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Abstract

The M.E.S.S. software suite is the successor of the obsolete LyaPack
MATLAB® toolbox for solving large scale matrix equations and related prob-
lems. The software suite consists of a new MATLAB toolbox and a separate
C library C-M.E.S.S. which works independent from MATLAB. Due to the fact
that many scientists use Python with NumPy and SciPy for their everyday work
we want to provide the key algorithm of M.E.S.S. for them, too. This report
describes how we build an interface between Python and C-M.E.S.S. on top of
the NumPy/SciPy Python libraries.
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1 Introduction

M.E.S.S. (Matrix Equations Sparse Solver) is a toolbox intended to solve large sparse
matrix equations like Lyapunov and Algebraic Riccati Equations. Currently, M.E.S.S.
is available as a MATLAB toolbox and a separate C library. Besides C, Fortran and
MATLAB the Python programming language together with the NumPy[3] and SciPy[6]
packages becomes more and more popular in scientific computing.

The NumPy package provides a great and flexible implementation of n-dimensional
arrays and basic linear algebra in Python. The SciPy package additionally provides a
huge set of high level algorithms for scientific computations. Starting with advanced
linear algebra operations and the ability to work with sparse matrices it also includes
the Fast Fourier Transformations, ODE solvers and many other features that are known
from MATLAB. Because of the increasing popularity we want to provide the M.E.S.S.
functionality for Python, too. Obviously we can develop such a Python package in
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two different ways. On the one hand, we can rewrite all important algorithms like
the Low Rank Cholesky Factor ADI or the Low Rank Newton Method [13, 18] using
pure NumPy and SciPy features. On the other hand, we can develop an interface
between Python and C-M.E.S.S. and use the already implemented algorithms from the
C library. The later of those two ways is focus of this paper.

In the following sections we describe how the basic C interface of NumPy works and
how we convert the internal data structures of M.E.S.S. to the corresponding ones of
NumPy and SciPy. Afterwards we derive a Python interface for the ADI algorithm
which is similar to the one we provide in the MATLAB implementation one.

2 Python-C Module Initialization

Before we take a look at the conversion of data types between NumPy/SciPy and C-
M.E.S.S. we give a brief overview how a C extension for Python looks like. The Python
developers provide a good starting point for the development of an extension [2].
Basically, a Python-C extension consists of the following components:

1. Inclusion of the Python header python.h.

2. Inclusion of header files for additional functions and data structures, like the
NumPy array API and C-M.E.S.S..

3. Implementation of the Python interface for all functions that should be available
in Python because direct calls to C functions are only possible if the C function
takes standard C data types as inputs. See [1] for more details about this.

4. A initialization function which registers the previously defined functions in the
name space of the Python interpreter.

Additionally to these four basic parts of a Python-C extension we have to take care
of some specialties that have changed in the Python API between the two major
versions Python 2.x and Python 3.x [7]. Most of the changes do not affect our de-
velopment but for the case where we have to distinguish between the old and the
new Python APIs there exists a C macro which indicates the API version. Using the
PY MAJOR VERSION preprocessor constant we use API calls that differ between both
versions in the following way:

#if PY_MAJOR_VERSION < 3
// Code for the old API
#else
// Code for the new API
#endif

The first two parts of the component list for the Python-C extension result in the
following head for the C code:

#include <Python.h>
#define PY_ARRAY_UNIQUE_SYMBOL MESS_VECTOR_MATRIX_PYTHON_C_API
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#include <numpy/arrayobject.h>
#include "mess/mess.h"

Thereby, we have to define a unique identifier for the NumPy API. The preprocessor
constant PY ARRAY UNIQUE SYMBOL must be set to a unique name before we include
numpy/arrayobject.h. This symbol is necessary for NumPy to keep track to which
module the current NumPy instance belongs. If the module consists of more than one C
source file every source file has to define this unique symbol before it includes NumPy.

Because of the unification of classic and UTF-8 strings in Python 3 [7] we have to
define a macro to convert Python strings to C strings depending on the API version:

#if PY_MAJOR_VERSION < 3
#define ConvStringtoC(X) PyBytes_AsString(X)
#else
#define ConvStringtoC(X) PyBytes_AsString(PyUnicode_AsUTF8String(X))
#endif

This macro is necessary later to get information about data types or underlying classes
from a Python object without dealing with the different APIs every time.

Every function we want to export from C to Python must be registered in the
Python name space when the module is loaded using import. Therefore we list all
functions that should be available from Python in a designated array. Each element
of the array consists of four components. The first one is a string containing the
name of the function from the Python point of view. The second one is the name
of the function inside the C interface. More precisely this is a function pointer to
the corresponding function in the Python-C interface. The third component is a
flag which indicates how the function handles the given function arguments. Python
knows two ways to identify the function arguments. On the one hand, the position
of a function argument determines its meaning. This behavior is well known from
almost all programming languages. If the flag is set to METH VARARGS this behavior
is used. On the other hand, Python can identify the function arguments by keywords,
that means that the function arguments can appear in an arbitrary order as long as
they are all marked with a keyword. This behavior is enabled by performing an or
operation on METH KEYWORDS and the flag. The last component of each function entry
is a documentation string. The string can be retrieved from the function in Python
by calling:

print(modulename.function_name.__doc__)

or in IPython:

modulename.function_name?

The last entry in the function list is a NULL entry to identify the end of the list without
any external counter. The function list for our extension looks like:

static PyMethodDef interface_python_methods[] = {
{"eps", Pymess_eps, METH_VARARGS,

"Return the machine epsilon."},

3



{"lradi", Pymess_lradi,
METH_VARARGS | METH_KEYWORDS,
"Interface to the C.M.E.S.S. LRCFADI function."},

{NULL, NULL, 0, NULL}
};

If we want to add new functions to our Python-C extension we only have to write
the interface function and simply create a new entry in this list of exported functions.
The rest of the code is untouched.

The initialization function of the module is the largest difference between Python-2
and Python-3. Therefore we present both variants separately, although in the real
implementation they are combined to one initialization function because most of the
inner part is valid for both cases [5].

2.1 Python-2 C API Initialization

The initialization function for a Python-2 module looks basically like:

struct module_state {
PyObject *error;

};

#define GETSTATE(m) (&_state)
static struct module_state _state;

#define INITERROR return
void initpycmess(void) {
PyObject *module = Py_InitModule("pycmess", interface_python_methods

);

if (module == NULL)
INITERROR;

struct module_state *st = GETSTATE(module);
st->error = PyErr_NewException("pycmess.Error", NULL, NULL);
if (st->error == NULL) {
Py_DECREF(module);
INITERROR;

}
// Additional code
import_array();

}

The most important thing in this case is the name of this function. It must be called
initTHEMODULENAME. In our case the Python module should be called pycmess
so the resulting name of the initialization function is initpycmess. If the func-
tion name is spelled differently the Python interpreter can not call the initialization
and the module is not usable. The most important function is Py InitModule. It
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registers the previously defined function list with the corresponding module name in
the Python name space. The first argument which represents the module name again
must fit to the name of the initialization function without the init prefix. If the
Py InitModule() call is not able to register the module successfully, an error is
raised. After a successful registration of our module at the Python interpreter we can
perform some additional initializations like loading the NumPyAPI in our case.

Reference Counting. The Py DECREF() function is a special function for the mem-
ory management in Python. Python and its C-API do not directly rely on the C
memory management system. On top of this Python implements a garbage collector
and a reference counting system. Each object in the memory has a reference counter.
Every time the object is used by a function the reference is increased by one. If a
function does no longer need an object it decrements the reference by one. If the value
of the reference counter is zero the object is no longer used by any function and can
be freed. For our example that means if the PyErr NewException returns NULL
the error exception is not created and the module initialization has to fail. To this
it decrements the reference on the module such that this will be thrown away by
the garbage collector. Because of the reference counting concept we have to take care
every time we retrieve a value from a Python object. Some functions will return new
references to objects and values, that means their reference counter is incremented.
Other functions only return a borrowed reference which means the reference counter
is not incremented. If we got a new reference to an object we have to call Py DECREF
when we no longer need or access it. If we have to increase the reference manually we
call PY INCREF on the desired object. In order to remove an object completely from
the memory we have to call Py DECREF as many times as there is a reference on it.

2.2 Python-3 C API Initialization

In contrast to the Python-2 API a Python-3 module does no longer store its internal
state in a global variable like the static state structure in the Python-2 source
code [19]. Python-3 keeps track of the state data of every module. That requires that
not only the functions but also the internal state must be registered at the Python
interpreter. Additionally we need two functions to iterate over the internal state and
to clear it. All information about the module, like its name, the exported functions
and the handling of the internal state are collected in the PyModuleDef structure.
The following source code shows how this initialization looks in this case:

struct module_state {
PyObject *error;

};
static int state_traverse(PyObject *m, visitproc visit, void *arg) {

Py_VISIT(GETSTATE(m)->error);
return 0;

}
static int state_clear(PyObject *m) {

Py_CLEAR(GETSTATE(m)->error);
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return 0;
}
static struct PyModuleDef moduledef = {

PyModuleDef_HEAD_INIT,
"pycmess",
NULL,
sizeof(struct module_state),
interface_python_methods,
NULL,
state_traverse,
state_clear,
NULL };

#define INITERROR return NULL
PyObject* PyInit_pycmess(void) {

PyObject *module = PyModule_Create(&moduledef);

if (module == NULL)
INITERROR;

struct module_state *st = ((struct module_state*)
PyModule_GetState(module));

st->error = PyErr_NewException("interface_python.Error", NULL,
NULL);

if (st->error == NULL) {
Py_DECREF(module);
INITERROR;

}
// Additional Code
init_array();
return module;

}

Another difference between both API versions is the naming rule for the initializa-
tion function and its return type. For Python-3 this has to fit the following scheme:
PyInit THEMODULENAME. Additionally the function now returns the pointer to the
initialized module instead of void. Using a set of #if ... #else ... #endif
preprocessor statements we can combine both API variants to one single initialization
part where we only have to modify our code once if we integrate new features.

In the following to sections we describe a set of helper functions that are necessary
to move data between NumPy/SciPy and C-M.E.S.S..

3 Moving matrices and vectors to C-M.E.S.S.

In this section we discuss how the functions matrix to c and vector to c work
and what the caveats during the implementation are. The function signature of these
two functions are
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mess_matrix matrix_to_c(PyObject *data);
mess_vector vector_to_c(PyObject *data);

Both functions should check if a corresponding matrix or vector type exists in C-
M.E.S.S. and adjust the data types. For example if the matrix is a single precision
one or an integer one in Python it is converted to double precision because C-M.E.S.S.
only supports double precision values in real and complex arithmetics.

3.1 The matrix convert function

NumPy and SciPy support a huge set of dense and sparse matrix storage formats.
For example the dense matrices can be stored row-major (C style) or column-major
(Fortran style). Sparse matrices are available in Compressed Sparse Row (CSR),
Compressed Sparse Column (CSC), Block Sparse Row (BSR), Coordinate (COO),
Diagonal (DIA), Dictionary of Keys (DOK), and Link List (LIL) storage. For our
interface we restrict to both dense storage schemes and the three sparse matrix formats
supported by C-M.E.S.S.. These are the CSR, the CSC and the COO storage scheme.
If we want to pass one of the other formats to our interface we have to convert them
in Python before we call a function from our module. Therefore each sparse matrix in
Python has some methods like .tocsr(), .tocsc() or .tocoo().

The conversion function should work as follows: It takes a Python object as an input
and inspects whether it is a matrix and a corresponding matrix type in C-M.E.S.S.
exists. If the conversion is successful it returns a newly created mess matrix object
filled with the data from the Python matrix. In order to work with the data properly
the original data is copied to new object instead of only referenced. If the matrix can
not be converted the function returns NULL and an error is raised. The skeleton of
the function is the following:

mess_matrix matrix_to_c(PyObject *data) {
PyObject *module = NULL;
if(PyObject_HasAttrString(data, "__module__")) {
module = (PyObject*) PyObject_GetAttrString(data, "__module__");

//Convert a CSR matrix to C
if (strcmp(ConvStringtoC(module),"scipy.sparse.csr") == 0) {

// ...
Py_DECREF(module); return csr_matrix;

}

//Convert a CSC matrix to C
if (strcmp(ConvStringtoC(module),"scipy.sparse.csc") == 0) {

// ...
Py_DECREF(module); return csc_matrix;

}

//Convert a COO matrix to C
if (strcmp(ConvStringtoC(module),"scipy.sparse.coo") == 0) {
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// ...
Py_DECREF(module); return coo_matrix;

}
Py_DECREF(module);

}

// Convert a Dense matrix to C
if (PyArray_Check(data)) {
mess_int_t i;
PY_GET_LONG(i, data,"ndim");
if (i != 2) {

PyErr_SetString(PyExc_TypeError,
"Dense matrix must be a two dimensional array.");

return NULL;
}
// ...
return dense_matrix;

}
PyErr_SetString(PyExc_TypeError,

"Argument type should be a dense matrix,
2d-array or a scipy.sparse matrix (coo, csr or csc)");

return NULL;
}

First we check if the given Python object has a module property and if this fits to
one of the three supported sparse storage formats from SciPy. Therefore we use the
ConvStringtoC macro, which we introduced in Section 2. If none of these works we
check if the given data is a two dimensional array which can be transfered to a dense
matrix. If any other Python object is passed to the matrix to c function it results in
an error and returns a NULL pointer. As already mentioned in Section 2, Python uses
reference counting for the memory management. That is why we have to decrement
the reference on the module variable after we accessed it the last time. Otherwise,
the garbage collector will not recognize that this data set is not longer in use and will
not free it.

The PY GET LONG macro in the previous code snippet helps us to get the ndim
attribute out of the data object easily. It is defined as

#define PY_GET_LONG(dest, obj, name ) { \
PyObject *pv = PyObject_GetAttrString(obj, name); \
if (pv != NULL) {
dest = PyLong_AsLong(pv);\
Py_DECREF(pv); \

}}

and works follows: It fetches the attribute called name from the object obj which
creates a new reference on this attribute. If this was successful it tries to convert the
value of the attribute to a long integer and writes it to dest. Afterwards, the reference
on the attribute is decremented. If it fails it leaves the value of dest as it is.
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3.1.1 Dealing with sparse matrices

Because all three supported matrix storage formats rely on the same internal structure,
i.e. one array for the values and two integer arrays to store the corresponding positions
in the matrix, we restrict to the Compressed Sparse Row storage here. The CSC and
the COO storage schemes work analogously. The whole procedure of converting a
sparse matrix to C-M.E.S.S. consists of three steps:

1. Get the number of rows, number of columns and the number of non zero elements
from the matrix,

2. Get the data type of the values from the object and convert it either to double
or to double complex values.

3. Fetch both index vectors and convert the integer type to mess int t.

The first step is realized using the following piece of code:

PyObject *temp = NULL, *temp2 = NULL;
mess_matrix csr_matrix;
mess_matrix_init(&csr_matrix);
PY_GET_LONG(csr_matrix->nnz, data, "nnz");
temp = (PyObject*) PyObject_GetAttrString(data, "shape");
temp2 = (PyObject*) PyTuple_GetItem(temp, 0);
csr_matrix->rows = (mess_int_t) PyLong_AsLong(temp2);
temp2 = (PyObject*) PyTuple_GET_ITEM(temp, 1);
csr_matrix->cols = (mess_int_t) PyLong_AsLong(temp2);
Py_DECREF(temp);

csr_matrix->store_type = MESS_CSR;
csr_matrix->symmetry = MESS_GENERAL;

The number of non zero elements is extracted directly out of the object from the nnz
property using the PY GET LONG macro. The dimension of the matrix is stored in
the shape attribute as a tuple (rows,cols). The extraction of this works in two
steps. First we get the tuple from the shape attribute and save it in a temporary
variable. Afterwards we can pick the first and the second value in the tuple via
PyTuple GET ITEM and convert them to proper integer values. We only need to
decrement the reference on the shape variable because PyTuple GET ITEM only
returns a borrowed reference which is not incremented before. Because SciPy does
not distinguish between symmetric or non-symmetric matrices we set the symmetry
property of the matrix to MESS GENERAL.

The second step is to extract the values of the matrix from the Python object.
The two Python data types float64 and complex128 correspond directly to the
double and double complex types in C-M.E.S.S.. They can be copied directly to C
using memcpy. All other types which present a non complex value, such as float32
or one of the various integer types, must be converted to float64 before. If the
values are of the single precision complex type complex64 they must be converted
to complex128. The data type can be extracted out of the object by reading the
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dtype attribute. Additionally integer data can be checked using PyArray ISSIGNED
and PyArray ISUNSIGNED function. This avoids to check for every of the available
integer types. The desired matrix data is contained in an array hidden behind the
data attribute. The whole procedure to get the data copied from Python to C is
shown in the following code snippet:

temp = (PyObject*) PyObject_GetAttrString(data, "dtype");
PyObject *dtype = (PyObject*) PyObject_GetAttrString(temp,"name");
char *dtype_str = ConvStringtoC(dtype);
Py_DECREF(temp);

PyObject *value_data =(PyObject*)PyObject_GetAttrString(data,"data");
if ( strcmp(dtype_str,"float64") == 0

|| strcmp(dtype_str,"float32") == 0
|| PyArray_ISSIGNED(value_data)
|| PyArray_ISUNSIGNED(value_data)) {
PyObject *values = NULL;

csr_matrix->values = malloc(sizeof(double)*csr_matrix->nnz);
if ( strcmp(dtype_str,"float64") != 0 ) {
values = PyArray_FROM_OT(value_data,NPY_DOUBLE);

} else {
values = value_data;

}
memcpy(csr_matrix->values, PyArray_DATA(values),

sizeof(double)*csr_matrix->nnz);
csr_matrix->data_type = MESS_REAL;
if ( values != value_data) { Py_DECREF(values); }

}
else if (strcmp(dtype_str,"complex128") == 0

||strcmp(dtype_str,"complex64") == 0) {
PyObject *values = NULL;
csr_matrix->values_cpx = malloc(sizeof(double complex)

*csr_matrix->nnz);
if ( strcmp(dtype_str,"complex64") == 0 ) {
values = PyArray_FROM_OT(value_data,NPY_COMPLEX128);

} else {
vlues = value_data;

}
memcpy(csr_matrix->values_cpx,PyArray_DATA(values),

sizeof(double complex)*csr_matrix->nnz);
csr_matrix->data_type = MESS_COMPLEX;
if ( values != value_data) { Py_DECREF(values); }

}
else {

Py_DECREF(dtype); Py_DECREF(value_data); Py_DECREF(module);
PyErr_SetString(PyExc_TypeError, "Argument Matrices should

have either integer, float32/64 or complex64/128 entries");
return NULL;

}
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Py_DECREF(dtype);
Py_DECREF(value_data);

The key ingredients in this part are the PyArray FROM OT and the PyArray DATA
function. The first one allows us to convert an arbitrary array to an array with a desired
data type. We use this function to ensure that we have either one of the two supported
data types in C-M.E.S.S.. If the data type is already float64 or complex128 we do
not call this function. As of NumPy 1.6.1 each PyArray FROM OT should be preceded
by a PyErr Clear() call because it internally checks the error state of the runtime
system without ensuring a proper error state before. The second important function
PyArray DATA returns a pointer to the data of the array. This pointer can be cast to
the corresponding C data type or can be used as input for memcpy to copy the array
data to a new previously allocated array. Depending on the data type we allocate the
values or the values cpx component of the C-M.E.S.S. matrix and copy the data
to this location. The data copy is necessary because otherwise an access to the C-
M.E.S.S. matrix can damage the linked Python object. The reason behind this is that
we cannot ensure that there are no pointer arithmetic and no memory management
related operations performed on the matrix. In such a case the Python interpreter
would crash.

Moving the index vectors from Python to C results in some platform specific prob-
lems regarding the integer sizes. NumPy uses an integer called npy int as default.
Depending on the operating system and the hardware platform this can be a 32bit or
a 64bit integer. Inside C-M.E.S.S. we have the same problem. The type mess int t
can be 32bit or 64 bit, as well. Obviously, we can only copy the values directly in two
cases. Otherwise the integer sizes differ and the result after the copy procedure only
contains unusable data. The problem can be solve by introducing a temporary array.
This array contains the 64bit integer representation of the values and can be cast to
any other possibly smaller integer type. This temporary array is created by using
the already known PyArray FROM OT function again. The pointer which is extracted
from the temporary array afterwards has the type npy int64*. If we now iterate
over the array we can cast each element correctly to mess int t. The procedure for
the row indices contained in the indptr attribute of a CSR matrix looks like:

temp = (PyObject*) PyObject_GetAttrString(data, "indptr");
PyObject * indptr = PyArray_FROM_OT(temp, NPY_INT64);
array = (npy_int64 *) PyArray_DATA(indptr);
csr_matrix->rowptr = malloc(sizeof(mess_int_t)*(csr_matrix->rows+1));
for (i = 0; i < csr_matrix->rows+1; i++) {

csr_matrix->rowptr[i] = (mess_int_t) array[i];
}
Py_DECREF(temp);
Py_DECREF(indptr);

The column indices are extracted in the same way out of the indices attribute. After
all indices are converted we have to decrement the reference of all temporarily created
Python objects to tell the garbage collector that they can be removed from memory.
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Finally, we only need to return the created csr matrix. This matrix can be used
like any other matrix inside the C-M.E.S.S. library.

3.1.2 Dealing with dense matrices

Dense matrices are represented as NumPy nd-arrays with two dimensions. Internally
the values are stored in C style or Fortran style arrays. Additionally, NumPy allows
to define so called slices on arrays. A slice in the Python context is a view on a
sub-array (defined by a continuous or equally strided index set) which can be used
like a ordinary array but shares the same data. That means if we access an element
in the sliced matrix we access the corresponding element in the original matrix. The
following example creates a slice on the the sub-matrix A(1 : 2, 4 : 5) of a matrix A:

Asub = A[1:3,4:6]

The different upper indices are cause by the Python :-operator which does not include
the upper bound like MATLAB does. Each access to Asub is redirected to the corre-
sponding part in A. Even slices that only access every second element of an array are
possible. The slices work for C style storage, as well as, for the Fortran style storage. If
we want to implement this by a distinction of cases we result in four complicated cases
each for real and complex arithmetics. If the matrices are stored in C style we might
have to transpose them again to get the corresponding Fortran storage scheme because
C-M.E.S.S. only supports dense matrices in Fortran style. The reason behind this is
that C-M.E.S.S. strongly relies on the FORTRAN77 interface to BLAS and LAPACK.

Fortunately, the NumPy API provides some helper functions which enable us to
handle all four cases in only one step per data type. Each array has a stride information
for each dimension. This property contains the information how many positions in
memory the next element in the same dimension is away from the current one. Consider
we have a stride srow for the rows and a stride scol for the columns then the element
(i, j) of a matrix, with zero based indexing, is at position

p := i · srow + j · scol (1)

If we have a ordinary matrix A ∈ Rm×n which is no slice then the following conditions
are true: If the matrix is stored in C storage srow := n and scol = 1. If the matrix is
stored like a Fortran array then srow := 1 and scol = m. In the case of sliced matrices
the row and the column stride are set to values that corresponds to the slice.

If we now take a look on the implementation we first create our new dense matrix
and extract the size and the stride information out of the Python array:

mess_matrix dense_matrix;
mess_matrix_init(&dense_matrix);
dense_matrix->rowptr = NULL;
dense_matrix->colptr = NULL;

rows = (mess_int_t) PyArray_DIM(data,0);
cols = (mess_int_t) PyArray_DIM(data,1);
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stride_rows = PyArray_STRIDE(data,0);
stride_cols = PyArray_STRIDE(data,1);

In contrast to the sparse matrices, the size information can be extracted directly
from the array by calling PyArray DIM for each dimension. The PyArray STRIDE
function returns the stride for every dimension in bytes. In order to get the stride
counted in elements we have to divide by the size of element later on.

The detection of the data types works as for the sparse matrices. The handling of
other types than float64 and complex128 can be realized in the same way as for
the sparse matrices or by implementing it for every allowed data type. First we have
to figure out the size of one element to adjust the stride information. Afterwards we
can copy each element to a Fortran style array by iterating over the whole matrix.
Therefore we compute the position in the NumPy array using (1). Hence, this access
strategy works for C and Fortran style storage we do no longer need to transpose
a C style matrix after we copied the values. The following source code shows this
procedure:

temp = (PyObject*) PyObject_GetAttrString(data, "dtype");
dtype = (PyObject*) PyObject_GetAttrString(temp, "name");
dtype_str = strdup(ConvStringtoC(dtype));
Py_DECREF(temp);
Py_DECREF(dtype);
if ( strcmp(dtype_str, "float64") == 0 ) {

type_size = sizeof(double);
data_type = MESS_REAL;

} else if ( strcmp(dtype_str, "complex128") == 0 ) {
type_size = sizeof(double complex);
data_type = MESS_COMPLEX;

} else {
// Throw error

}

mess_matrix_alloc(dense_matrix, rows, cols,
rows*cols,MESS_DENSE, data_type);

stride_rows/= type_size;
stride_cols/= type_size;

if ( strcmp(dtype_str, "float64") == 0 ) {
double *values = PyArray_DATA(data);
for (i = 0; i < rows; i++) {

for (j = 0; j < cols; j++) {
dense_matrix->values[i+j*dense_matrix->ld] =

values[i*stride_rows+j*stride_cols];
}

}
} else if ( strcmp(dtype_str, "complex128") == 0 ) {

double complex *values = PyArray_DATA(data);
for (i = 0; i < rows; i++) {
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for (j = 0; j < cols; j++) {
dense_matrix->values_cpx[i+j*dense_matrix->ld] =

values[i*stride_rows+j*stride_cols];
}

}
}
free(dtype_str);

The vector convert function is implemented as the dense matrix convert function
restricted to a one dimensional NumPy nd-array.

4 Building a Python Matrix and Vector objects from C

After performing our computations in C we want to pass the corresponding results
back to Python, or more precisely to the corresponding NumPy objects. Therefore we
provide two functions similar to the ones from Section 3:

PyObject* matrix_to_python(mess_matrix c_matrix);
PyObject* vector_to_python(mess_vector c_vector);

Both functions take a C-M.E.S.S. object as an input and produce double precision real
float64 or complex complex128 NumPy/SciPy object from it. If other data types
are desired the objects must be converted afterwards in Python to the correct data
type. Another difference is that both functions try to move the data directly to the
Python object to reduce the memory usage and the copy operations. For this reason
the input objects are reset at the end of the function and will be empty. If we need
the data afterwards in C again we have to create a copy before.

4.1 Converting a matrix from C-M.E.S.S. to Python

Similar to the function presented in Subsection 3.1 we have to distinguish all possible
input storage types of the mess matrix object. This results in the following skeleton
for the matrix convert function:

PyObject* matrix_to_python(mess_matrix c_matrix) {
if ( MESS_IS_CSR(c_matrix) ) {

...
return csr_matrix;

} else if ( MESS_IS_CSC(c_matrix) ) {
...
return csc_matrix;

} else if ( MESS_IS_COORD(c_matrix) ) {
...
return coo_matrix;

} else if ( MESS_IS_DENSE(c_matrix) ) {
...
return dense_matrix;

} else {

14



PyErr_SetString(PyExc_TypeError,
"C-MESS Matrices must be CSR, CSC, COORD, or DENSE ones");

return NULL;
}

};

For the further explanations we restrict again to CSR and dense matrices because the
two remaining sparse storages formats again work analogously.

4.2 Handling of sparse matrices

Depending on the storage type of the input we convert the C-M.E.S.S. matrix to
an instance of the following SciPy objects: scipy.sparse.csr matrix, scipy.
sparse.csc matrix or scipy.sparse.coo matrix. This works similar to the
already presented direction to C in a three step scheme:

1. Create two Python arrays containing the index information of the sparse matrix.
Due to compatibility issues we copy them to a NumPy NPY INT integer array such
that we fit all different platform specifications without an additional distinction
of cases.

2. Move the value data directly to a Python array without coping or reallocating a
memory location.

3. Call the constructor routine of the corresponding NumPy or SciPy object with
the previously created arrays.

The Python arrays for the first step are created using the PyArray SimpleNew
function. This function allocates a new n-dimensional Python array of a desired size
and data type. The C compatible memory location for the array is retrieved using the
PyArray DATA function afterwards. This location can be used as a standard C style
array and is filled with the corresponding data using standard C operations. In the
case of our two index vectors we allocate two arrays of the type NPY INT and fill them
with a for-loop afterwards casting the mess int t integers to the correct Python
integer type npy int:

npy_intp dim = (npy_intp) c_matrix->rows +1 ;
PyObject *ReturnIndptrArray = PyArray_SimpleNew(1, &dim, NPY_INT);
npy_int* array = (npy_int *) PyArray_DATA(ReturnIndptrArray);
for ( i = 0; i < dim; i++) {

array[i] = (npy_int ) c_matrix->rowptr[i];
}

dim = (npy_intp) c_matrix->nnz;
PyObject *ReturnIndicesArray = PyArray_SimpleNew(1, &dim, NPY_INT);
array = (npy_int *) PyArray_DATA(ReturnIndicesArray);
for (i = 0; i < dime; i++) {

array[i] = (npy_int) c_matrix->colptr[i];
}
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In order to save some memory we do not want to copy the values of the matrix
too. In this case we directly use the memory location where the data reside in C
for the Python matrix too. Therefore we create the Python array containing the
values using the PyArray SimpleNewFromData. This function works similar to the
PyArray SimpleNew function, but instead of allocating a new memory location it
take an already allocated one as a pointer and refers to that one. This results in the
following piece of code to transfer the values of the matrix to Python:

PyObject *ReturnDataArray = NULL;
if(c_matrix->data_type == MESS_REAL){

npy_intp nnz = (npy_intp) c_matrix->nnz;
ReturnDataArray = PyArray_SimpleNewFromData(1, &nnz,

NPY_FLOAT64, (void *) c_matrix->values);
} else if(c_matrix->data_type == MESS_COMPLEX) {

npy_intp nnz = (npy_intp) c_matrix->nnz;
ReturnDataArray = PyArray_SimpleNewFromData(1, &nnz,

NPY_COMPLEX128, (void *) c_matrix->values_cpx);
} else {

PyErr_SetString(PyExc_TypeError,
"C-MESS Matrices can only be Real or Complex");

}

After all data has been moved to Python we call the constructor method of the
scipy.sparse.csr matrix type. For our case we use the following variant:

csr_matrix = scipy.sparse.csr_matrix((data, indices, indptr),
shape=(M, N))

To this end we have to package all three arrays that contain the data for a CSR matrix
to one tuple of three elements and the dimension of the matrix to a second tuple of
two integers:

PyObject* ArrayReturn = Py_BuildValue("(OOO)", ReturnDataArray,
ReturnIndicesArray, ReturnIndptrArray);

PyObject* Dim_Return = Py_BuildValue("(ii)", c_matrix->rows,
c_matrix->cols);

These tuples are now passed to the constructor which sets up the SciPy instance of
our sparse matrix:

PyObject *ScipySparse = PyImport_ImportModule((char*)"scipy.sparse");
PyObject *Create_CSRmatrix = PyObject_GetAttrString(ScipySparse,

(char*)"csr_matrix");
PyObject *csr_matrix = PyObject_CallObject(Create_CSRmatrix,

Py_BuildValue("(OO)", ArrayReturn, Dim_Return));

As final step we have to decrement the reference count of all newly generated Python
objects by one and reset the c matrix because we move the data to Python and the
former values memory location is now controlled by the Python memory manage-
ment. The last step is done setting c matrix->values or respectively c matrix->values cpx
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to NULL and calling MESS MATRIX RESET on the matrix. This does, however, not
mean that the matrix must not be cleared at the end of the Python-C extension via
mess matrix clear.

In case of CSC and Coordinate matrices we have to change the dimensions of the
different arrays slightly and adjust the constructor calling sequence.

4.3 Moving dense matrices to Python

Since C-M.E.S.S. supports only the Fortran compatible matrix storage and NumPy uses
the C-style storage by default we either have to transpose our matrix before or transfer
it using a similar technique as presented in Subsection 3.1.2. We choose the second
way because of it does not need the intermediate transposed copy of the matrix and it
allows to transfer matrices where the leading dimension is not equal to the number of
rows. This is for example the case if the given matrix is only a view to another matrix
(similar to the concept of slices in NumPy). Additionally, implementing the transfer
in the same way as the transfer from Python to C works allows to handle a change in
the default storage scheme behavior of NumPy without changing our code. The work
flow in this case is as follows:

1. Allocate the 2 dimensional NumPy array for the matrix values.

2. Get the row and column stride from the previously allocated NumPy array.

3. Copy the matrix values from C to Python. The corresponding position in the
Python array is computed from the stride properties using 1 from Page 12.

4. Call the constructor numpy.matrix to create a dense matrix out the more
general two dimensional object.

The two dimensional array is allocated using the PyArray SimpleNew function as
for the sparse matrices and the stride is extracted using PyArray STRIDE which was
already mentioned in Subsection 3.1.2:

PyObject* ReturnArray = NULL;
npy_intp dim[2] = {c_matrix->rows, c_matrix->cols};
npy_intp stride_rows, stride_cols;
if ( MESS_IS_REAL(c_matrix)) {

ReturnArray = PyArray_SimpleNew(2, dim , NPY_FLOAT64);
} else if (MESS_IS_COMPLEX(c_matrix)) {

eturnArray = PyArray_SimpleNew(2, dim , NPY_COMPLEX128);
stride_rows = PyArray_STRIDE(ReturnArray,0);
stride_cols = PyArray_STRIDE(ReturnArray,1);

As before, depending on the data type we have to adjust the stride variables because
they are counted as byte offsets and not in terms of floating point numbers. Afterwards
we iterate over all matrix elements and copy them to the corresponding position in
the ReturnArray:

17



if(MESS_IS_REAL(c_matrix)){
double *values = PyArray_DATA(ReturnArray);
stride_cols /= sizeof(double);
stride_rows /= sizeof(double);
for (i = 0; i < c_matrix->rows; i++)

for (j = 0; j < c_matrix->cols; j++)
values[i*stride_rows+j*stride_cols] = c_matrix->values[i+j*

c_matrix->ld];
} else if(MESS_IS_COMPLEX(c_matrix)){

double complex *values = PyArray_DATA(ReturnArray);
stride_cols /= sizeof(double complex );
stride_rows /= sizeof(double complex );
for (i = 0; i < c_matrix->rows; i++) {

for (j = 0; j < c_matrix->cols; j++) {
values[i*stride_rows+j*stride_cols] =
c_matrix->values_cpx[i+j*c_matrix->ld];

}

Although, we already created a two dimensional NumPy array we call the numpy.
matrix constructor as well. This is more or less done for compatibility reasons and
easier handling of the matrix in scientific computing. As difference between a two
dimensional array and a matrix the NumPy documentation says “A matrix is a spe-
cialized 2-D array that retains its 2-D nature through operations.”[3] The call of the
constructor is done like in the case of the sparse matrices: dense matrix from Python
to C:

PyObject *Numpy = PyImport_ImportModule((char*)"numpy");
PyObject *Create_dense_matrix =

PyObject_GetAttrString(Numpy,(char*)"matrix");
PyObject *ReturnMatrix = PyObject_CallObject(Create_dense_matrix,

Py_BuildValue("(O)", ReturnArray));
//clean up
Py_DECREF(Numpy);
Py_DECREF(Create_dense_matrix);
Py_DECREF(ReturnArray);
MESS_MATRIX_RESET(c_matrix);
return ReturnMatrix;

4.4 Converting vectors to Python

Like in the previous Section the vectors are regarded as special matrices. But from the
data structure point of view this is only a continuous array of values from the same
type. This allows us an easy implementation of the convert routine. We only need
to call PyArray SimpleNewFromData with the dimension of the vector and the right
pointer to the entries:

PyObject* vector_to_python(mess_vector c_vector){
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PyObject* ReturnArray = NULL;
npy_intp dim;
if(MESS_IS_REAL(c_vector)) {

dim = (npy_intp ) c_vector -> dim;
ReturnArray = PyArray_SimpleNewFromData(1, &dim, NPY_FLOAT64,

c_vector->values);
c_vector->values = NULL;
c_vector->dim = 0;

} else if (MESS_IS_COMPLEX(c_vector)) {
dim = (npy_intp ) c_vector -> dim;
ReturnArray = PyArray_SimpleNewFromData(1, &dim, NPY_COMPLEX128,

c_vector->values_cpx);
c_vector->values_cpx = NULL;
c_vector->dim = 0;

}
return ReturnArray;

}

5 Interfacing the LRCF-ADI algorithm

After we discussed the data transfer of the two main objects in the numerical linear
algebra we focus on an easy to use and easy to extend interface to various large scale
matrix equation solvers from C-M.E.S.S.. As most important representative of this
family we use the continuous time Lyapunov equation and its generalization

AX + XAT + BBT = 0, (2)

AXET + EXAT + BBT = 0. (3)

For sake of completeness we mention the transposed case of these two equations

ATX + XA + CTC = 0, (4)

ATXE + ETXA + CTC = 0 (5)

as well. These Lyapunov equations play an important role in system and control
theory. They are the key ingredients for the analysis of linear time invariant sys-
tems [8]. Furthermore the solution is necessary for the Balanced Truncation(BT)
model order reduction [17, 18] or the solution of algebraic Riccati equations using a
Newton-Scheme [18].

In the small and dense case there exist the Bartels-Stewart Algorithm [9] and
Hammarlings-Method [15] to solve these equations. In the sparse and large scale
case the Alternating-Directions-Implicit (ADI) algorithm was shown to be one of most
efficient solvers. Caused by the problem of storing the full solution X ∈ Rn×n of
a large scale Lyapunov equation the Low-Rank-Cholesky-Factor ADI (LRCF-ADI)
algorithm restricts to a low rank solution Z ∈ Cn×p, X ≈ ZZH with p � n. De-
tails about the current state of the art implementations in C-M.E.S.S. can be found
in [18, 10, 11, 12, 14] and will not be discussed here.
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5.1 Transition of the options class from Python to C

The ADI algorithm is controlled by a parameter set which defines for example the max-
imum iteration number, stopping criteria, and information about the shift parameter
computation. These parameters are combined as a class in Python which corre-
sponds to a structure in C. For compatibility reasons the organization of the Python
class is similar to the options structure in MATLAB-M.E.S.S.. Table 1 shows the tran-
sition between the components in the Python class and the mess lrcfadi options
structure in C. For further extensions like the Low-Rank-Netwon-Method (LRNM) we
include the necessary information already in the options class. Additional information
that exists in the C-M.E.S.S. mess lrcfadi options structure are not affected by
the transition.

Because the entries in the options class are only simple values or already handled
data types we can transfer them to C easily. In addition to the PY GET LONG macro,
presented in Section 3 we define two macros to transfer floating point numbers and
vectors to C:

#define PY_GET_DOUBLE(dest, from, name ) { \
PyObject *pv = PyObject_GetAttrString(from, name); \
if (pv != NULL) { \
dest = PyFloat_AsDouble(pv); \
Py_DECREF(pv); } \

}
#define PY_GET_VECTOR(dest,from,name) { \
PyObject *pv = PyObject_GetAttrString(from,name); \
if (pv !=NULL && pv != Py_None) { \
dest = vector_to_c(pv); \
Py_DECREF(pv); \

} else { Py_XDECREF(pv); dest = NULL; }}

The whole transition procedure will work as follows: First we extract the adi, the
adi.shifts and the nm sub-class out the options class and then copy each value from
Python to the corresponding one in C using the previously presented macros. Only the
opt.adi.type parameter needs a separate handling. This parameter is character in
MATLAB and Python but an enumeration in C. The underlying string is moved to C
via the already presented ConvStringtoC macro. Afterwards a comparison selects
the equivalent entry from the enumeration. The following source code is a sketch how
the transition procedure is implemented:

mess_lrcfadi_options parse_lrcfadi_options(PyObject *options) {
mess_lrcfadi_options opt = NULL ;
PyObject *adi_opt = NULL , *adi_shift_opt =NULL, *nm_opt = NULL;
mess_lrcfadi_options_init(&opt));

adi_opt = PyObject_GetAttrString(options,"adi");
adi_shift_opt = PyObject_GetAttrString(adi_opt, "shifts");
nm_opt = PyObject_GetAttrString(options,"nm");
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// Extract values form .adi.
PY_GET_LONG(opt->maxit, adi_opt, "maxit");
PY_GET_DOUBLE(opt->res2_tol,adi_opt,"res2_tol");
...
// Extract values from .adi.shitfs.
PY_GET_VECTOR(opt->p, adi_shift_opt, "p");
PY_GET_LONG(opt->arp_p, adi_shift_opt, "arp_p");
...
// Extract values from .nm.
PY_GET_LONG(opt->nm_maxit, nm_opt, "maxit");
...

Py_DECREF(adi_opt);
Py_DECREF(adi_shift_opt);
Py_DECREF(nm_opt);
return opt;

}

5.2 Wrapper around mess lrcfadi lradi

Finally we have to provide a wrapper function around the mess lrcfadi adi func-
tion. This wrapper is included in the interface python methods structure from
Section 2 to register our extension in the Python name space. This function im-
plements the LRCF-ADI algorithm for the standard and the generalized Lyapunov
equation with many C-specific implementation improvements as well as threading ca-
pabilities [18, 11, 16]. The wrapper has to perform the following steps:

1. Parse the calling sequence and identify the arguments.

2. Unpack the equation object and extract the matrices A, B and if existing also
E using the conversion functions from Section 3.

3. Transcribe the options class from Python to C using the
parse lrcfadi options from Subsection 5.1.

4. Setup the mess lrcadi eqn object from the given matrices.

5. Call mess lrcfadi adi to solve one of the Equations (2), (3), (4), or (5).

6. Convert the solution matrix Z and the 2-norm residual history to Python objects
and build a return value from them.

The equation structure contains the system matrix A as eqn.A , the mass matrix E
as eqn.E and the right hand side B as eqn.B. If the mass matrix does not exist the
standard Lyapunov equation is solved otherwise the generalized one is solved. The
additional underscores exist only to get an equivalent structure as in the MATLAB-
M.E.S.S.. Depending on the opt.adi.type the right hand side must have the correct
shape. If the type is set to ’B’ the right hand side B must fulfill BBT ∈ Rn×n. If the
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type is ’C’ the right hand side B has to fulfill BTB ∈ Rn×n. This corresponds to the
two different Lyapunov equation types (2) and (4).

The first step in the implementation of the wrapper is the identification and the
extraction of the function arguments. Depending on the flags set in the PyMethod-
Def structure the arguments are identified by their order or keywords. The by-order
behavior is know from C, where the position of the parameter in the calling sequence
determines its meaning. If this behavior is specified in the PyModuleDef structure we
extract the parameters using

int PyArg_ParseTuple(PyObject *args, const char *format, ...)

where the format string identifies the type of arguments. The destination variables of
the arguments are passed as pointers in the variable argument list in the order they
occur in the format string. More details about the format string and the corresponding
arguments are available in [4]. A more flexible variant to pass arguments to a function
is to identify them using keywords. The function call in Python looks like:

Z = Py_mess_lrcfadi(equation=myequation, options=myoptions)

This type of a argument lists is handled by PyArg ParseTupleAndKeywords which
gets an additional keyword array to match the allowed keywords. We use the keyword
argument for our extension because it supports both by-order and by-keyword identi-
fication of the arguments. As counterpart to the Py Parse* functions we can use the
Py BuildValue function to combine different data types and data structures to one
return value. The behavior of this function is similar to the parser function. It takes
a format string which contains the order of the elements in the return value and the
variable argument list. More details about this are also available in [4].

Employing all previously discussed functions and macros we end up with the follow-
ing source code for our LRCF-ADI wrapper:

PyObject* Pymess_lradi(PyObject *self, PyObject *args, PyObject *
kwrds){

PyObject *equation = NULL, *options = NULL, *temp = NULL;
mess_matrix A=NULL,B=NULL,E=NULL,Z=NULL;
mess_lrcfadi_options opt = NULL ;
mess_lrcfadi_eqn lyapeqn = NULL ;
mess_lrcfadi_status stat = NULL ;

static char *kwlist[] = {"equation","options",NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwrds, "OO", kwlist,

&equation, &options)){
PyErr_SetString(PyExc_TypeError, "The call sequence is wrong");
return NULL; }

opt = parse_lrcfadi_options(options);
mess_lrcfadi_status_init(&stat);
PY_GET_MATRIX(A,equation,"A_");
PY_GET_MATRIX(B,equation,"B");
PY_GET_MATRIX(E,equation,"E_");
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if ( A==NULL || B == NULL ) {
PyErr_SetString(PyExc_RuntimeError, "Matrix A or B is missing");
return NULL;

}
mess_lrcfadi_eqn_init(&lyapeqn);
if (E == NULL) {
mess_lrcfadi_eqn_lyap(lyapeqn, opt, A, B);

} else {
mess_lrcfadi_eqn_glyap(lyapeqn, opt, A, E, B);

}

mess_lrcfadi_parameter(lyapeqn, opt, stat);
mess_matrix_init(&Z);
mess_lrcfadi_adi(lyapeqn,opt,stat,Z);
temp = Py_BuildValue("OO",matrix_to_python(Z),

vector_to_python(stat->res2_norms));

mess_lrcfadi_eqn_clear(&lyapeqn);
mess_lrcfadi_options_clear(&opt);
mess_lrcfadi_status_clear(&stat);
if (A!=NULL) mess_matrix_clear(&A);
if (B!=NULL) mess_matrix_clear(&B);
if (Z!=NULL) mess_matrix_clear(&Z);
if (E!=NULL) mess_matrix_clear(&E);
return temp;

}

The PY GET MATRIX macro shown above works exactly like the PY GET VECTOR
macro but with matrices instead of vectors. The real implementation includes ad-
ditional sanity checks and error handling for each critical step. Other wrappers like
for the Low-Rank-Newton-Method can be implemented easily in the same way.

6 Examples

We have seen how to create a Python interface for one of the C-M.E.S.S. functions.
We now want to give a small example how this interacts with NumPy and SciPy.

6.1 Solving a standard Lyapunov equation

As first example we want to solve a standard Lyapunov equation

AX + XAT + BBT = 0

defined by two matrices A and B. The matrices are read form MatrixMarket files and
stored in an instance of pycmess.equation. The options for the ADI are left to
their default values given by pycmess.options(). After setting up the solver our
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program should call the solver and verify the result again. Beside our C extension the
program needs to import NumPy and some packages from SciPy. The whole concise
Python program for this purpose looks like:

from numpy import *
from scipy.sparse import *
from scipy.linalg import norm
from scipy.io import mmread
from pycmess import *
import sys

if len(sys.argv) != 3:
print("Usage: ",sys.argv[0] , " A.mtx B.mtx")
raise SyntaxError

opt = options()
eqn = equation()
eqn.A_= mmread(sys.argv[1]).tocsr()
eqn.B = mmread(sys.argv[2])
Z, _ = lradi(eqn,opt)
X = Z.dot(Z.T)
RES= eqn.A_.todense().dot(X)
RES= RES + RES.T + eqn.B.dot(eqn.B.T)
res = norm(RES,1)
relres = res / norm(eqn.B.dot(eqn.B.T),1)
print "Rel. Residual: ", relres

We can see that the main part for solving the equation consists of only 5 lines of code.
Two of them are the initialization of the data structure, additional two lines setup
the equation and finally the equation is solved with one call of the solver routine.
The additional return values “ ” is necessary because the ADI-wrapper returns two
values and we are only interested in the first one which is the solution of our equation.
The second one which contains a vector with the convergence history is passed to the
dummy variable “ ”. It is not possible either in Python-2 or in Python-3 to declare a
return value as optional. Due to a slow sparse-dense matrix-matrix product in SciPy
we have to convert the system matrix A to a dense one if we want to compute the
residual. Otherwise computing AX takes a long time.

6.2 Solving a generalized Lyapunov equation

For this example we want to solve the transposed generalized Lyapunov equation

ATXE + ETXA + CTC = 0

with enabled Galerkin projection [18] and residual tolerances adjusted. All necessary
information can be set in the opt object generated by pycmess.options(). The
transposed equation is selected by setting opt.adi.type to ’C’. The Galerkin pro-
jection for the Lyapunov equation is enabled by setting opt.adi.gpStep positive
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integer. The integer defines after how many ADI steps the projection is performed.
The residual tolerances are adjusted by various components in the options structure
as they are listed in Table 1. We assume that we want to have a 2-norm residual of
10−12. As in the previous example the matrices are read again from MatrixMarket
files. The overall program looks like:

from numpy import *
from scipy.sparse import *
from scipy.linalg import norm
from scipy.io import mmread
from pycmess import *
import sys

if len(sys.argv) != 4:
print("Usage: ",sys.argv[0] , " A.mtx E.mtx B.mtx")
raise SyntaxError

opt = options()
eqn = equation()
eqn.A_= mmread(sys.argv[1]).tocsr()
eqn.E_= mmread(sys.argv[2]).tocsr()
eqn.B = mmread(sys.argv[3]).todense()
opt.adi.gpStep=5
opt.adi.res2_tol = 1e-12
opt.adi.type=’C’
Z, _ = lradi(eqn,opt)
X = Z.dot(Z.T)
RES= eqn.A_.todense().T.dot(X).dot(eqn.E_.todense())
RES= RES + RES.T + eqn.B.T.dot(eqn.B)
res = norm(RES,1)
relres = res / norm(eqn.B.T.dot(eqn.B),1)
print "Rel. Residual: ", relres

We can easily see that we only have to include the E matrix in the equation structure
and modify three components of the options structure so satisfy our new problem
setup.

7 Conclusions

In the previous sections we develop a set of helper routines and a unified Python-2
and Python-3 interface for the C-M.E.S.S. library. Upon those helper functions we
are able to write concise wrapper functions for the algorithms provided by C-M.E.S.S.
which interact perfectly with the NumPy/SciPy software packages. The comparison of
the wrapper approach and the plain Python NumPy/SciPy implementation approach
is the topic of the Bachelor studies of Björn Baran.
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[12] P. Benner, P. Kürschner, and J. Saak, Self-generating and efficient shift
parameters in ADI methods for large Lyapunov and Sylvester equations, Preprint
MPIMD/13-18, Max Planck Institute Magdeburg, October 2013. Available from
http://www.mpi-magdeburg.mpg.de/preprints/.

[13] P. Benner and J. Saak, Efficient solution of large scale Lyapunov and Riccati
equations arising in model order reduction problems, Proc. Appl. Math. Mech., 8
(2008), pp. 10085 – 10088.

27

http://docs.python.org/3/library/ctypes.html
http://docs.python.org/3/library/ctypes.html
http://docs.python.org/3/extending/
http://docs.python.org/3/extending/
http://www.numpy.org
http://docs.python.org/3/c-api/arg.html
http://docs.python.org/3/c-api/arg.html
http://docs.python.org/3/howto/cporting.html
http://docs.python.org/3/howto/cporting.html
http://www.scipy.org/
http://docs.python.org/3/whatsnew/
http://www.mpi-magdeburg.mpg.de/preprints/


[14] , Numerical solution of large and sparse continuous time algebraic matrix
Riccati and Lyapunov equations: a state of the art survey, GAMM Mitteilungen,
36 (2013), pp. 32–52.

[15] S. Hammarling, Numerical solution of the stable, non-negative definite Lya-
punov equation, IMA J. Numer. Anal., 2 (1982), pp. 303–323.
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