the codes, MEX gateway functions have been written for calling the rou-
tines from MATLAB 7.14.0.739 (R2012a). For this purpose we also use MATLAB’s
optimized LAPACK and BLAS libraries.

4.1 Structure-Preserving Computations

The most important feature of our algorithms is structure-preservation. This means
that only reductions that keep the skew-Hamiltonian/Hamiltonian structure are per-
formed. Therefore, only skew-Hamiltonian/Hamiltonian perturbations of the eigen-
values are possible. In particular, simple, finite, purely imaginary eigenvalues stay
on the imaginary axis as long as their pairwise distance is large enough. In such a
situation the perturbation off the imaginary axis would not lead to the formation of

28

−2 −1 0 1

·10−15

−0.5

0

0.5

1

Re(x)

Im
(x
)

QZ algorithm

new method

iR

(a) Constrained damped mass-spring system

−4 −2 0 2

·10−12

−50

0

50

100

Re(x)

Im
(x
)

QZ algorithm

new method

iR

(b) Semidiscretized Stokes equation

Figure 7: Computed purely imaginary eigenvalues of two skew-Hamiltonian/Hamilto-
nian example matrix pencils

a quadruple of eigenvalues which is necessary by the Hamiltonian eigensymmetry. In
Figure 7, some of the computed eigenvalues by the QZ algorithm ([8]) and our new
method are depicted. For the tests we used extended skew-Hamiltonian/Hamiltonian
pencils for the L∞-norm computation of descriptor systems ([12]). The pencils are
related to models for constrained mass-spring systems or semidiscretized Stokes equa-
tions (see [10] and references therein). The figure nicely shows that the eigenvalues
computed by the standard QZ algorithm are perturbed off the imaginary axis whereas
the new method preserves the eigenvalue symmetry. In particular, the new approach
allows a reliable determination of the stable eigenvalues. If we furthermore want to
compute the stable deflating subspaces we have to know these in advance. For the
first presented examples (Figure 7(a)), the QZ algorithm computes more stable than
unstable eigenvalues which is impossible by theory. Therefore, also the stable deflating
subspace computed by this method will have a too high dimension. This undesired
behavior is avoided by our method.
A second example that illustrates the superiority of our method arises in the context

of gyroscopic systems of the form

Mẍ(t) +Gẋ(t) +Kx(t) = 0 (14)

with M = MT > 0, G = −GT , and K = KT . To analyse stability of such a system
we have to consider the quadratic eigenvalue problem

(

Mλ2 +Gλ+K
)

y = 0. (15)

It can be shown that a necessary condition for (14) to be stable is that all eigenvalues
of (15) are purely imaginary [9]. A linearization of (15) to second companion form [11]

29

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

·10−4

−4

−2

0

2

4

·105

Re(x)

Im
(x
)

QZ algorithm

new method

iR

Figure 8: Computed eigenvalues from a skew-Hamiltonian/Hamiltonian matrix pencil
resulting from a linearized gyroscopic system

leads to an eigenvalue problem for the skew-Hamiltonian/Hamiltonian matrix pencil

λ

[

M G
0 M

]

−

[

0 −K
M 0

]

.

The example we use here is the “Rolling Tires” system from [6] with a system di-
mension of n = 2697. The computed eigenvalues for both the QZ algorithm and our
method are depicted in Figure 8. For our algorithm, all eigenvalues are determined
to be on the imaginary axis which means that the necessary stability criterion for the
gyroscopic system is fulfilled. However, for the QZ algorithm this is not the case. Since
the QZ algorithm does not respect the skew-Hamiltonion/Hamiltonian structure, all
eigenvalues are perturbed off the imaginary axis. Some of them are also very far away
from the imaginary axis (the maximum absolute value of the real parts is 1.4836e-03).
So in contrast to the structure-preserving approach, one could think that the necessary
stability criterion is not fulfilled.

30

4.2 Solving Algebraic Riccati Equations

In this subsection we use our algorithms for computing the solution of algebraic Riccati
equations and compare with the results of the MATLAB function care. We consider
continuous-time algebraic Riccati equations of the form

0 = Q+ATX +XA−XGX, (16)

where A, G, Q, X ∈ R
n×n. In many problems the matrices Q = QT and G = GT

are given in factored form Q = CT Q̃C, G = BR−1BT with C ∈ R
p×n, B ∈ R

n×m,
Q̃ = Q̃T ∈ R

p×p, and R = RT ∈ R
m×m. If Q̃ ≥ 0, R > 0, (A,B) is stabilizable,

and (A,C) is detectable, then (16) has a unique, positive semidefinite symmetric,
stabilizing solution X∗.
A popular method for determining X∗ is to compute the stable invariant subspace

spanned by

[

U1

U2

]

of the Hamiltonian matrix

H =

[

A −G
−Q −AT

]

=

[

A −BR−1BT

−CT Q̃C −AT

]

∈ R
2n×2n.

If U1 is invertible, then X∗ = U2U
−1

1
(see [3] and references therein). Here, we use a

slightly more general approach, namely we compute the right stable deflating subspace
of the skew-Hamiltonian/Hamiltonian matrix pencil

λS −H = λ

[

In 0
0 In

]

−

[

A −G
−Q −AT

]

∈ R
2n×2n

which is equal to the stable invariant subspace of H.
For benchmarking we use the examples collected in [3] which are often difficult

to solve due to ill-conditioning of the problem or the solution. In Table 2 the rel-
ative residuals for each individual problem are presented. We compared the skew-
Hamiltonian/Hamiltonian pencil approach with orthogonalization via pivoted QR fac-
torization (QRP), singular value decomposition (SVD) and the MATLAB solver (care).
To ensure comparability we use the same scaling technique for the ARE for both our
codes and care (by calling arescale in MATLAB). Except for one example (which
also care could not solve), our codes could compute X∗ in all tests. The relative
residuals are most often of the same order of magnitude. For five problems, our codes
obtained better results for at least one orthogonalization option (for tests # 5, 13, 14,
31, 32 the relative residual is at least one order of magnitude lower than the one of
care). On the other hand, care performed better for 6 examples (# 8, 12, 15, 17, 24,
34). In particular, for example 17, the difference is about 10 orders of magnitude, for
the other five examples the difference is about one order of magnitude. Similar results
are achieved when having a look at the relative errors compared to the analytic solu-
tion if it is known. We omit it since it does not give significantly more information. In
conclusion we can say hat both approaches give results of similar quality, even though
our codes are not specifically designed for solving algebraic Riccati equations.

31

Table 2: Relative residuals of the solution of algebraic Riccati equations: Comparison
of the new algorithm with orthogonalization via pivoted QR factorization
(QRP), singular value decomposition (SVD), and the MATLAB solver care

test # ex. # n m p parameters QRP SVD care

1 1.1 2 1 2 3.0044e-15 2.5749e-15 3.0062e-15
2 1.2 2 1 2 7.3931e-16 3.4594e-15 6.5338e-16
3 1.3 4 2 4 2.4751e-15 2.4167e-15 3.9430e-15
4 1.4 8 2 8 2.5514e-15 1.5739e-15 1.1924e-15
5 1.5 9 3 9 8.7957e-15 2.3342e-13 9.3663e-14
6 1.6 30 3 5 8.8269e-12 4.4861e-12 1.4481e-12
7 2.1 2 1 1 ε = 1 9.0528e-16 9.5989e-16 7.5037e-16
8 2.1 2 1 1 ε = 10−6 1.7361e-10 3.2218e-10 0

9 2.2 2 2 1 ε = 1 5.5948e-16 3.7261e-16 1.1068e-15
10 2.2 2 2 1 ε = 10−8 1.5895e-09 7.7370e-10 2.3218e-09
11 2.3 2 1 2 ε = 1 7.3951e-16 1.4259e-15 1.1378e-15
12 2.3 2 1 2 ε = 106 2.0448e-10 3.7537e-11 6.5854e-13

13 2.3 2 1 2 ε = 10−6
1.6745e-21 4.6784e-18 6.8373e-20

14 2.4 2 2 2 ε = 1 0 1.2684e-14 1.1531e-15
15 2.4 2 2 2 ε = 10−7 2.9441e-15 1.1608e-14 1.6454e-16

16 2.5 2 1 2 ε = 1 1.4121e-15 1.3570e-15 1.9343e-15
17 2.5 2 1 2 ε = 0 3.6694e-05 1.2326e-06 1.2232e-15

18 2.6 3 3 3 ε = 1 5.8902e-15 3.8570e-15 5.7262e-15
19 2.6 3 3 3 ε = 106 4.7596e+02 4.4341e+02 6.3670e+02
20 2.7 4 1 2 ε = 1 2.4085e-16 1.6736e-16 1.4054e-15
21 2.7 4 1 2 ε = 10−6 1.9697e-08 3.2989e-11 1.3429e-11
22 2.8 4 1 1 ε = 1 7.4186e-16 4.0395e-15 5.6954e-15
23 2.8 4 1 1 ε = 10−6 3.8032e-15 1.0134e-15 4.6214e-15
24 2.9 55 2 10 #1 1.0737e-11 5.7755e-12 2.4757e-13

25 3.1 9 5 4 3.8305e-15 2.6481e-15 3.2909e-15
26 3.1 39 20 19 3.4076e-15 4.6692e-15 8.0452e-15
27 3.2 8 8 8 2.9567e-15 2.2579e-15 3.7270e-15
28 3.2 64 64 64 9.8352e-15 8.8604e-15 1.2277e-14
29 4.1 21 1 1 q = r = 1.0 1.0359e-06 4.4380e-07 6.8088e-07
30 4.1 21 1 1 q = r = 100.0 2.1010e-05 2.1627e-05 6.3995e-05
31 4.2 20 1 1 a = 0.05, b = c = 0.1, 1.4274e-17 1.1291e-13 1.8773e-13

[β1, β2] = [0.1, 0.5],
[γ1, γ2] = [0.1, 0.5]

32 4.2 100 1 1 a = 0.01, b = c = 1.0, 1.3742e-15 1.2528e-12 3.5524e-12
[β1, β2] = [0.2, 0.3],
[γ1, γ2] = [0.2, 0.3]

33 4.3 60 2 60 ℓ = 30, µ = 4.0, 7.8279e-15 7.9629e-15 2.6545e-14
δ = 4.0, κ = 1.0

34 4.4 421 211 211 5.1450e-03 1.0845e-05 7.9411e-07

32

Table 3: Comparison of runtimes for the real case (measured in secs.)

Problem size eigenvalues only eigenvalues and deflating subspaces
DGGEV DGHUTR DGGES DGHUDF

2 3.2480e-06 2.2000e-06 7.7860e-06 2.1138e-05
4 1.1510e-05 1.3725e-05 4.3221e-05 1.1633e-04
8 3.7886e-05 7.3677e-05 1.4393e-04 3.6971e-04
16 1.2640e-04 1.9300e-04 3.6360e-04 1.3859e-03
32 7.1310e-04 7.3620e-04 1.7058e-03 5.0400e-03
64 3.0412e-03 3.0708e-03 8.3355e-03 2.5425e-02
128 1.8980e-02 1.6620e-02 4.3790e-02 1.1256e-01
256 1.4190e-01 1.0272e-01 2.8654e-01 5.8121e-01
512 1.4790e+00 8.9793e-01 2.5960e+00 3.9449e+00

1024 2.2127e+01 1.2964e+01 4.8888e+01 4.5998e+01
2048 4.2508e+02 2.6144e+02 5.6186e+02 6.3338e+02
4096 2.9650e+03 2.8367e+03 4.2058e+03 5.5788e+03

4.3 Comparison of Runtimes

In this subsection we discuss the runtimes of our codes and compare them with stan-
dard implementations included in LAPACK. The results are listed in Tables 3 and 4,
respectively. In Figure 4.3 the speedup factors of the new codes compared to MAT-
LAB’s LAPACK implementations are depicted to summarize these results. In general,
pure eigenvalue computations are much faster than the computation of both eigen-
values and deflating subspaces. The reason is that for the subspace computation the
transformation matrices for the embedded pencils (of double size) are accumulated in
the final step. However, during our tests we often observe that LAPACK routines,
even though they are faster, are not able to solve (random) examples. Especially, for
larger problems INFO = N+2 is returned which indicates that the desired reordering
of the eigenvalue could not be successfully performed. Note that LAPACK routines
can much better exploit blocked codes of Level 3 BLAS which is not the case for our
codes since they are algorithmically based on Givens rotations. Even though the panel
blocking technique we present here gives some improvements for larger examples there
is still the question whether one can find better ways of blocking our codes.

There are also significant differences in the behavior of the real and complex codes.
The real codes have relatively constant speedup factors for small and medium-size
problems up to orders of about 128. Then, the speedup factors increase up to order
2048 and then decrease again. However, for the complex codes, the speedups are
constant for problems up to order 256 and get significantly slower for larger problems.
Fortunately, for larger problems, we have developed blocked codes which are able to
avoid this slow-down, see also Subsection 4.5.

33

Table 4: Comparison of runtimes for the complex case (measured in secs.)

Problem size eigenvalues only eigenvalues and deflating subspaces
ZGGEV DGHUST ZGGES ZGHUDF

2 7.7400e-06 4.7300e-06 2.7047e-05 4.1847e-05
4 2.3252e-05 2.2831e-05 5.2271e-05 9.3827e-05
8 8.2346e-05 7.5673e-05 1.2291e-04 2.2438e-04
16 3.1020e-04 3.1190e-04 4.6900e-04 7.7210e-04
32 1.4953e-03 1.4844e-03 2.5219e-03 3.4171e-03
64 8.7930e-03 9.0812e-03 1.4392e-02 1.9041e-02
128 5.8440e-02 5.6700e-02 9.2550e-02 1.1988e-01
256 4.5301e-01 4.5600e-01 6.2856e-01 9.6518e-01
512 3.4875e+00 7.6826e+00 4.6978e+00 1.4286e+01

1024 3.8185e+01 1.4554e+02 5.6904e+01 2.6081e+02
2048 4.9624e+02 1.2935e+03 8.2872e+02 2.1489e+03
4096 4.8410e+03 1.0849e+04 7.7507e+03 1.7189e+04

4.4 Factored Versus Unfactored Matrix Pencils

In this subsection we compare the results of the previous subsection with the factored
versions of the algorithms with respect to accuracy, memory requirements and speed.

4.4.1 Accuracy

We begin with an analysis of the obtained accuracy. We performed tests on random
skew-Hamiltonian/Hamiltonian pencils of order 40. For the factored algorithms we

2 4 8 16 32 64 128 256 512 1024 2048 4096
0

0.5

1

1.5

2

Problem size

S
p
ee
d
u
p
fa
ct
or

DGHUTR/DGGEV

DGHUDF/DGGES

DGHUST/ZGGEV

ZGHUDF/ZGGES

Figure 9: Speedup factors of the new routines compared to LAPACK software

34

Table 5: Comparison of the errors of the eigenvalues

real case complex case
unfactored factored unfactored factored

10−17 ≤ κmax < 10−16 0 0 29 44
10−18 ≤ κmax < 10−17 825 805 932 926
10−19 ≤ κmax < 10−18 155 162 39 30
10−20 ≤ κmax < 10−19 6 17 0 0

κmax < 10−20 14 16 0 0

Table 6: Comparison of the errors of the deflating subspaces

real case complex case
unfactored factored unfactored factored

10−11 ≤ α < 10−10 1 0 0 0
10−12 ≤ α < 10−11 9 11 0 3
10−13 ≤ α < 10−12 82 96 38 62
10−14 ≤ α < 10−13 900 888 962 935
10−15 ≤ α < 10−14 8 5 0 0

choose Z =

[

A 0
0 I20

]

with a random matrix A. Then we can easily form

S = JZHJ TZ =

[

A 0
0 AH

]

without any rounding error. This allows a fair comparison between the codes for
factored and unfactored problems. First we analyze the accuracy of the computed
eigenvalues. Therefore, we performed 1000 tests and compute the maximum of the
reciprocal condition numbers κmax of the matrices λjS − H, j = 1, . . . , 20 for each
problem. We divide the computed results into different classes and list the number
of elements in each class in Table 5. Furthermore, we observe that in the real case,
the unfactored codes were more accurate for 500 examples. For the complex case this
was the case for 516 examples. We can conclude that the computed eigenvalues are
similarly accurate for both types of codes.
We also have a look at the accuracy of the deflating subspaces. Let colspanQ be the

computed stable deflating subspace. To measure the error we determine the angle α
between the subspaces colspan(SQ) and colspan(HQ). Again, we perform 1000 tests
and divide the results into classes listed in Table 6. Now, the unfactored version is
more accurate for 615 examples in the real and for 592 examples in the complex case,
respectively. Therefore, we can conclude that the subspace computation is slightly
more accurate in the unfactored case.

35

Table 7: Comparison of runtimes for factored and unfactored versions (measured in
secs.)

Problem size real case complex case
unfactored factored unfactored factored

2 2.1149e-05 3.7359e-05 4.1219e-05 7.4963e-05
4 5.3765e-05 9.4412e-05 8.9305e-05 1.8112e-04
8 3.6373e-04 5.1282e-04 2.3065e-04 4.2514e-04
16 1.4868e-03 1.8846e-03 7.5680e-04 1.1702e-03
32 5.9223e-03 7.8657e-03 3.2732e-03 5.6365e-03
64 2.3258e-02 3.1986e-02 1.8261e-02 2.8526e-02
128 1.0901e-01 1.4402e-01 1.1473e-01 1.9216e-01
256 5.7424e-01 7.9756e-01 9.2289e-01 1.6150e+00
512 3.8463e+00 6.1073e+00 1.4380e+01 3.3246e+01

1024 4.6299e+01 1.0119e+02 2.5326e+02 4.1394e+02
2048 6.0400e+02 9.5667e+02 2.0491e+03 3.5848e+03
4096 5.4444e+03 7.9957e+03 1.6688e+04 2.8164e+04

4.4.2 Speed and Memory Requirements

We briefly compare the timing results of the factored and unfactored codes which are
listed in Table 7. A run of the factored versions needs approximately 1.5 – 2 times
as long as one of the unfactored versions. This is simply due to fact that also more
matrices (usually ≈ 50% more) have to be updated within the factored codes. Also
this higher amount of matrices has to be stored which leads to an approximately 50%
higher memory usage.

4.4.3 Conclusion

In conclusion, we can say that one should always use the unfactored version of the
code whenever the matrix S is explicitly given or can be formed without any rounding
errors. This is due to the lower accuracy, larger runtimes and higher memory usage of
the factored versions. However, one might think of situations where only the factor Z
is known and it is not possible to appropriately form S due to numerical errors. Then
we still recommend to use the factored versions even if there are all the disadvantages
mentioned above.

4.5 Blocked Versus Unblocked Code

As already mentioned above, the routines get relatively slow if the problem gets too
large. This is due to the unoptimized cache usage. Therefore, we have implemented
the unfactorized algorithms using the panel blocking technique from Subsection 2.3.
For illustration we generated a random example of order 2048 and compared the
runtimes of the unblocked code with those of the blocked code for different block sizes

36

Table 8: Comparison of runtimes for blocked and unblocked code (measured in secs.)

block size NB eigenvalues only eigenvalues and deflating subspaces
real case complex case real case complex case

unblocked 224.23 1332.72 582.65 2173.03
1 200.91 922.11 546.95 1644.15
2 147.87 738.48 517.41 1458.51
4 133.90 662.78 483.16 1365.91
8 132.31 657.39 466.02 1345.67

16 146.86 680.06 470.36 1383.82
32 139.47 680.46 469.58 1363.19
64 138.72 672.18 469.72 1376.00

128 139.44 700.46 459.48 1400.46
256 139.62 1024.32 468.70 1775.13
512 151.18 1116.98 482.61 1844.09
1024 216.94 1165.43 548.82 1955.30
2048 210.05 1244.88 555.28 2025.61

NB. The results can be found in Table 8. The optimal values are marked in boldface
font. The time savings can be significant. For computing the eigenvalues of a complex
pencil the reduction can be to less than 50% of the time needed for the unblocked
code. Note that there is only a slight speedup for the subspace computation in the
real case since the time-consuming routine DGHUYR cannot be blocked. Mostly, the
optimal timings are attained for NB = 8, however almost optimal timings are observed
for all NB = 4, . . . , 128, so the choice of NB is flexible. An important point is that
the problem must be sufficiently large in order to benefit from the panel blocking,
otherwise one would even loose performance, especially for small block sizes. Finally,
we also compare the performance of our blocked codes for NB = 8 with LAPACK for
problem sizes of 512 to 4096. The speedup factors are depicted in Figure 4.5. For real
problems we can achieve good speedups compared to LAPACK. When computing only
the eigenvalues we can achieve a speedup factor of about 3.5. When we also compute
the deflating subspaces we still get a factor of 1.2, so we are still faster than LAPACK.
However, this is not the case anymore when we consider complex problems. In this
case we can only achieve speedups of about 0.4 to 0.9, but the blocked codes are still
faster than the unblocked ones.

5 Summary

In this paper we have presented implementation details and interface descriptions for
structure-preserving algorithms for the computation of the eigenvalues and stable de-
flating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils in FORTRAN 77.
The advantages of our method are the increased reliability since critical purely imagi-

37

512 1024 1536 2048 2560 3072 3584 4096
0

2

4

Problem size

S
p
ee
d
u
p
fa
ct
o
r

blocked DGHUTR/DGGEV

blocked DGHUDF/DGGES

blocked DGHUST/ZGGEV

blocked ZGHUDF/ZGGES

Figure 10: Speedup factors of the blocked codes compared to LAPACK software for
larger problem sizes

nary eigenvalues are not perturbed from the imaginary axis (as long as their pairwise
distance is large enough). This also allows the safe computation of the associated sta-
ble deflating subspaces of the pencil since the perturbation of eigenvalues from the left
into the right half-plane (or vice versa) is avoided. Numerical examples have shown
that the runtimes are often higher compared to LAPACK routines. However, a panel
blocking technique has significantly improved performance for larger problems.

References

[1] SLICOT Contributors’ Kit 2.1, August 1996. WGS Report 96-2.

[2] SLICOT Implementation and Documentation Standards, August 1996. WGS Re-
port 96-1.

[3] J. Abels and P. Benner. CAREX - A collection of benchmark examples for
continuous-time algebraic Riccati equations (version 2.0), 1999.

[4] P. Benner, R. Byers, and E. Barth. Algorithm 800: Fortran 77 subroutines for
computing the eigenvalues of Hamiltonian matrices I: the square-reduced method.
ACM Trans. Math. Softw., 26(1):49–77, 2000.

[5] P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical computation of deflat-
ing subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal.
Appl., 24(1):165–190, 2001.

38

[6] P. Benner, H. Fassbender, and M. Stoll. Solving large-scale quadratic eigenvalue
problems with Hamiltonian eigenstructure using a structure-preserving Krylov
subspace method. Electron. Trans. Numer. Anal., 29:212–229, 2008.

[7] P. Benner, V. Sima, and M. Voigt. FORTRAN 77 subroutines for the solution of
skew-Hamiltonian/Hamiltonian eigenproblems – Part I: Algorithms and applica-
tions. Preprint MPIMD/13-11, Max Planck Institute Magdeburg, 2013.

[8] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins
University Press, Baltimore/London, third edition, 1996.

[9] P. Lancaster. Stability of linear gyroscopic systems: A review. Linear Algebra
Appl., 439(3):686–706, August 2013. Special Issue in Honor of Harm Bart.

[10] V. Mehrmann and T. Stykel. Balanced truncation model reduction for large-
scale systems in descriptor form. In P. Benner, V. Mehrmann, and D. Sorensen,
editors, Dimension Reduction of Large-Scale Systems, volume 45 of Lect. Notes
Comput. Sci. Eng., chapter 3, pages 89–116. Springer-Verlag, Berlin, Heidelberg,
New York, 2005.

[11] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev.,
43(2):235–286, 2001.

[12] M. Voigt. L∞-norm computation for descriptor systems. Diploma thesis, Chem-
nitz University of Technology, Faculty of Mathematics, Germany, July 2010.

39

Max Planck Institute Magdeburg Preprints

	Introduction
	Implementation Details
	General Remarks
	Storage Layout
	Panel Blocking for Larger Problems

	Interface Description
	The Complex Case
	Subroutine ZGHFDF (implements Algorithm 1)
	Subroutine DGHFST (implements Algorithm 2)
	Subroutine ZGHFXC (implements Algorithm 3)
	Subroutine ZGHUDF (implements Algorithm 4)
	Subroutine DGHUST (implements Algorithm 5)
	Subroutine ZGHUXC (implements Algorithm 6)

	The Real Case
	Subroutine DGHFDF (implements Algorithm 7)
	Subroutine DGHURV (implements Algorithm 8)
	Subroutine DGHFYR (implements Algorithm 9)
	Subroutine DGHFXC (implements Algorithm 10)
	Subroutine DGHUDF (implements Algorithm 11)
	Subroutine DGHUTR (implements Algorithm 12)
	Subroutine DGHUYR (implements Algorithm 13)
	Subroutine DGHUXC (implements Algorithm 14)

	Numerical Results
	Structure-Preserving Computations
	Solving Algebraic Riccati Equations
	Comparison of Runtimes
	Factored Versus Unfactored Matrix Pencils
	Accuracy
	Speed and Memory Requirements
	Conclusion

	Blocked Versus Unblocked Code

	Summary

