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Abstract

Modeling and simulation are important for the design process of new semiconductor
structures. Difficulties proceed from shrinking structures, increasing working frequencies,
and uncertainties of materials and geometries. Therefore, we consider the time-harmonic
Maxwell’s equations for the simulation of a coplanar waveguide with uncertain material
parameters. To analyze the uncertainty of the system, we use stochastic collocation with
Stroud and sparse grid points. The results are compared to a Monte Carlo simulation. Both
methods rely on repetitive runs of a deterministic solver. Hence, we compute a reduced
model by means of proper orthogonal decomposition to reduce the computational cost.
The Monte Carlo simulation and the stochastic collocation are both applied to the full and
the reduced model. All results are compared concerning accuracy and computation time.
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1 Introduction
Nowadays, the design process of semiconductors is unimaginable without simulations of new
micro and nano scale systems due to the expensive production of prototypes. However, the
numerical simulation of systems which result from modeling of micro scale structures, see
Figure 1 for an example of a wafer, is computationally demanding. Two aspects make the
simulation even more complicated. One is the ongoing miniaturization of the structures, e. g.,
the technology improved from 90nm in 2004 to around 20nm in 2012, in combination with an
increasing of the working frequencies. This implicates a high density of electric conductors
and induces parasitic effects like crosstalk. In the past, the so called partial element equivalent
circuit (PEEC) method [30] was used for numerical modeling of electromagnetic (EM) prop-
erties. Using the PEEC method, the problem is converted from the electromagnetic domain to

Figure 1: Wafer from 2 to 8 inches. (Source: wikipedia.org)

the circuit domain where traditional circuit solvers can be employed to analyze the equivalent
circuit. However, at higher frequencies and for complicated geometries and more complex,
e.g. inhomogeneous, materials, the PEEC method is not suitable. For such applications, dif-
ferential field solvers like the Finite Element Method (FEM) are more feasible to compute the
EM field by solving Maxwell’s equations.
In the following, the electric field intensity E and the magnetic field intensity H are described
by Maxwell’s equations

∂t(εE) = ∇×H − σE− J, (1)
∂t(µH) = −∇× E, (2)
∇ · (εE) = ρ, (3)
∇ · (µH) = 0, (4)

where ρ is the charge density and J is the impressed current source. Furthermore, ε = εr ·
ε0 (permittivity), µ = µr · µ0 (permeability), and σ (electrical conductivity) are material
dependent parameters. The equations are considered in a domain G ⊂ R3.
We decouple the full Maxwell’s equations by exploiting the fact that∇× (∇ϕ) = 0 for scalar
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potentials ϕ and∇ · (∇× A∗) = 0 for vector potentials A∗. Then (4) yields

∃A∗ : ∇× A∗ = µH.

Substituting into (2) leads to
∇× (E + ∂t(A∗)) = 0,

which implies the existence of a scalar potential ϕ such that

E = −∇ϕ− ∂t(A∗).

By choosing A = A∗ +
∫ t
t0
∇ϕdt [37], we obtain E = −∂t(A), ∇ × A = ∇ × A∗, and the

vector potential formulation of Maxwell’s equations (1)-(4)

∇× (µ−1∇× A) + σ ∂t(A) + ε ∂2
t (A) = J.

For a further simplification, we work with the time-harmonic form, i. e., we assume A to be
given in the form A = Â · eiωt, where ω is the working frequency. With this assumption, the
time derivatives simplify to

∂t(A) = iω · A, ∂2
t (A) = −ω2 · A.

Therefore, the vector potential formulation can be written as

∇× (µ−1∇× A) + i ω σ A− ω2 εA = J.

By replacing E = −∂t(A) = −iωA [3, 21], we obtain the time-harmonic Maxwell’s equation

∇× (µ−1∇× E) + i ω σ E− ω2 εE = −i ω J, (5)

for which the solution E lives in the space X = {E ∈ H0
curl(G)| ∇ · (εE) = ρ}, where

H0
curl(G) := {E ∈ (L2(G))3| ∇ × E ∈ (L2(G))3,E× n = 0 on ∂G}

and
L2(G) = {u|

∫
G

u2dx <∞}.

For the simulation, (5) is discretized by means of the finite element method. This will be fur-
ther explained in section 5.
To allow for fluctuations in the processed materials, the material parameters are treated as
uncertain parameters of the system. In this paper these uncertain parameters are εr, µr, and
σ. Inaccuracies during the lithography which lead to variations of the feature structure sizes
lead to another aspect that can no longer be neglected during the simulation. These geometric
parameters will not be considered in this work. This aspect will be treated in the future.
For a variational analysis of the effect of uncertainties on the electromagnetic field, methods
for uncertainty quantification (UQ) [20, 31] are required. The existing methods in this field
can be divided into intrusive and non-intrusive methods. The motivation for non-intrusive
methods is that in the cooperation with industrial partners the discretization of the system
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equations is often done by a commercial tool and therefore has to be considered as a black
box. In this case, intrusive UQ methods like stochastic finite elements [29], which would
lead to a new discretization respecting the uncertainty in the system, can not be used. There-
fore, we will employ non-intrusive approaches in order to design an algorithm that allows
the use of EM field solvers for deterministic problems without accessing the source code.
Possible non-intrusive methods are the well-known Monte Carlo (MC) simulation [22, 12],
which yields arbitrary exactness but has a slow convergence, or the stochastic collocation ap-
proach [1, 2, 16, 36]. In our case, the results computed by MC serve as reference solutions.
Considering stochastic collocation, the choice of collocation points is very important for the
accuracy of the results on the one hand and the effectiveness of the method on the other hand.
This will be further investigated in this work.
Another way of saving computation time is to replace the high dimensional discretized solu-
tion of (5) by a system of reduced order. Such systems can be computed by model order reduc-
tion (MOR). We use a reduced-order model (ROM) instead of the full-order model (FOM) for
the MC and the collocation approach. This ROM is obtained by MOR via proper orthogonal
decomposition (POD) [19, 32, 35, 15].
One of the first publications considering UQ for microelectronics is [17], where a projection
based MOR method for variational analysis of RLC interconnect circuits was presented. In
the last years, many people worked in this area. Stroud-based collocation has already been
used for the statistical characterization of coupled voltages in [2]. In [16], sparse collocation
methods with diverse kinds of sample points are applied to electromagnetic scattering by a
two-dimensional cylinder with a uncertain number of wholes with uncertain size and location.
The two choices of sample points, Stroud and sparse grids, are compared in [36] considering
as example an elliptic equation.
Here, we combine components of the latter papers. We use Stroud points [34] and sparse
grids [5] and apply the stochastic collocation to the time-harmonic Maxwell’s equations in
high-frequency range with uncertain material parameters. The use of non-intrusive methods
is driven by the application described in section 2.
The combination of MOR and UQ is rarely studied up to now. One example is [28], where a
projection based reduction of the state space and a reduction of the random space are applied to
an electric network with uncertain capacitances, inductances, and conductances. Another one
is [7], where a combination of reduced basis and stochastic collocation is applied to stochastic
versions of the diffusion equation and the incompressible Navier-Stokes equations. In this
work, we place value on reducing a parameter-affine system once, followed by a repetitive
usage of the obtained ROM in the UQ method.
The paper is structured as follows. We describe our application, a coplanar waveguide with
dielectric overlay, in section 2. The UQ methods of interest, Monte Carlo and stochastic col-
location, as well as our different choices of collocation points are explained in section 3. We
will give a short introduction to MOR by POD in section 4 and show the numerical results in
section 5. A short conclusion is given in section 6.
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Figure 2: Coplanar waveguide.

2 Application: A Coplanar Waveguide
The application of interest is a coplanar waveguide with dielectric overlay which is shown in
Figure 2. A detailed description of the coplanar waveguide (only with geometric parameters)
can be found in the MOR wiki [23].
The model consists of three perfectly conducting striplines situated at a height of 10mm in a
shielded box with perfect electric conductor (PEC) boundary. The system is excited at discrete
port 1 and the voltage along port 2 is taken as output.
Below a height of 15mm there is a substrate, the rest of the box is filled with air. The uncer-
tainties of the model are the material parameters εr, µr, and σ. As the relative permittivity εr
and the conductivity σ have different means for substrate and air, we have to work with two
sub-domains Gs (substrate) and Ga (air). That means, we split εr and σ and treat the system
as a system with 5 uncertain parameters.
Due to physical reasons, the parameters have to be positive. Therefore, they are assumed to be
log-normally distributed. The given means E(pj), standard deviations std(pj), and the argu-
ments µµµj and σσσj for the log-normal distributions LN (µµµj ,σσσ

2
j ) of the five parameters are given

in Table 1. The assumed probability density function for parameter pj is

fj(x) :=
1√

2πσσσjx
exp

(
− (ln(x)−µµµj)2

2σσσ2
j

)
for x ∈ R, x > 0.

We use the arguments µµµj and σσσj to compute the Stroud and sparse grid points. Then we
take the exponential of them as sample points, since the exponential of a normally distributed
random variable is log-normally distributed.

4



j pj E(pj) std(pj) µµµj σσσj
1 εsr 4.40 10−2 1.4816 0.0023
2 εar 1.07 10−2 0.0676 0.0093
3 µr 1.00 10−2 0.0000 0.0100
4 σs 0.02 10−4 −3.9120 0.0050
5 σa 0.01 10−4 −4.6052 0.0100

Table 1: Parameter information for the coplanar waveguide.

The time-harmonic Maxwell’s equations (5) depending on five parameters can be written as

∇× ((µrµ0)−1∇× E) + iω(σs1Gs + σa1Ga)E− ω2ε0(εsr1Gs + εar1Ga)E = −iωJ, (6)

where 1Gs
, 1Ga

denote the indicator functions of sub-domain Gs, Ga, respectively.
In the next section, we explain the stochastic background and describe different choices of
collocation points and their usage for the coplanar waveguide.

3 Non-Intrusive Uncertainty Quantification
Let (Ω,F ,P) be a probability space, where Ω is the set of all elementary events, F is a σ-
algebra of subsets of Ω, and P is a probability measure on F . Given a square integrable
random variable Y : Ω → Γ, where Γ = R or C, with probability density function f and an
arbitrary function g : Γ→ Cd for a natural number d, we are interested in the computation of
statistical quantities like the mean

E (g(Y )) :=

∫
Ω

g(Y (ω))dP(ω) (7)

and the standard deviation

std (g(Y )) :=
√
E (g(Y )2)− (E (g(Y )))2 (8)

of g(Y ). For practical computation, a numerical approximation of (7) and (8) is sometimes
needed.
Non-intrusive methods are sampling techniques which rely on repetitive runs of a discrete
solver. The most popular uncertainty quantification method is the MC simulation [22, 12].
The idea behind MC is the law of large numbers which describes the result of running the same
experiment a large number of times. Given a realization (ξ1, . . . , ξn) of a sample (Y1, . . . , Yn)
of the random variable Y , the sample mean of g(Y ) is given by

mn :=
1

n

n∑
i=1

g(ξi).

By the law of large numbers, we have mn → E (g(Y )) for n → ∞. Hence, mn ≈ E (g(Y ))
for large n.
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Therefore, MC uses a randomly chosen realization (ξ1, . . . , ξn) and equal weights for the
approximation of E (g(Y ))

E (g(Y )) ≈ 1

n

n∑
i=1

g(ξi) for large n.

The convergence is proportional to 1/
√
n, where n is the number of sampling points. Con-

sidering the coplanar waveguide in section 2, the vector of uncertain parameters p is a 5-
dimensional vector of log-normally distributed random variables and E(p) is the function g
we are interested in.

3.1 Stochastic Collocation
Another approach based on sampling is the stochastic collocation method. Its effectiveness
depends strongly on the choice of collocation points. The idea is to approximate statistical
quantities like the mean (7), by an (efficient) quadrature rule

E (g(Y )) =

∫
Γ

g(x)f(x)dx ≈
n∑
i=1

g(ξi)wi =: Ê (g(Y )) .

Here, the realization (ξ1, . . . , ξn), later called the sample points {ξi}ni=1, and the weights
{wi}ni=1 are determined by use of the probability density function f . Higher moments like the
standard deviation can be approximated by use of Ê (g(Y ))

std (g(Y )) ≈

√√√√ n∑
i=1

(g(ξi))2wi −
(
Ê (g(Y ))

)2

.

Like MC, stochastic collocation requires only repetitive runs of an existing deterministic
solver. The difference is the choice of sample points and weights. It is always possible to
use a tensor product of a one-dimensional interpolation formula. For many parameters, this
becomes very expensive. Therefore, we use two other options that suffer less from the curse of
dimensionality. One way is to use only a part of the tensor grid, which is done by the Smolayk
algorithm. The result is called a sparse grid. Another way to compute the points are the Stroud
integration rules which yield a very small number of points and have a fixed accuracy. Both
options are described below.

Stroud-3 Integration Rules

The Stroud-3 integration rule was introduced in 1957 by A. H. Stroud [34] and yields ei-
ther beta or normally distributed points which are weighted by 1/n, where n is the number
of points. In our case only the normally distributed points are considered. This choice is
motivated by the physics of the considered application, i. e., the fact that the parameters are
assumed to be log-normally distributed, as explained in section 2.
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Figure 3: Comparison of Stroud, HGK sparse grid level 2 and tensor grid in 2 dimensions.

For a system with N parameters only 2N sample points are needed. The j−th component of
the normally distributed points with mean µµµj and standard deviation σσσj is in [2] given as

xij = σσσj · zij +µµµj ,

where for i = 2r − 1, i = 2r, respectively and r = 1, 2, . . . , bN/2c

z2r−1
j =

√
2 cos

(
(2r − 1)jπ

N

)
, z2r

j =
√

2 sin

(
(2r − 1)jπ

N

)
.

If N is odd, then zNj = (−1)j . Here, bN/2c is the biggest natural number smaller or equal
than N/2.
Stroud-based stochastic collocation has been discussed in [2, 36]. The used Stroud-3 rule is
exact for polynomials up to degree 3. It is optimal for systems with few parameters because
of the very small number of sample points. Unfortunately, the accuracy is fixed, which makes
this method inappropriate for higher order systems. Figure 3a shows the standard normally
distributed Stroud points for a system with two parameters.
In case of the coplanar waveguide, Stroud yields n = 10 sample points {ξξξi}10

i=1 in the 5-
dimensional parameter space.

Hermite Genz-Keister Sparse Grids

Sparse grids are constructed by the Smolyak algorithm [27, 33] which is a linear combi-
nation of product formulas. Every one-dimensional quadrature rule can be chosen and the
linear combination preserves the interpolation properties of the univariate case for higher di-
mensions. We use a one-dimensional Hermite Genz-Keister (HGK) rule [9, 13] as starting
point for the Smolyak algorithm. Genz and Keister [9] developed multidimensional Gauss-
Hermite (GH) [14] schemes which have several nice features. As Gauss-Patterson rules (GP) [10,
16, 26] they are nested but in contrast to them they are computed on infinite regions. Further-
more, for a fixed order the number of grid points growths only exponentially. The advantage
compared with a usual GH rule is the nestedness.
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Due to the fact that they are computed after a difficult scheme, HGK rules do not exist for
arbitrary numbers of generating points. The beginning is a one-point Gauss-Hermite rule
which has degree 1. By adding new generators to that rule, we can achieve rules with degree
3, 15, 19, 29, 51, 63 and 67 [9]. The higher the level of the sparse grid, the higher the number
of generating points of the underlying one-dimensional quadrature rule.
To illustrate the sparsity of sparse grids, Figure 3b shows the HGK sparse grid of level 2
(HGK 2) with n = 21 grid points and Figure 3c shows the corresponding tensor grid with
n = 81 grid points for a standard normally distributed variable in two dimensions. In case of
the coplanar waveguide, we use HGK sparse grids of levels 0, 1, and 2 which have 1, 11, and
81 points in the 5-dimensional parameter space.
In the next section we explain a POD-based MOR method.

4 Model Order Reduction
UQ via MC or stochastic collocation requires numerous full-order EM field solves which can
be a time-consuming task for complicated 3D geometries. It is thus our goal to combine this
approach with MOR for the time-harmonic Maxwell’s equations (6) to reduce the computa-
tional cost. We need a ROM that preserves the statistical properties of the FOM.
In this work, we use a POD-based MOR like described in [15]. POD was first mentioned under
this name in [19]. Its central issue is the reduction of data revealing the essential information
with the aid of a few basis vectors. We will explain the close connection to the singular value
decomposition (SVD) [11] of rectangular matrices in this section.
For a given matrix Y = [y1, . . . , ym2

] ∈ Rm1×m2 with rank d ≤ min{m1,m2}, the SVD
ensures the existence of real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and orthogonal matrices
U = [u1, . . . , um1 ] ∈ Rm1×m1 and V = [v1, . . . , vm2 ] ∈ Rm2×m2 such that

UTY V =

(
D 0
0 0

)
=: Σ ∈ Rm1×m2

with D = diag(σ1, . . . , σd) ∈ Rd×d and zero matrices of appropriate dimensions. For any
l ∈ {1, . . . , d} the solution to

max
ũ1,...,ũl∈Rm1

l∑
i=1

m2∑
j=1

|〈yj , ũi〉Rm1 |2 s.t. 〈ũi, ũj〉Rm1 = δij for 1 ≤ i, j ≤ l

is given by the first l columns of U , {ui}li=1, which yields the POD basis of rank l. For a
given l ≤ d the POD yields the best approximation of the columns of Y among all rank l
approximations.
The vectors y1, . . . , ym2

are called snapshots, a designation which was first used in [32].
In our example, we need snapshots of the parameters which are then used to compute snap-
shots of the electrical field. We have several possibilities for the choice of snapshots. One
could use either the Stroud or the HGK sparse grid sample points for the computation of the
snapshots of the electrical field. Both choices do not yield useful reduced models.
In our example, we use 3 snapshots for every single parameter pj , namely µµµj − 3σσσj , µµµj , and
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µµµj + 3σσσj . This choice is motivated by the fact that 99% of all realizations of a N (µ, σ)-
distributed random variable lie in the interval [µ − 3σ, µ + 3σ]. Each of the 35 parameter
snapshots yields a snapshot of the electrical field. These E-snapshots are used for the POD.

5 Numerical Results
We show some numerical results for the coplanar waveguide in Figure 2, which are achieved
by the previously explained collocation method. The discretization of the affine system (6)
and the assembling of the matrices [8] is done in FEniCS [18] by use of Nédélec finite ele-
ments [24, 25]. In the finite element context, a weak solution of (6) is searched instead of a
classical one. Therefore, we employ a variational formulation, i.e., we multiply (6) by a test
function v ∈ Hcurl(G) := {v ∈ (L2(G))3| curl(v) ∈ (L2(G))3} and integrate over G. This
leads to∫

G

∇× ((µrµ0)−1∇× E)vdx +

∫
G

iω(σs1Gs
+ σa1Ga

)Evdx

−
∫
G

ω2ε0(εsr1Gs
+ εar1Ga

)Evdx = −
∫
G

iωJvdx.

Now the first integral is integrated by parts [4], which leads to∫
G

((µrµ0)−1∇× E)(∇× v)dx−
∫
∂G

(µrµ0)−1((∇× E)× n)vds

+

∫
G

iω(σs1Gs
+ σa1Ga

)Evdx−
∫
G

ω2ε0(εsr1Gs
+ εars1Ga

)Evdx = −
∫
G

iωJvdx.

For the boundary integral, it can easily be seen that∫
∂G

(µrµ0)−1((∇× E)× n)vds =

∫
∂G

(µrµ0)−1(∇× E)(n× v)ds,

which is equal to zero if n× v = 0. Therefore, we obtain the weak formulation∫
G

((µrµ0)−1∇× E)(∇× v)dx +

∫
G

iω(σs1Gs + σa1Ga)Evdx

−
∫
G

ω2ε0(εsr1Gs
+ εar1Ga

)Evdx = −
∫
G

iωJvdx,
(9)

for all v ∈ H0
curl(G).

The system is discretized by replacing the domain G by a finite dimensional closed subspace,
in our case a finite element grid Gh with 18755 degrees of freedom (dofs). For v1, v2 ∈
H0
curl(Gh), 1in and 1out the indicator function for the input and output region, respectively,
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and l = a, s, we define

Aµ0
=

∫
Gh

(µ−1
0 ∇× w)(∇× v)dx,

Alε0 =

∫
Gh

ε01Gl
wvdx,

Al =

∫
Gh

1Gl
wvdx,

B = −
∫
Gh

iω1invdx,

C =

∫
Gh

1outvdx.

Hence, the affine discretized form of (9) is

µrAµ0e− ω2(εsrA
s
ε0 + εarA

a
ε0)e + iω(σsAs + σaAa)e = Bu,

y = Ce,
(10)

where the second equation describes the output behavior of the system, u is the input current
and y the output voltage (both one-dimensional). Furthermore, the matrices Aaε0 , A

s
ε0 , A

a,
and As have non-zero entries only on the corresponding sub-domain. We consider as working
frequency ω = 0.6 · 109.
We want to approximate the mean and the standard deviation of the solution e(p) ∈ H0

curl(Gh)
and the output y(p) of (10) via

E(e(p)) ≈
n∑
i=1

e(ξξξi)wi, std(e(p)) ≈

√√√√ n∑
i=1

|e(ξξξi)|2wi − |E(e(p))|2,

E(y(p)) ≈
n∑
i=1

y(ξξξi)wi, std(y(p)) ≈

√√√√ n∑
i=1

|y(ξξξi)|2wi − |E(y(p))|2,

using stochastic collocation with sample points {ξξξi}ni=1 obtained by Stroud or HGK sparse
grids with the corresponding weights wi. For reasons of simplification, we will omit the p-
dependence of e and y in the following.
For the approximations computed via MC, EMC(e), stdMC(e), EMC(y), and stdMC(y), we
compare the following errors for different choices of collocation points

errrel
E(e) :=

∣∣∣∣E(e(x))− EMC(e(x))

EMC(e(x))

∣∣∣∣ ,
errrelstd(e) :=

∣∣∣∣std(e(x))− stdMC(e(x))

stdMC(e(x))

∣∣∣∣ ,
errrel

E(y) :=

∣∣∣∣E(y)− EMC(y)

EMC(y)

∣∣∣∣ ,
errrelstd(y) :=

∣∣∣∣std(y)− stdMC(y)

stdMC(y)

∣∣∣∣ .
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Figure 4: Monte Carlo convergence.

Method ‖errrel
E(e)‖2 ‖errrel

E(e)‖∞ ‖errrel
std(e)‖2 ‖errrel

std(e)‖∞ errrel
E(y)

errrel
std(y)

Stroud 1.13 · 10−3 6.69 · 10−5 7.12 · 10−2 1.06 · 10−3 8.76 · 10−6 4.03 · 10−4

HGK 0 6.43 · 10−3 7.43 · 10−4 - - 4.58 · 10−5 -

HGK 1 1.13 · 10−3 6.69 · 10−5 7.64 · 10−2 1.11 · 10−3 8.76 · 10−6 4.51 · 10−4

HGK 2 1.13 · 10−3 6.69 · 10−5 7.55 · 10−2 1.10 · 10−3 8.76 · 10−6 4.52 · 10−4

MC (POD) 8.79 · 10−8 7.35 · 10−8 1.83 · 10−7 3.04 · 10−8 6.96 · 10−12 4.10 · 10−11

Stroud (POD) 1.13 · 10−3 6.69 · 10−5 7.12 · 10−2 1.06 · 10−3 8.76 · 10−6 4.03 · 10−4

HGK 0 (POD) 6.43 · 10−3 7.43 · 10−4 - - 4.58 · 10−5 -

HGK 1 (POD) 1.13 · 10−3 6.69 · 10−5 7.64 · 10−2 1.11 · 10−3 8.76 · 10−6 4.51 · 10−4

HGK 2 (POD) 1.13 · 10−3 6.69 · 10−5 7.55 · 10−2 1.10 · 10−3 8.76 · 10−6 4.52 · 10−4

Table 2: Relative errors for the coplanar waveguide.

As the electric field is determined on the whole domain, we need to evaluate it in every dof of
the FEM grid and compute the relative error locally. This is expressed by writing e(x).
The MC simulation for the reference solution is implemented in MATLAB R© and operates on
1 million sample points. The computation took about 10 days on a 64-bit server with CPU
type Intel R©Xeon R©X5650 @2.67GHz, with 2 CPUs, 12 Cores (6 Cores per CPU) and 48 GB
main memory available. The variance of the MC with respect to the number of MC sample
points is shown in Figure 4. It can be seen that the variance for the electric field e is much
higher than for the output y, but both are converging.
The collocation is also implemented in MATLAB. The HGK sparse grids are computed by
means of the MATLAB library SGMGA [6]. Table 2 shows the relative errors for mean and
standard deviation of e and y.
HGK 0 is not able to approximate the reference solution for the standard deviations since the
single grid point is the mean vector of the parameters and hence the standard deviation is zero.
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Figure 5: Singular value decay for POD with 35 snapshots.

One the other hand, we observe that HGK 1 is already sufficient for this example as there is no
considerable improvement when we use HGK 2. Note that HGK 2 consists of 81 grid points.
Stroud and HGK 1 are comparable concerning complexity and accuracy.
Using the 35 snapshots described in section 4 we achieve the singular value decay shown in
Figure 5. We use a POD basis of rank l = 10 (see the horizontal line in Figure 5), since the
ratio of σ1 and σ10 is already of order 1012. Therefore, the reduced model has dimension 10.
The computation of the reduced model could not be done on the same computer as the col-
location due to memory requirements. It took about 4 minutes on an Intel R©Core2 Duo CPU
3GHz with 4GB RAM available. Considering as deterministic model the system evaluated at
the mean of the parameters with solution efull and yfull, we can compute the relative errors
for the reduced deterministic model with solution ePOD and yPOD

‖errrele ‖2 :=

∥∥∥∥efull(x)− ePOD(x)

efull(x)

∥∥∥∥
2

= 9.88 · 10−8,

‖errrele ‖∞ :=

∥∥∥∥efull(x)− ePOD(x)

efull(x)

∥∥∥∥
∞

= 7.36 · 10−8,

errrely :=

∣∣∣∣yfull − yPODyfull

∣∣∣∣ = 8.22 · 10−12.
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Model \Method (n) Stroud (10) HGK 0 (1) HGK 1 (11) HGK 2 (81) MC (106)

FOM (18755 dofs) 23.0 2.3 25.3 186.2 2.3 · 106

ROM (10 dofs) 4.6 · 10−2 4.6 · 10−3 5.1 · 10−2 3.7 · 10−1 4.6 · 103

Table 3: Computation time in seconds.

Figure 6: errrel
E(e) for Stroud, plotted in logarithmic scale.

The deterministic errors are small, which explains that the results for the MC simulation of
the reduced model (see Table 2) are even better than the collocation results for the full model.
Besides that, the collocation for the reduced model is as good as the collocation for the full
model.
The computation time needed for the system evaluations on an Intel R©Core2 Duo CPU 3GHz
with 4GB RAM available is shown in Table 3. These times confirm that the combination of
Stroud or sparse grid based collocation and MOR is a good time-saving alternative for higher
dimensional problems. The fact that the errors for the output y are smaller than the ones for
the electrical field e for all methods, can be explained by looking at Figure 6 which shows
the relative error for the mean of the electric field e computed via Stroud-based collocation on
the whole domain Gh and on the left half of the domain. There it can be seen that the error
is small in the region around the discrete port which is relevant for the computation of the
output y. For comparison, we plotted errrel

E(e) for MC of the reduced model in Figure 7. The
regions where a visible error occurs are smaller. Both figures have a logarithmic scale and the
legends range from the minimum to the maximum of the relative error.

6 Concluding Remarks
In this paper we described several techniques for UQ of the time-harmonic Maxwell’s equa-
tions. We showed that stochastic collocation is well-suited for the variational analysis of a
coplanar waveguide if the collocation points are chosen carefully. Stroud points as well as
HGK sparse grid points lead to an efficient computation of the statistical quantities. We com-
pared the results with a very accurate but computationally very costly MC simulation.
On the other hand, we reduced the computation time of the MC simulation by replacing the
FOM in the repetitive runs of the deterministic solver by a ROM. This was motivated by the
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Figure 7: errrel
E(e) for MC of the reduced model, plotted in logarithmic scale.

observation that ROMs computed by POD approximate the FOM very well for time-harmonic
Maxwells equations with uncertain parameters with small standard deviations. We achieved
a high accuracy for ROMs of very small order. Therefore, the combination of MC and MOR
turned out to be a good alternative to stochastic collocation based on the FOM.
We also replaced the FOM by a ROM in the stochastic collocation method. This approach
does not gain that much from MOR as POD requires more evaluations of the FOM than the
collocation itself. This would be different for systems with a higher number of parameters
and, thus, a much larger number of collocation points. The application of collocation com-
bined with MOR to examples with many parameters and more degrees of freedom stays future
work.
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