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Abstract

In this paper, convection-diffusion-reaction models with nonlinear reaction mechanisms,
which are typical problems of chemical systems, are studied by using the upwind symmet-
ric interior penalty Galerkin (SIPG) method. The local spurious oscillations are minimized
by adding an artificial viscosity diffusion term to the original equations. A discontinuity
sensor is used to detect the layers where unphysical oscillations occur. Finally, the pro-
posed method is tested on various single- and multi-component problems.
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1. Introduction

Unsteady nonlinear convection diffusion reaction problems are often studied in many engi-
neering problems such as fluid dynamics problems in the presence of body forces, electro-
chemical interaction flows and chemically reactive flows [11, 12]. In this paper, we consider
the following nonlinear system of coupled diffusion-convection-reaction equations as a model
problem for our investigations:

∂tui− εi∆ui +βi ·∇ui +αiui + ri(u) = fi in Ωi, (1.1a)

ui = gD
i on Γ

D
i , (1.1b)

ε
∂ui

∂n
= gN

i on Γ
N
i , (1.1c)

ui(·, t0) = u0
i in Ωi (1.1d)

for i = 1, · · · ,m. Here, u = u(x, t) with u = (u1, · · · ,um)
T denotes the vector of unknowns

where Ωi is a bounded, convex domain in R2 with boundary Γi = ΓD
i ∪ΓN

i , ΓD
i ∩ ΓN

i = /0

and t ∈ (0,T ] for some T > 0. The source functions and boundary conditions, i.e., Dirich-
let boundary condition (1.1b) and Neumann boundary condition (1.1c), are defined such
as fi ∈ L2(0,T ;L2(Ω)), gD

i ∈ L2(0,T ;H3/2(ΓD
i )) and gN

i ∈ L2(0,T ;H1/2(ΓN
i )), respectively.

Moreover, the diffusion coefficients εi are small positive numbers such that 0 < εi � 1,
αi ∈ L∞(Ω) are the reaction coefficients and βi ∈ L∞(0,T ;(W 1,∞(Ω))2) are the velocity fields
(see Appendix A for the definitions of functional and Sobolev spaces). The initial conditions
are also defined such that u0

i ∈ H1(Ω). We have the following assumptions for the nonlinear
reaction parameter r(u):

r(u) ∈C1(R+
0 ), r(0) = 0, r

′
(s)≥ 0 ∀s≥ 0, s ∈ R. (1.2)

to satisfy the boundedness of r
′
(u) in terms of above compact intervals of u. In large chemical

systems the reaction terms r(u) are assumed to be expressions which are products of some
function of the concentrations of the chemical component and an exponential function of the
temperature, called Arrhenius kinetics expression. As an example, the rate of conversion of
u1 and u2 in the reaction

u1 +u2→ products

can be expressed as

k0ua
1ub

2e−
E

R T ,

where u1 and u2 are the concentrations of reactants, a and b are the orders of reaction, k0 is
the preexponential factor, E is the activation energy, R is the universal gas constant and T is
the absolute reaction temperature.

Problems of the form (1.1) are strongly coupled such that inaccuracies in one unknown
directly affect all other unknowns. Prediction of these unknowns is very important for the safe
and economical operation of biochemical and chemical engineering processes. Typically, in
(1.1) the size of the diffusion parameter ε is smaller compared to the size of velocity field β.
Then, such a convection diffusion system is called convection-dominated.
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For convection-dominated problems, especially in the presence of boundary and/or interior
layers, the standard finite element methods may result in spurious oscillations causing in turn a
severe loss of accuracy and stability. To avoid these oscillations, some stabilization techniques
are applied such as the streamline upwind Galerkin method (SUPG) for single linear convec-
tion dominated equations [14]. Nevertheless, spurious localized oscillations, in particular in
cross-wind direction, may still be present. Recently, higher order discontinuous Galerkin (DG)
methods have become popular for convection dominated problems [5, 8] since DG methods
possess inherent stability at discontinuities. However, the stability condition sometimes is
not satisfied by the DG space discretization itself at discontinuities and therefore, numerical
solutions might suffer from unphysical oscillations near the discontinuities.

The most straightforward approach consists in avoiding the presence of sharp gradients with
some non-linear projection operators, namely slope limiters, introduced in [6, 7]. Neverthe-
less, these limiters are not suitable for higher-order reconstructions, i.e., they drastically reduce
the order of the approximation to linear or constant. Alternatively, a high-order reconstruction
scheme, known as weighted non-oscillatory approach is used in [17] as a slope limiter. How-
ever, it requires structured grids with a very wide stencil and therefore the compactness of DG
may become less attractive. In addition, the extension to multiple dimensions is still an open
issue for both slope limiters. Another classical way to avoid spurious oscillations is the arti-
ficial viscosity proposed in [22], which is used with in many numerical techniques, i.e., finite
difference methods [15], SUPG discretization [14] for linear convection dominated problems
and in [1, 3] for nonlinear convection dominated problems. Within the DG framework, it is
mostly used for Euler equations [16] as an alternative to slope limiters.

In this paper, we solve the convection dominated problems with various nonlinear reaction
terms by using the upwind symmetric interior penalty Galerkin (SIPG) method. If neces-
sary, we use a shock-capturing method proposed in [16] based on the element size and the
polynomial degree in order to prevent unphysical oscillations. It is used in conjuction with a
discontinuity detection strategy.

The rest of the paper is organized as follows: In the next section we introduce the model
problem as scalar convection dominated reaction-diffusion equation with nonlinear reaction
term. Section 3 specifies the upwind SIPG discretization in space with shock-capturing and
time discretization. In the final section we present numerical results that illustrate the perfor-
mance of discontinuous Galerkin approximation with shock-capturing.

2. Scalar equation as model problem

We use the following scalar equation as a model problem

∂tu− ε∆u+β ·∇u+αu+ r(u) = f in Ω, (2.1)

equipped with appropriate initial and boundary conditions, i.e., Dirichlet and Neumann bound-
ary conditions, to make the notation easier for the readers. Let us first consider the weak
formulation of the state equation (2.1). The state space and the space of the test functions are

U = {u ∈ H1(Ω) : u = gD on ΓD} and V = H1
0 (Ω),

respectively. Then, it is well known that the weak formulation of the state equation (2.1) is
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such that [9]
(∂tu,v)+a(u,v)+

∫
Ω

r(u)v dx = l(v), ∀v ∈V,

where
a(u,v) =

∫
Ω

(
ε∇u ·∇v+β ·∇uv+αuv

)
dx, l(v) =

∫
Ω

f v dx+
∫

ΓN

gNv ds.

When shock-capturing is applied, we add an artificial viscosity
(
∇ ·(µ∇u)

)
to the weak formu-

lation of the problem (2.1). It is an unphysical diffusion term whose sole purpose is to damp
out high frequency components of the solution encountered wherever Gibbs phenomenas are
present. Then, the weak formulation with the artificial viscosity is given by

(∂tu,v)+a(u,v)+
∫

Ω

r(u)v dx+
∫

Ω

∇ · (µ∇u)v dx = l(v), ∀v ∈V,

where µ is the amount of viscosity. The viscosity parameter µ is chosen as a function of the
mesh size and order of approximating polynomials. It will be described in Section 3.2 in more
details.

3. Discretization Scheme

3.1. DG discretization in space

The DG discretization here is based on the SIPG discretization for the diffusion and the upwind
discretization for the convection. The same discretization is used, e.g., in [13, 19] for scalar
linear convection diffusion equations. In this paper, we follow the notation in [19].

Let {Th}h be a family of shape regular meshes such that Ω = ∪K∈ThK, Ki ∩K j = /0 for
Ki,K j ∈ Th, i 6= j. The diameter of an element K and the length of an edge E are denoted by
hK and hE , respectively.

For an integer ` and K ∈ Th let P`(K) be the set of all polynomials on K of degree at most
`. We define the discrete state and test spaces to be

Vh =Uh =
{

u ∈ L2(Ω) : u |K∈ P`(K) ∀K ∈ Th

}
. (3.1)

Note that since discontinuous Galerkin methods impose boundary conditions weakly, the
space Yh of discrete states and the space of test functions Vh are identical.

We split the set of all edges Eh into the set E0
h of interior edges, the set ED

h of Dirichlet
boundary edges and the set EN

h of Neumann boundary edges so that Eh = E∂

h ∪E0
h with

E∂

h = ED
h ∪EN

h . Let n denote the unit outward normal to ∂Ω. We define the inflow boundary
Γ
− = {x ∈ ∂Ω : β ·n(x)< 0} ,

and the outflow boundary Γ+ = ∂Ω \Γ−. The boundary edges are decomposed into edges
E−h =

{
E ∈ E∂

h : E ⊂ Γ−
}

that correspond to inflow boundary and edges E+
h = E∂

h \E−h that
correspond to outflow boundary.

The inflow and outflow boundaries of an element K ∈ Th are defined by

∂K− = {x ∈ ∂K : β ·nK(x)< 0} , ∂K+ = ∂K \∂K−,
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where nK is the unit normal vector on the boundary ∂K of an element K.
Let the edge E be a common edge for two elements K and Ke. For a piecewise continuous

scalar function u, there are two traces of u along E, denoted by u|E from inside K and ue|E
from inside Ke (see Figure 1). Then, the jump and average of y across the edge E are defined
by:

[[u]] = u|EnK +ue|EnKe , {{u}}= 1
2
(
u|E +ue|E

)
. (3.2)
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Figure 1: The edge E is a common edge for two elements K and Ke with unit outward normal
vectors, nK and nKe .

Similarly, for a piecewise continuous vector field ∇u, the jump and average across an edge
E are given by

[[∇u]] = ∇u|E ·nK +∇ue|E ·nKe , {{∇u}}= 1
2
(
∇u|E +∇ue|E

)
. (3.3)

For a boundary edge E ∈ K ∩Γ, we set {{∇u}}= ∇u and [[u]] = un where n is the outward
normal unit vector on Γ.

We can now give DG discretizations of the equation (2.1) in space. The DG method pro-
posed here is based on the upwind discretization for the convection term and on the SIPG
discretization for the diffusion term (see, e.g., [19]). This leads to the the following formula-
tion:

(∂tuh,vh)+ah(uh,vh)+ ∑
K∈Th

∫
K

r(uh)vh dx = lh(vh) ∀vh ∈Vh, t ∈ (0,T ], (3.4)

where the (bi)-linear terms are defined as

ah(u,v) = ∑
K∈Th

∫
K

ε∇u ·∇v dx

− ∑
E∈E0

h∪ED
h

∫
E

{{ε∇u}} · [[v]] ds− ∑
E∈E0

h∪ED
h

∫
E

{{ε∇v}} · [[u]] ds

+ ∑
E∈E0

h∪ED
h

σε

hE

∫
E

[[u]] · [[v]] ds+ ∑
K∈Th

∫
K

β ·∇uv+αuv dx

+ ∑
K∈Th

∫
∂K−\Γ−

β ·n(ue−u)v ds− ∑
K∈Th

∫
∂K−∩Γ−

β ·nuv ds, (3.5)
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lh(v) = ∑
K∈Th

∫
K

f v dx+ ∑
E∈ED

h

σε

hE

∫
E

gDn · [[v]] ds− ∑
E∈ED

h

∫
E

gD{{ε∇v}} ds

− ∑
K∈Th

∫
∂K−∩Γ−

β ·n gDv ds+ ∑
E∈EN

h

gNv ds, (3.6)

with the nonnegative real parameter σ being a penalty parameter. We choose σ to be suf-
ficiently large, independently of the mesh size h and the diffusion coefficient ε to ensure the
stability of the DG discretization as described in [18, Sec. 2.7.1] with a lower bound depending
only on the polynomial degree. Large penalty parameters decrease the jumps across element
interfaces, which can affect the numerical approximation. However, the DG approximation
can converge to the continuous Galerkin approximation as the penalty parameter goes to in-
finity (see, e.g., [4] for details).

3.2. DG Approximation with shock-capturing

Discontinuous Galerkin (DG) discretizations exhibit a better convergence behavior for con-
vection dominated problems since they inherit stability at discontinuities [5, 8]. Nevertheless,
spurious localized oscillations may still exist at discontinuities. These artifacts can cause un-
physical negative values of concentrations of chemical species and lead to completely wrong
predictions in complex chemical systems [2]. Therefore, as the DG solution develops, it has to
be limited to prevent oscillations. A remedy is adding an artificial viscosity (asc, lsc) to spread
the discontinuity over a length scale. Then, the general scheme of shock-capturing with DG
discretization is such that ∀vh ∈Vh, t ∈ (0,T ]

(∂tuh,vh)+ah(uh,vh)+ ∑
K∈Th

∫
K

r(uh)vh dx+asc(uh,vh) = lh(vh)+ lsc(vh), (3.7)

where

asc(u,v) = ∑
K∈Th

∫
K

µ∇u ·∇v dx+ ∑
E∈E0

h∪ED
h

∫
E

{{µ∇u}} · [[v]] ds, (3.8)

lsc(v) = ∑
E∈EN

h

∫
K

µ
ε

gNv ds. (3.9)

Now, the main issue is to determine the value of the viscosity parameter µ. It is not wise
to use a non-zero viscosity µ all across the solution domain since it is unnecessary in smooth
regions. Therefore, one needs an indicator to identify the region where under- or overshoots
are occurring. We will use the indicator introduced in [16]. This indicator is based on the
rate of decay of expansion coefficients of the solution. For each element K ∈ Th, it can be
described by

SK =
‖u− û‖2

L2(K)

‖u‖2
L2(K)

, (3.10)
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where u is the solution expressed in terms of p-th order of the orthogonal basis and û is a
truncated expansion of the same solution, only containing the terms up to order p−1, i.e.,

u =
N(p)

∑
i=1

uiϕi, û =
N(p−1)

∑
i=1

uiϕi,

where ϕi ∈Vh, i = 1, · · · ,N(p) are the basis polynomials. In [16] Persson et al. showed that SK
scales like∼ 1/p4 by making a connection between the polynomial expansion and the Fourier
expansion. Hence, they take the logarithm

sK := log10 SK

to obtain a quantity that scales linearly with the decay exponent. Similarly, s0 is expected to
scale as 1/p4. Then, the amount of viscosity is taken to be constant over each element and
determined by the following smooth function,

µK =


0, if sK < s0−κ,
µ0
2

(
1+ sin π(sK−s0)

2κ

)
, if s0−κ≤ sK ≤ s0 +κ,

µ0, if sK > s0 +κ,

(3.11)

where µ0 is the maximum viscosity, scaling with h/p and κ is the width of the activation
”ramp”. It is chosen empirically sufficiently large so as to obtain a sharp but smooth shock
profile. Due to scaling with h/p, the amount of viscosity is of order O(h/p) in order to resolve
a shock. This means that the thinner or smaller extent shock is resolved when the higher order
polynomials are used.

3.3. Time discretization

We use the θ-scheme [21] to discretize the problem (2.1) in time. Let NT be a positive integer.
The discrete time interval Ī = [0,T ] is defined as

0 = t0 < t1 < · · ·< tNT−1 < tNT = T

with size kn = tn− tn−1 for n = 1, · · · ,NT .

(un
h−un−1

h
kn

,vh
)
+ah(θun

h +(1−θ)un−1
h ,vh)

+ ∑
K∈Th

∫
K

r(θun
h +(1−θ)un−1

h )vh +asc(θun
h +(1−θ)un−1

h ,vh)

= θ
(
ln
h(vh)+ ln

sc(vh)
)
+(1−θ)

(
ln−1
h (vh)+ ln−1

sc (vh)
)
,

with the approximation of initial condition u0
h.
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4. Numerical Results

We have tested various single- and multi-component convection dominated problems with
nonlinear reaction mechanisms. The penalty parameter σ in the SIPG method is chosen as
σ= 3p(p+1) on interior edges and σ= 6p(p+1) on boundary edges. For time discretization,
we use the method of Crack-Nicolson (θ = 0.5). To solve (3.4) and (3.7), we use an inexact
variant of Newton’s method.

4.1. Example with u2 reaction term in a single stationary case

This example taken from [1] is a stationary case with Dirichlet boundary conditions. The
problem data are

Ω = (0,1)2, ε = 10−8, β =
1√
5
(1,2)T , α = 1 and r(u) = u2.

The source function f and Dirichlet boundary conditions are chosen such that the exact solu-
tion is given by

u(x1,x2) =
1
2

(
1− tanh

2x1− x2−0.25√
5ε

)
,

which has an interior layer of thickness O(
√

ε| lnε|) around 2x1− x2 =
1
4 .

h dof p = 2 dof p = 4
SIPG SIPG-SC SIPG SIPG-SC

1/2 48 1.28e-1 1.63e-1 120 1.13e-1 1.23e-1
1/4 192 8.85e-2 1.25e-1 480 5.39e-2 7.39e-2
1/8 768 6.56e-2 1.03e-1 1920 3.97e-2 6.49e-2

1/16 3072 5.02e-2 8.50e-2 7680 3.06e-2 5.33e-2
1/32 12288 3.78e-2 6.99e-2 30720 2.35e-2 4.36e-2
1/64 49152 2.83e-2 5.74e-2 122880 1.81e-2 3.51e-2

Table 1: Example 4.1: Mesh size h, number of degrees of freedom (dof) and errors in ‖·‖L2(Ω)

without (SIPG) and with shock-capturing (SIPG-SC) for p = 2,4, respectively.

Table 1 reveals the calculated errors in the ‖ · ‖L2(Ω) norm for the upwind SIPG approxima-
tion without and with shock capturing. Typically, the errors of the shock-capturing approach
are even slightly larger than the errors of the upwind SIPG approach, which is due to the
additional artificial cross-wind diffusion. However, spurious oscillations around the interior
layer, where the derivative of the PDE solution is large, are reduced by the shock-capturing
as shown in Figure 2. That means that the additional diffusion is located around the interior
layer. Further, Figure 2 shows that the unphysical oscillations are almost gone when the higher
order approximation (p = 4) is used for a fixed mesh size h.
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Figure 2: Example 4.1: The plots in the top row show the computed solutions without (SIPG)
and with shock-capturing (SIPG-SC) for p = 2 and the plots on the bottom row
show the computed solutions without (SIPG) and with shock-capturing (SIPG-SC)
for p = 4 for a fixed mesh size h = 1.56e−2.
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4.2. Example with Monod-type reaction term in single stationary case

The following stationary example with unknown solution is taken from [1]. Let

Ω = (0,1)2, ε = 10−8, β = (−x2,x1)
T , α = 1 and f = 0.

We have a Monod-type reaction rate r(u) = − u
1+u . The Dirichlet and Neumann boundary

conditions are given by

gD(x1,x2) =


1, if x1 ∈ [1/3,2/3] and x2 = 0,
0, if x1 ∈ [0,1/3)∪ (2/3,1] and x2 = 0,
0, if x1 = 1,
0, if x2 = 1.

and
gN(x1,x2) = 0 for x1 = 0 and x2 ∈ [0,1],

respectively.
The computed upwind SIPG solutions without and with shock-capturing are shown in Fig-

ure 3. The upwind SIPG solution has two interior layers that are resolved by using shock-
capturing. The unphysical under- and over-shoots are almost eliminated when the higher
polynomials (p = 4) are used.

4.3. Example with Arrhenius type reaction term in a single stationary
case

The following stationary example taken from [10] models the jet diffusion flame in a combus-
tor. The problem date is given by

β = (0.2,0)T , α = 0 and f = 0.

The nonlinear reaction term is an Arrhenius type given by

r(u,γ) = Au(c−u)e−E/d−u,

where c and d are known constants and the system parameters defined by γ = (In A,E) can
vary within the parameter domain D : [5,7.25]× [0.05,015]. From a physical point of view, u
represents fuel concentration, whereas c−u is the concentration of the oxidizer. The parame-
ters A and E are usually estimated from experimental data. Figure 4 shows the 2D combustor
domain. The Dirichlet boundary conditions at the left vertical boundary of the domain are
given by

gD(x1,x2) =

 0, if 0≤ x2 < 3 mm,
c, if 3≤ x2 < 6 mm,
0, if 6≤ x2 ≤ 9 mm.

All other boundaries have homogeneous Neumann boundary conditions.

9



Figure 3: Example 4.2: The plots in the top row show the computed solutions without (SIPG)
and with shock-capturing (SIPG-SC) for p = 2 and the plots on the bottom row
show the computed solutions without (SIPG) and with shock-capturing (SIPG-SC)
for p = 4 for a fixed mesh size h = 1.56e−2.
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Figure 4: The domain for the modelled fuel concentration problem.

We have tested the Example 4.3 with various γ = (lnA,E) parameters for ε = 5× 10−6 in
Figure 5. The results show that the upwind SIPG discretization works well. However, when
we consider smaller diffusion parameter ε = 5× 10−7, the unphysical oscillations occur, see
Figure 6. By applying shock-capturing we handle these spurious oscillations.

Figure 5: Example 4.3: Computed SIPG solutions for various γ = (lnA,E) parameters with
p = 2, h = 1.56e−2 and ε = 5×10−6.

4.4. Example with u4 reaction term in a single nonstationary case

We now study the unsteady problem with Dirichlet boundary conditions taken from [3]. Let

Ω = (0,1)2, ε = 10−6, β = (2,3)T , α = 0, T = 1 and r(u) = u4.

The source function f and Dirichlet boundary conditions are chosen such that the exact solu-
tion is given by

u(x1,x2, t) =16sin(πt)x1(1− x1)x2(1− x2)

×
[1

2
+

1
π

arctan
( 2√

ε
(

1
16
− (x1−0.5)2− (x2−0.5)2)

)]
,

which has a circular interior layer of characteristic width
√

ε.
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Figure 6: Example 4.3: The plots in the top row show the computed solutions without (SIPG)
and with shock-capturing (SIPG-SC) for p = 4 and the plots on the bottom row
show the computed solutions without (SIPG) and with shock-capturing (SIPG-SC)
for p = 6 for a fixed mesh size h = 3.125e−2, ε = 5×10−7 and γ = [e7.25,0.15].
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Figure 7 reveals the computed numerical solutions without and with shock-capturing by
using quadratic polynomials with time step size k = 10−2. Although the upwind SIPG ap-
proximation yields some oscillations, these oscillations are reduced after shock-capturing.

Figure 7: Example 4.4: The plots show the computed solutions without (SIPG) and with
shock-capturing (SIPG-SC) for p = 2 with h = 1.56e−2 at t = 0.5.

4.5. Example with Arrhenius type reaction term in a coupled stationary
case

The following stationary coupled system with unknown solution is a modified form of the
example studied in [20].

−ε∆u+β ·∇u− (∆H/(ρup))k0ve−(E/Ru) = 0 in Ω,

−ε∆v+β ·∇v+ k0ve−(E/Ru) = 0 in Ω.

The Dirichlet and Neumann boundary conditions are defined by

x1

x2

∂u
∂x2

= 0, ∂v
∂x2

= 0

∂u
∂x2

= 0, ∂v
∂x2

= 0

∂u
∂x1

= 0

∂v
∂x1

= 0
u = 500
v = 1
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The problem data is

Ω = [0,1]2, ε = 10−6, β = (1− x2
2,0),

k0 = 3×108, ∆H/(ρup) = 100 and E/R = 104.

Here, we solve a coupled convection dominated problem with Arrhenius nonlinear expres-
sion, consisting of the product of a concentration of chemical component and an exponential
function of the temperature. The computed solutions without shock-capturing exhibit high
oscillations when the quadratic polynomials are used. However, these unphysical oscillations
are reduced with shock-capturing, see Figure 8. Figure 9 shows the numerical approximations
for the higher order polynomials (p = 4). Similarly to previous examples, the higher order
approximations produce better results.

5. Conclusions

We have solved convection dominated reaction-diffusion problems with various nonlinear re-
action terms by using the upwind symmetric interior penalty Galerkin (SIPG) method. A
shock-capturing method with a discontinuity detection strategy has been used in order to
eliminate unphysical oscillations caused by the boundary and/or interior layers and nonlin-
ear reaction terms. As a future work, combination of hp-adaptivity with shock-capturing can
be addressed to narrow the shock layers.
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A. Preliminaries for Sobolev spaces

In this Appendix, we give the definitions of some Sobolev and functional spaces used along
this paper.

The vector space Lp(Ω) is defined by

Lp(Ω) = {v Lebesgue measurable : ‖v‖Lp(Ω) < ∞}

with the following Lp norm:

‖v‖Lp(Ω) =

(∫
Ω

|v|p
)1/p

.

The space L∞(Ω) is the space of bounded functions:

L∞(Ω) = {v : ‖v‖L∞(Ω) < ∞} with ‖v‖L∞(Ω) = esssup{|v(x)| : x ∈Ω}.

Let D(Ω) denote the space of C∞ functions. The dual space D
′
(Ω) is called the space of

distributions. For any multi-index α = (α1, · · · ,αd) ∈ Nd and |α| =
d
∑

i=1
αi, the distributional

derivative Dαv ∈ D
′
(Ω) is defined by

Dαv(φ) = (−1)|α|
∫

Ω

v(x)
∂|α|φ

∂xα1
1 · · ·∂xαd

d
, ∀φ ∈ D(Ω).

Then, we introduce the Sobolev space W k,p(Ω):

W k,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀ |α| ≤ k}

equipped with the norm

‖v‖W k,p(Ω) =

(
∑
|α|≤k
‖Dαv‖p

Lp(Ω)

)1/p

, p ∈ [1,∞),

‖v‖W k,∞(Ω) = ∑
|α|≤k
‖Dαv‖L∞(Ω).

Moreover, Hk(Ω) =W k,2(Ω) is called Hilbert space. Let us now define the the Sobolev spaces
with fractional indices which are necessary to define the spaces for boundary conditions. The
space Hk+1/2(Ω) with k integer is obtained by interpolating between the spaces Hk(Ω) and
Hk+1(Ω).
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Finally, we consider the space of functions mapping the time interval (0,T ) to a normed
space X for r ≥ 1,

Lr(0,T ;X) = {z : [0,T ]→ X measurable :
∫ T

0
‖z(t)‖r

X dt < ∞},

with the norm ‖ · ‖X

‖z(t)‖Lr(0,T ;X) =


(∫ T

0 ‖z(t)‖r
X dt

)1/r
, if 1≤ r < ∞,

ess sup
t∈(0,T ]

‖z(t)‖X , if r = ∞.
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