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Abstract

We discuss low rank approximation methods for large-scale symmetric Sylvester
equations. Following similar discussions for the Lyapunov case, we introduce an
energy norm by the symmetric Sylvester operator. Given a rank nr, we derive
necessary conditions for an approximation being optimal with respect to this
norm. We show that the norm minimization problem is related to an objective
function based on the H2-inner product for symmetric state space systems. This
objective function is shown to exhibit first-order conditions that are equivalent to
the ones from the norm minimization problem. We further propose an iterative
procedure and demonstrate its efficiency when used within image reconstruction
problems.



1 Introduction

In this paper, we consider large-scale linear matrix equations

AXM + EXH = G, (1)

with A,E ∈ Rn×n,M,H ∈ Rm×m and G ∈ Rn×m. The sought after solution X ∈
Rn×m to the Sylvester equation (1) is of great interest within systems and control
theory, see [?]. In particular, for M = ET , H = AT and G = BBT , the result-
ing Lyapunov equation characterizes stability properties of an underlying dynamical
system

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(2)

where, respectively, x(t),u(t) and y(t) are called state, control and output of the sys-
tem. While linear matrix equations of the form (1) have been studied for several years
now, the need for efficient solution methods when n,m become large has also attracted
attention in the numerical linear algebra community. For a detailed introduction into
linear matrix equations, we refer to the two recent survey articles [?, ?]. Since direct
methods, e.g., the Bartels-Stewart algorithm ([?]) or Hammarling’s method ([?]) re-
quire a cubic complexity to solve (1), they are only feasible as long as n,m are medium
size. Depending on the individual computer architecture, this nowadays might cover
system dimensions up to n,m ∼ 104. Often dynamical systems, and thus matrix equa-
tions, however result from a spatial discretization of a partial differential equation
(PDE). Here, one commonly obtains systems with millions of degrees of freedom, pre-
venting the use of the mentioned direct methods. For the most general case where the
right hand side G is full rank, there is still no easily applicable technique to compute
X. On the other hand, assuming that G = BCT , where rank(B), rank(C) � n,m,
the singular values of X often decay very fast, see [?, ?, ?, ?]. In other words, the
low numerical rank of the solution allows for low rank approximations X ≈ VXrW

T ,
where V ∈ Rn×nr ,W ∈ Rm×nr and Xr ∈ Rnr×nr , with nr � n,m. This phenomenon
has been used to construct several numerically efficient methods applicable for large-
scale matrix equations. The most popular choices can basically be categorized into
two categories: (a) methods based on alternating directions implicit (ADI) schemes;
(b) methods based on projection and prolongation. Methods that specifically address
the computation of low-rank approximations to the solution of Sylvester equations
can be found in [?, ?, ?, ?], while the literature on low-rank solution for the Lyapunov
case goes even back further and has achieved more attention; for a detailed overview
on this topic, we refer to [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Other techniques are based
on the tensorized linear system, see [?, ?, ?], or Riemannian optimization, see [?, ?].
Especially the latter class of methods is important in the context of this article since
it requires a special symmetry assumption that we comment on below.

The structure of this paper now is as follows. In Section 2, we review the use of
large-scale Sylvester equations (1) for problems evolving in image restoration. For the
special symmetry property arising in these applications, in Section 3 we introduce an
objective function based on the energy norm of the underlying Sylvester operator. We
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further derive first-order necessary conditions for this objective function. In Section
4, we establish a connection between the energy norm and the H2-inner product of
two dynamical control systems of the form (2). We show that this inner product
exhibits first-order necessary conditions that are equivalent to the ones for the energy
norm. Based on techniques from rational interpolation, we discuss the use of an
iterative Sylvester solver applicable in large-scale settings. In Section 5, we provide
numerical results from image restoration problems and demonstrate the applicability
of the method. We conclude with a short summary in Section 6.

In all what follows, a matrix A � 0 will be symmetric positive definite. With ⊗
we denote the Kronecker product of two matrices. Vectorization of a matrix A, i.e.,
stacking all columns of A into a long vector, will be denoted by vec (A) . The (matrix-
valued) residue of a meromorphic matrix-valued function, G(s), at a point λ ∈ C will
be denoted as res[G(s), λ]. All vectors and matrices are denoted by boldface letters;
scalar quantities by italic letters. The Kronecker delta δij is defined as

δij :=

{
1, i = j,
0, otherwise.

2 Sylvester equations in image restoration

Besides their use in control theory, Sylvester equations also appear in restoration
problems for degraded images. In what follows, we give a brief recapitulation of the
discussions in [?, ?, ?]. Consider an image represented by a matrix F ∈ Rn×m with
grayscale pixel values Fij between 0 and 255. Unfortunately, often the matrix F is
not given exactly but is perturbed by some noise or blurring process. The result is a
degraded image G ∈ Rn×m that is obtained after an out-of-focus or atmospheric blur.
One way to compute an approximately restored image X ≈ F is given by the solution
to a regularized linear discrete ill-posed problem of the form

min
x

(
‖Hx− g‖22 + λ‖Lx‖22

)
, (3)

where x = vec (X) ,g = vec (G) , H models the degradation process and L is a regular-
ization operator with regularization parameter λ. The solution to (3) can be computed
by solving the linear system

(HTH + λ2LTL)x = HTg.

While the choice of an appropriate or optimal parameter λ is a nontrivial task, we
rather want to focus on efficiently solving the linear system once λ has been deter-
mined. This can for example be done by using the L-curve criterion or the generalized
cross validation method, see [?, ?]. Following e.g. [?], assuming certain separabil-
ity properties of the blurring matrix H = H2 ⊗H1 and the regularization operator
L = L2 ⊗ L1, problem (3) has a special structure and can equivalently be solved by
the Sylvester equation

(HT
1 H1)X(HT

2 H2) + λ2(LT1 L1)X(LT2 L2) = G. (4)
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In particular, we note that the matrices defining the matrix equation are symmetric
positive (semi-)definite. In the next section, we see that this enables us to use special
approximation techniques. Before we proceed, we mention typical structures of H and
L that we pick up in the numerical examples. Again, we follow the more detailed
discussions in [?, ?]. A uniform out-of-focus blur for example can be modelled by the
uniform Toeplitz matrix

Uij =

{
1

2r−1 , |i− j| ≤ r,
0, otherwise.

(5)

Atmospheric blur can be realized by a Gaussian Toeplitz matrix

Tij =

{
1

σ
√
2π

exp
(
− (i−j)2

2σ2

)
, |i− j| ≤ r,

0, otherwise.
(6)

For the regularization operators, we use discrete first-order derivatives. Note that we
do not claim that image restoration via solving Sylvester equations is an optimal choice.
Nowadays, methods based on total variation and L1−norm minimization often produce
much more accurate results and might be preferable in practice. Nevertheless, this
application serves here as an application providing meaningful test cases for the method
to be developed in the following two sections. Note that the symmetric positive definite
structure of the underlying Sylvester operator also occurs in control applications in
case of symmetric state matrices with collocated actors/sensors.

3 Symmetric Sylvester equations and the energy norm

According to the previous section, we can reconstruct a blurred/noisy image via solving
a symmetric Sylvester equation of the form

AXM + EXH = G, (7)

where A,E ∈ Rn×n � 0, M,H ∈ Rm×m � 0 and G ∈ Rn×m. We already mentioned
that as the size of the image increases, explicitly solving for X ∈ Rn×m becomes com-
putationally infeasible. Although in the previously discussed application the matrix
G is not necessarily of low (numerical) rank, we still might construct approximations
X ≈ X̃ := VXrW

T with V ∈ Rn×nr ,W ∈ Rm×nr and Xr ∈ Rnr×nr . Note that
we do not necessarily require Xr to be a square matrix but rather have the freedom
to choose V and W such that they have a different number of columns. Still, using
Xr ∈ Rnr×nr seems to be a natural choice and also simplifies the notation.

The most common way to evaluate the quality of an approximation is by means of
the norm of the error ‖X − X̃‖. As long as we use, respectively, the spectral norm
or the Frobenius norm, for a given rank nr, the best approximation is given by the
singular value decomposition. This result is well-known and follows from the Eckart-
Young-Mirsky theorem that can be found in standard text books such as, e.g., [?].
Unfortunately, computing an SVD-based approximant would require the full solution
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X itself. For symmetric systems however, another natural choice for measuring errors
is the energy norm. Note that if the solution to problem (3) is unique and the matrices
are separable as shown above, the Sylvester operator is symmetric and positive definite.
For the error X− X̃ we can thus define a norm via

‖X− X̃‖2LS
:= vec

(
X− X̃

)T
︸ ︷︷ ︸

eT

(M⊗A + H⊗E)︸ ︷︷ ︸
LS

vec
(
X− X̃

)
︸ ︷︷ ︸

e

. (8)

The energy norm for matrix equations was first investigated in detail in [?, ?] and later
discussed in the context of H2-model reduction in [?]. Note that there is also a direct
connection between the Frobenius norm and the energy norm of the error X− X̃ :

‖X− X̃‖2LS
= eTLSe =

eTLS e

eTe
‖e‖22 ≥ λmin(LS) ‖X− X̃‖2F .

The last step holds due to the fact that the Rayleigh quotient R(LS , e) is bounded
below by the minimal eigenvalue of the symmetric matrix LS . Assume now that for a
given Sylvester equation (7) and a prescribed dimension nr � n, the goal is to find
matrices V ∈ Rn×nr ,W ∈ Rm×nr and Xr ∈ Rnr×nr such that

‖X−VXrW
T ‖2LS

= min
Ṽ∈Rn×nr

W̃∈Rm×nr

X̃r∈Rnr×nr

‖X− ṼX̃rW̃
T ‖2LS

. (9)

As a first step towards optimization, one usually considers first-order necessary con-
ditions for V,W and Xr. For this, we state some useful properties for computing the
derivative of the trace function with respect to a matrix. According to [?], for a matrix
X ∈ Rn×m and matrices K,L of compatible dimensions, it holds

∂

∂Y
[tr (KYL)] = KTLT ,

∂

∂Y

[
tr
(
KYLYT

)]
= KTYLT + KYL.

(10)

Using these properties, we can give the folllowing generalization of similar results
obtained for the special case of the Lyapunov equation in [?].

Lemma 1 Assume that (V,W,Xr) solves (9). Then it holds(
AVXrW

TM + EVXrW
TH−G

)
WXT

r = 0, (11a)

XT
r VT

(
AVXrW

TM + EVXrW
TH−G

)
= 0, (11b)

VT
(
AVXrW

TM + EVXrW
TH−G

)
W = 0. (11c)

Proof Note that by vectorization of (7), we know that it holds

LS vec (X) = vec (G) .
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Consequently, we obtain

f(V,W,Xr) = vec
(
X−VXrW

T
)T LS vec

(
X−VXrW

T
)

= vec (X)
T

vec (G)− 2 vec
(
VXrW

T
)T

vec (G)

+ vec
(
VXrW

T
)T

(M⊗A + H⊗E) vec
(
VXrW

T
)

= tr
(
XTG

)
− 2 tr

(
WXT

r VTG
)

+ tr
(
WXT

r VT (AVXrW
TM + EVXrW

TH)
)
.

Using that tr (K) = tr
(
KT
)

and tr (KL) = tr (LK) for matrices K,L of compatible
dimensions together with (10) gives

∂f

∂V
= 2(AVXrW

TM + EVXrW
TH−G)WXT

r ,

∂f

∂W
= 2(MWXT

r VTAVXr + HWXT
r VTE−GT )VXr,

∂f

∂Xr
= 2VT (AVXrW

TM + EVXrW
TH−G)W.

Since a minimizer has to fulfill first-order necessary conditions, it also holds

∂f

∂V
=

∂f

∂W
=

∂f

∂Xr
= 0,

which shows the assertion.

Along the lines of [?], one might consider solving (9) by a Riemannian optimization
method. While this certainly is possible, in what follows we prefer to proceed via a
connection of (9) and the H2-inner product of two dynamical systems as this results
in a conceptional simpler algorithm which is easy to implement.

4 Tangential interpolation of symmetric state space
systems

In this section, it will prove beneficial to assume that the right hand side G is given
in factored form G = BCT with B ∈ Rn×q and C ∈ Rm×q. At this point, it is not
particularly important that we have q � n,m. This also means we can always ensure
such a decomposition by, e.g., the SVD of G. We now can associate the energy norm of
X fulfilling (7) with the H2-inner product of two dynamical systems defined by their
transfer functions. For this, recall that if a symmetric state space system is given as

Eẋ(t) = −Ax(t) + Bu(t),

y(t) = BTx(t),
(12)
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with x(t) ∈ Rn×n,u(t),y(t) ∈ Rq, denoting state, control and output of the system,
the transfer function is the rational matrix valued function

G1(s) = BT (sE + A)−1B. (13)

Since E,A � 0, system (12) is asymptotically stable and the poles of G1(s) are all
in the open left half of the complex plane. Hence, for G1(s) and G2(s) := CT (sM +
H)−1C, the H2-inner product usually is defined as

〈G1,G2〉H2
=

1

2π

∫ ∞
−∞

trace
(
G1(ıω)G2(ıω)T

)
dω

=
1

2π

∫ ∞
−∞

trace
(
G1(−ıω)G2(ıω)T

)
dω.

(14)

The previous expression now turns out to be exactly the square of the energy norm of
X.

Proposition 2 Let X be the solution of AXM + EXH = BCT . Then it holds

‖X‖2LS
= 〈G1,G2〉H2

,

where G1(s) = BT (sE + A)−1B and G2(s) = CT (sM + H)−1C,

Proof First note that we have

‖X‖2LS
= vec (X)

T
(M⊗A + H⊗E) vec (X) .

Since X is a solution of the Sylvester equation, this implies

‖X‖2LS
= vec (X)

T
vec
(
BCT

)
.

Due to the properties of the trace-operator, we find

‖X‖2LS
= trace

(
XTBCT

)
= trace

(
BTXC

)
.

On the other hand, it is well-known, see, e.g., [?], that the solution of a Sylvester
equation can be obtained by complex integration as

X =
1

2π

∫ ∞
−∞

(−ıωE + A)−1BCT (ıωM + H)−1dω.

Pre- and postmuliplication with, respectively, BT and C shows the assertion.

Instead of parametrizing the minimization problem (9) via V,W,Xr, the goal is to
use reduced rational transfer functions

G1,r(s) = BT
r (sEr + Ar)

−1Br and G2,r(s) = CT
r (sMr + Hr)

−1Cr,
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with symmetric positive definite matrices Ar,Er,Mr and Hr of dimension nr × nr.
and Br,Cr ∈ Rnr×q. Since using every entry of the system matrices would lead to an
overparametrization, we replace G1,r and G2,r by their pole-residue representations.
For this, let ArQ = ErQΛ be the eigenvalue decomposition of the matrix pencil
(Ar,Er). Since Ar and Er are symmetric positive definite, we can choose QTErQ = I.
Hence, we have

G1,r(s) = BT
r (sEr + Ar)

−1Br = BT
r Q(QT (sEr + Ar)Q)−1QTBr =

nr∑
i=1

bib
T
i

s+ λi
,

with Λ = diag(λ1, . . . , λnr
) and BT

r Q = [b1, . . . ,bnr
]. The name of the representation

is due to the fact that bib
T
i = res[G1,r(s), λi]. Analogously, let G2,r(s) be given as

G2,r(s) =

nr∑
j=1

cjc
T
j

s+ σj
,

where the σj are the eigenvalues of the pencil (Hr,Mr) and cjc
T
j = res[G2,r(s), σj ].

Next, define an objective function via

J := 〈G1 −G1,r,G2 −G2,r〉H2
. (15)

For reduced transfer functions obtained within a projection framework, in [?], we have
claimed that

J ≤ 〈G1,G2〉H2
− 〈G1,r,G2,r〉H2

= ‖X− X̃‖2LS
,

where X̃ can be consructed by prolongation of the solution Xr of a reduced Sylvester
equation. For the sake of completeness, we give a proof based on the following two
results from [?] and [?] (stated here for multi-input multi-output systems) .

Lemma 3 ([?]) Suppose that G(s) and H(s) =
∑m
i=1

1
s−µi

cib
T
i are stable and have

simple poles. Then

〈G,H〉H2 =

m∑
i=1

cTi G(−µi)bi.

Lemma 4 ([?]) Let H(s) = BT (sI−A)−1B be a symmetric state space system, and
let Hr(s) = BT

r (sIr−Ar)
−1Br be any reduced model of H(s) constructed by a compres-

sion of H(s), i.e., Ar = VTAV,Br = VTB. Then, for any s ≥ 0, H(s)−Hr(s) � 0.

Lemma 5 Let G1(s) = BT (sE + A)−1B and G2(s) = CT (sM + H)−1C be given

transfer functions. Suppose that G1,r(s) = BT
r (sEr + Ar)

−1Br =
∑nr

i=1
bib

T
i

s+λi
and

G2,r(s) = CT
r (sMr + Hr)

−1Cr =
∑nr

j=1

cjc
T
j

s+σj
have been constructed by orthogonal

projections

Ar = VTAV, Er = VTEV, Br = VTB,

Hr = WTHW, Mr = WTMW, Cr = WTC.
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Then

〈G1 −G1,r,G2 −G2,r〉H2 ≤ 〈G1,G2〉H2 − 〈G1,r,G2,r〉H2 .

Proof For the H2-inner product, we find

〈G1 −G1,r,G2 −G2,r〉H2
= 〈G1,G2〉H2

− 〈G1,r,G2 −G2,r〉H2

− 〈G2,r,G1 −G1,r〉H2
− 〈G1,r,G2,r〉H2

.

Applying Lemma 3 to the second term gives

−〈G1,r,G2 −G2,r〉H2
= −

nr∑
i=1

bTi (G2(λi)−G2,r(λi)) bi.

Since G1,r is constructed by orthogonal projection, it must have stable poles and thus
λi ≥ 0. Moreover, Lemma 4 yields G2(s)−G2,r(s) � 0 which shows that

−〈G1,r,G2 −G2,r〉H2
≤ 0.

The same argument shows 〈G2,r,G1 −G1,r〉H2
≥ 0 and proves the statement.

In particular, the proof indicates that equality holds for (G2(λi)−G2,r(λi)) bi = 0
and (G1(σj)−G1,r(σj)) cj = 0. Again this generalizes our SISO formulation in [?].
Moreover, the latter condition is directly related to the gradient of J with respect to
the parameters bi, λi, ci and σi.

Theorem 6 Let G1(s),G2(s),G1,r(s) and G2,r(s) be symmetric state space systems
with simple poles. Suppose that λ1, . . . , λnr and σ1, . . . , σnr are the poles of the reduced
transfer functions with res[G1,r(s), λi] = bib

T
i and res[G2,r(s), σj ] = cjc

T
j , for i, j =

1, . . . , nr. The gradient of J with respect to the parameters listed as

{b,λ, c,σ} = [bT1 , λ1, c
T
1 , σ1, . . . ,b

T
nr
, λnr

, cTnr
, σnr

]T

is given by ∇{b,λ,c,σ}J , a vector of length 2nr · (q + 1), partitioned into nr vectors of
length 2(q + 1) as

(
∇{b,λ,c,σ}J

)
k

=


2 (G2,r(λk)−G2(λk)) bk

bTk (G′2,r(λk)−G′2(λk))bk

2 (G1,r(σk)−G1(σk)) ck

cTk (G′1,r(σk)−G′1(σk))ck

 ,
for k = 1, . . . , nr.
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Proof Observe that for the `-th entry of bk, we have

∂J
∂(bk)`

=
∂

∂(bk)`
〈G1 −G1,r,G2 −G2,r〉H2

= −
〈
∂G1,r

∂(bk)`
,G2 −G2,r

〉
H2

= −
〈

e`b
T
k

s+ λk
,G2 −G2,r

〉
H2

−
〈

bke
T
`

s+ λk
,G2 −G2,r

〉
H2

= −eT` (G2(λk)−G2,r(λk)) bk − bTk (G2(λk)−G2,r(λk)) e`

= −2 · eT` (G2(λk)−G2,r(λk)) bk,

where e` is the `-th unit vector. The previous steps follow from Lemma 3 and the
fact that G2 and G2,r are symmetric state space systems. Similarly, for the derivative
with respect to λk, we find

∂J
∂λk

=
∂

∂λk
〈G1 −G1,r,G2 −G2,r〉H2

= −
〈

∂

∂λk
G1,r,G2 −G2,r

〉
H2

=

〈
bkb

T
k

(s+ λk)2
,G2 −G2,r

〉
H2

.

For the latter expression, we can use the MIMO analogue of [?, Lemma 2.4] and obtain

∂J
∂λk

= bTk (G′2,r(λk)−G′2(λk))bk.

The proofs for ck and σk use the exact same arguments and are thus omitted here.

Remark Note the change of sign for the derivatives with respect to λk and σk com-
pared to the special case of H2-optimal model reduction discussed in [?]. This sim-
ply follows from a different notation in this manuscript. Using λi, σj < 0 together

with transfer function representations
∑nr

i=1 G1,r(s) =
bib

T
i

s−λi
and Gr,2(s) =

∑nr

j=1

cjc
T
j

s−σj

would lead to similar expressions as in [?].

In [?], we stated the inequality from Lemma 5 and showed that equality holds if
the gradient of J is zero. In fact, we can even show that the corresponding reduced
transfer functions can be used to compute a triple (V,W,Xr) satisfying the first-order
necessary conditions from Theorem 1.

Theorem 7 Let X be the solution of the Sylvester equation

AXM + EXH = BC
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and denote, respectively, G1(s) = BT (sE + A)−1B and G2(s) = CT (sM + H)−1C.

Suppose G1,r(s) =
∑nr

i=1
bib

T
i

s+λi
and G2,r(s) =

∑nr

j=1

cjc
T
j

s+σj
satisfy

G1,r(σk)ck = G1(σk)ck, (16a)

cTkG′1,r(σk)ck = cTkG1(σk)ck, (16b)

G2,r(λk)bk = G2(λk)bk, (16c)

bTkG′2,r(λk)bk = bTkG(λk)bk, (16d)

for k = 1, . . . , nr. Define X ∈ Rnr×nr ,Y ∈ Rn×nr and Z ∈ Rm×nr via

Xij =
bTi cj
λi + σj

, Yi = (σiE + A)−1Bci, Zj = (λjM + H)−1Cbj . (17)

Then the triple (Y,Z,X−1) satisfies (11).

Proof First note that (16) defines nr(q + 1) constraints on, respectively, G1,r(s) and
G2,r(s). Due to the pole-residue representation, exactly the same number of parame-
ters defines the rational matrix valued transfer functions G1,r(s) and G2,r(s). Hence,
G1,r(s) and G2,r are uniquely determined by (16). Echoing the argumentation in [?,
Lemma 3.11] and [?], w.l.o.g. we can thus assume that the reduced transfer functions
are obtained by E/M-orthogonal projections via

Λ = VTAV, B̃ := [b1, . . . ,bq]
T = VTB,

Σ = WTHW, C̃ := [c1, . . . , cq]
T = WTC,

where V and W are s.t.

span{V} ⊃ span
i=1,...,nr

{
(σiE + A)−1Bci

}
,

span{W} ⊃ span
j=1,...,nr

{
(λjM + H)−1Cbj

}
.

Due to the definition of Xij we further obtain:

Xi = (σiI + Λ)−1B̃ci, XTj = (λjI + Σ)−1C̃bj ,

where Λ = diag (λ1, . . . , λnr ) and Σ = diag (σ1, . . . , σnr ) . Using well-known results
from projection-based rational interpolation (see [?]), we conclude

VXi = Yi, WXTj = Zj

and therefore VX = Y and WXT = Z. Keeping this in mind, for (11) we get(
AYX−1ZTM + EYX−1ZTH−BCT

)
ZX−T

=
(
AYWTM + EYWTH−BCT

)
W

= AY + EYΣ−BC̃T = 0.

10



Here, the last step follows from the definition of Y. Similarly, it holds

X−TYT
(
AYX−1ZTM + EYX−1ZTH−BCT

)
= VT

(
AVZTM + EVZTH−BCT

)
= ΛZTM + ZTH− B̃CT = 0.

Again, the last equality is due to the definition of Z. Finally, we have

YT
(
AYX−1ZTM + EYX−1ZTH−BCT

)
Z

= XTVT
(
AVXWTM + EVXWTH−BCT

)
WXT

= XT
(
ΛX + XΣ− B̃C̃T

)
XT = 0.

Once more, the last step is true due to the definition of X.

Remark From the proof of Thereom 7, we find that the same approximation is ob-
tained when (Y,Z,X−1) is replaced by (V,W,X) where V and W are the projection
matrices constructing G1,r(s) and G2,r(s). Note further that X solves the projected
reduced Sylvester equation. This in particular implies that the approximation VXWT

fulfills the common Galerkin condition on the residual (see [?]).

The natural question that arises is wheter triples (V,W,Xr) fulfilling (11) also yield
reduced transfer functions G1,r(s) and G2,r(s) with vanishing gradient ∇{b,λ,c,σ}J .
The answer is given by the following result.

Theorem 8 Let a triple (V,W,Xr) be given such that (11) holds. Suppose reduced
transfer functions G1,r(s) and G2,r(s) are defined via

Ar = VTAV, Er = VTEV, Br = VTB,

Hr = WTHW, Mr = WTMW, Cr = WTC.

Then it holds ∇{b,λ,c,σ}J = 0.

Proof The third condition in (11) implies

ArXrMr + ErXrHr −BrC
T
r = 0.

Assuming that HrR = MrRΣ is the eigenvalue decomposition of (Hr,Mr), postmul-
tiplication of the above equation with rj := Rej gives

Ar XrMrrj︸ ︷︷ ︸
xj

+σjEr XrMrrj︸ ︷︷ ︸
xj

= Br CT
r rj︸ ︷︷ ︸
cj

.

Hence, we have xj = (σjEr+Ar)
−1Brcj . Also, postmultiplication of the third equation

in (11) with rj yields

AVXrMrrj + σjEVXrMrrj = BCT
r rj .

11



In particular, we conclude Vxj = (σE + A)−1Bcj . This however yields

G1,r(σj)cj = BTV(σjEr + Ar)
−1Bcj = BT (σjE + A)−1Bcj = G1(σ)cj

and

cTj G′1,r(σj)cj = −cTj BT
r (σjEr + Ar)

−1VTEV(σjEr + Ar)
−1Brcj

= −cTj BT (σjE + A)−1E(σjE + A)−1Bcj = cTj G′1(σj)cj .

The proof for G2,r follows analogously.

In summary, we can state that the first-order necessary conditions for the objec-
tive functions f(V,W,Xr) and J (b,λ, c,σ) are equivalent to each other. For the
remainder of this paper, we focus on the objective function J . Along the lines of [?],
we present the Hessian of J with respect to the parameters {b,λ, c,σ}.

Lemma 9 The Hessian of J with respect to {b,λ, c,σ} is given by ∇2
{b,λ,c,σ}J , an

(2nr ·(q+1))×(2nr ·(q+1)) matrix partitioned into n2r matrices of size 2(q+1)×2(q+1)
defined by

(
∇2

{b,λ,c,σ}J
)
k`

=


0 0 2

(
c`b

T
k +cT` bkIq
σ`+λk

)
−2

c`c
T
` bk

(σ`+λk)
2

0 0 −2
cT` bkb

T
k

(λk+σ`)
2 2

bT
k c`c

T
` bk

(σ`+λk)
3

2
(

b`c
T
k +bT

` ckIq
σk+λ`

)
−2

b`b
T
` ck

(σk+λ`)
2 0 0

−2
bT
` ckc

T
k

(λ`+σk)
2 2

cTk b`b
T
` ck

(λ`+σk)
3 0 0



+ δk`


2(G2,r(λk)−G2(λk)) 2(G′

2,r(λk)−G′
2(λk))bk 0 0

2bTk (G′
2,r(λk)−G′

2(λk)) bTk
(
G′′

2,r(λk)−G′′
2 (λk)

)
bk 0 0

0 0 0 0
0 0 0 0



+ δk`


0 0 0 0
0 0 0 0
0 0 2(G1,r(σk)−G1(σk)) 2(G′

1,r(σk)−G′
1(σk))ck

0 0 2cTk (G′
1,r(σk)−G′

1(σk)) cTk
(
G′′

1,r(σk)−G′′
1 (σk)

)
ck

 .
The proof follows by direct computation of the partial derivatives. Since a similar
derivation can be found in [?] for the H2-optimal case, we omit the details.

Unfortunately, the objective function J is unbounded so that its minimization is
not well defined. This can be seen by considering nr = 1. In this case,

G1,r(s) =
bbT

s− λ
and G2,r(s) =

ccT

s− µ
,

are the reduced transfer functions. By Lemma 3, for the objective function we get

J = 〈G1,G2〉H2
− bTG2(λ)b− cTG1(µ)c +

bT ccTb

λ+ µ
.

12



Hence, by scaling αb and 1
αc, we further obtain

J = 〈G1,G2〉H2
− α2bTG2(λ)b− 1

α2
cTG1(µ)c +

bT ccTb

λ+ µ
.

and we can arbitrarily decrease the value of J by increasing α. In fact, a similar conclu-

sion can be drawn from the Hessian in Theorem 9. Multiplication of
(
∇2
{b,λ,c,σ}J

)
11

with z :=
[
αbT1 0 cT1 0

]T
yields

zT
(
∇2
{b,λ,c,σ}J

)
11

z = 2α2bT1 (G2,r(λ1)−G2(λ1))b1 + 2cT1 (G1,r(σ1)−G2(σ1))c1

+ 8α
(bT1 c1)2

σ1 + λ1
.

For a stationary point, we thus find

zT
(
∇2
{b,λ,c,σ}J

)
11

z = 8α
(bT1 c1)2

σ1 + λ1
.

In other words, the Hessian is always indefinite and, consequently, all stationary points
are saddle points. While this will cause problems for optimization routines, we can still
extend the idea of iterative correction as in [?] to the MIMO Sylvester case. Algorithm
1 is a suitable generalization of a SISO version we proposed in [?]. Due to the iterative
structure, upon convergence, the reduced transfer functions G1,r(s) and G2,r(s) will
tangentially interpolate the original transfer function G1(s) and G2(s) such that the
corresponding gradient in Lemma 6 vanishes. According to Theorem 7 this way we
can compute stationary points of the objective function f which is obviously bounded.

Initialization

The efficiency of Algorithm 1 obviously depends on the number of iterations needed
until a typical convergence tolerance is satisfied. Hence, an imporant point is the
initialization of the algorithm. While in general several strategies for choosing inter-
polation points and tangential directions may be possible, there exists a natural choice
for our applications. Recall that the blurred and noisy image is given as the right
hand side G = BCT . Though G deviates from the original unperturbed image, it
still is related to it. In other words, G can be seen as a (rough) approximation to
the solution X of the underlying Sylvester equation. For this reason, if we are in-
terested in constructing an approximation of rank nr, we propose to use a truncated
singular value decomposition of G ≈ Unr

Dnr
ZTnr

, with Unr
∈ Rn×nr ,Z ∈ Rm×nr

and Dnr ∈ Rnr×nr . Since UT
nr

Unr = I and ZTnr
Znr = I, we can construct an initial

reduced model via

Ar = UT
nr

AUnr , Er = UT
nr

EUnr , Br = UT
nr

B,

Hr = VT
nr

HVnr
, Mr = VT

nr
MVnr

, Cr = VT
nr

C.

13



Algorithm 1: MIMO (Sy)2IRKA

Input: Interpolation points: {λ1, . . . , λnr
} and {σ1, . . . , σnr

}.
Tangential directions: B̃ = [b1, . . . ,bnr

] and C̃ = [c1, . . . , cnr
] .

Output: G1,r(s),G2,r(s) satisfying (16)
1: while relative change in {λi, σi} > tol do
2: Compute V and W from

span{V} ⊃ span
i=1,...,nr

{
(σiE + A)−1Bci

}
,

span{W} ⊃ span
j=1,...,nr

{
(λjM + H)−1Cbj

}
.

3: Compute G1,r(s) = BTV(VT (sE + A)V)−1VTB.
4: Compute G2,r(s) = CTW(WT (sM + H)W)−1WTC.
5: Compute ArQ = ErQΛ with QTErQ = I.
6: Compute HrR = MrRΣ with RTMrR = I.
7: Update λi = diag(Λ), B̃ = BT

r Q, σi = diag(Σ), C̃ = CT
r R.

8: end while

Initial interpolation points and tangential directions then can be obtained by comput-
ing the pole-residue representations for G1,r(s) = BT

r (sEr + Ar)
−1Br and G2,r(s) =

CT
r (sMr + Hr)

−1Cr. In all our numerical examples, we initialize Algorithm 1 by this
procedure. Moreover, as we mentioned earlier, the right hand side G is not necessarily
low rank and we thus have to face transfer functions with a large number of inputs
and outputs. In the case of H2-optimal model reduction, this can slow down the con-
vergence of iterative algorithms such as IRKA significantly, see [?]. For this reason, in
our examples we replace G by its truncated singular value decomposition which is of
rank nr. While this means we are actually approximating the solution of a perturbed
Sylvester equation, we will see that this does not seem to influence the quality of the
restored image.

5 Numerical results

We study the performance of Algorithm 1 for two examples from image restoration.
Again, we follow the setting in [?, ?]. Given an original image X, we use out-of-

focus-blur (5) and atmospheric blur (6) to construct a blurred image Ĝ. The final

degraded image G then is obtained by adding Gaussian white noise N to Ĝ such that
‖N‖
‖Ĝ‖ = 10−2.

All simulations were generated on an Intel R©CoreTMi5-3317U CPU, 3 GB RAM,
Ubuntu Linux 12.10, MATLAB R© Version 7.14.0.739 (R2012a) 64-bit (glnxa64).
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Lothar Reichel

Due to the dedication of this special issue, the first example is an image showing Lothar
Reichel.1 The matrix X ∈ R363×400 contains grayscale pixel values from the interval
[0, 255]. The blurring matrices H1 and H2 in (4) are Toeplitz matrices as in (5) and
(6). First, we construct H1 with r1 = 5 and H2 with σ = 7 and r2 = 2. For the
regularization operators we use discrete first-order derivatives such that

L1 =


1 −1

. . .
. . .

1 −1
0

 , L2 =


1

−1
. . .

. . . 1
−1 0

 .
In Figure 1d we show the results obtained from Algorithm 1 for nr = 40. We obtain
a relative change less than 10−2 after 10 iterations. Recall that we also approximate
the degraded image G by a low rank matrix of rank 40. We compare our result with
the reconstructed image obtained by solving the Sylvester equation exactly by means
of the Bartels-Stewart algorithm (1c). For both variants, the optimal value of the reg-
ularization parameter λopt is computed by minimization over a logarithmically spaced
interval [10, 10−3] with 20 points. Figure 1 shows that the quality of the approximately
reconstructed image is similar to that of the exactly reconstructed image. Actually, in
terms of the relative spectral norm error, Algorithm 1 (0.0185) outperforms the full
solution (0.1260).

Figure 2 shows similar results for different blurring matrices. Here, we choose r1 =
6, σ = 12, r2 = 6. While the quality of the reconstructed images clearly is worse than
in the first setting, Algorithm 1 obviously yields far better results than we obtain by
solving the Sylvester equation explicitly. Moreover, the final (energy norm optimal)
iterate from Algorithm 1 is found after 20 iteration steps.

Magdeburg cathedral

The second example is an image from the cathedral in Magdeburg, Germany.2 The
matrix X is of size 436× 556. We choose r1 = 4, σ = 7 and r2 = 5. Since the Sylvester
equation is larger than in the first example, we increase the rank of the approximation
to nr = 50. Figure 3 shows a similar comparison as in the first example. Algorithm 1
needs 19 steps before convergence is obtained. Again, the relative spectral norm error
for the approximate solution (0.018) is smaller than for the exact solution (2.890). We
get similar results for the paramter values r1 = 5, σ = 7 and r2 = 2. The results are
shown in Figure 4. The number of iterations needed in Algorithm 1 is 13. Once more,
note that the method used for reconstruction is probably not the most sophisticated
and explains the modest quality of the approximations. Still, we point out that the
reconstructed images computed by an approximate solution of the Sylvester equation

1The photo is taken from http://owpdb.mfo.de/detail?photo_id=3467 .
2The photo is taken from http://commons.wikimedia.org/wiki/File:Magdeburger_Dom_

Seitenansicht.jpg.
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(a) Original image (b) Blurred and noisy image

(c) Restored image (exact), λopt = 0.079 (d) Restored image (appr.), λopt = 0.127

Figure 1: Uniform blur (r1 = 5) and atmospheric blur (σ = 7, r2 = 2) for nr = 40.

in all cases perform better than the actual exact solution. This might be due to the
badly conditioned matrices which may cause numerical perturbations when one tries
to compute the full solution explicitly.

6 Conclusions

In this paper, we have studied symmetric Sylvester equations arising in image re-
construction problems. The symmetric structure of the equation allowed to measure
errors of low rank approximations in terms of an energy norm induced by the Sylvester
operator. For given rank nr, we have derived first-order optimality conditions for an
approximation optimal with respect to this energy norm. We have then established
a connection to the H2-inner product of two symmetric state space systems. The
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(a) Original image (b) Blurred and noisy image

(c) Restored image (exact), λopt = 1.438 (d) Restored image (appr.), λopt = 0.127.

Figure 2: Uniform blur (r1 = 6) and atmospheric blur (σ = 12, r2 = 6) for nr = 40.

corresponding first-order optimality conditions have been shown to be equivalent to
the ones related to the energy norm minimization problem. The stationary points
of the H2-inner product itself have been shown to be necessarily saddle points. An
iterative interpolatory procedure trying to find these saddle points has been suggested.
Several numerical examples demonstrated the applicability of the method for image
reconstruction problems.

17



(a) Original image (b) Blurred and noisy image

(c) Restored image (exact), λopt = 0.070 (d) Restored image (appr.), λopt = 0.298

Figure 3: Uniform blur (r1 = 4) and atmospheric blur (σ = 7, r2 = 5) for nr = 50.
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(a) Original image (b) Blurred and noisy image

(c) Restored image (exact), λopt = 0.336 (d) Restored image (appr.), λopt = 0.055

Figure 4: Uniform blur (r1 = 5) and atmospheric blur (σ = 7, r2 = 2) for nr = 50.
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