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Abstract

In this paper, we study the numerical solution of optimal control problems governed by a
system of convection diffusion PDEs with nonlinear reaction terms, arising from chemical
processes. The symmetric interior penalty Galerkin (SIPG) method with upwinding for
the convection term is used for discretization. Residual-based error estimators are used
for the state, the adjoint and the control variables. An adaptive mesh refinement indicated
by a posteriori error estimates is applied. The arising saddle point system is solved using
a suitable preconditioner. Numerical examples are presented for convection dominated
problems to illustrate the effectiveness of the adaptivity.
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1 Introduction

Optimal control problems governed by scalar or coupled partial differential equations (PDEs)
have a number of applications in mathematical and physical problems. One such field in
which these problems can be posed is that of chemical processes. The underlying PDEs are
then convection dominated equations with nonlinear reactions terms [12, 13].

Let Ω be a bounded open, convex domain R2 with boundary Γ = ∂Ω, let fi, βi, αi, ud , vd ,
gi be given functions, and let εi > 0, ωz ≥ 0 be given diffusion and regularization parameters,
respectively, for i = 1,2 and z ∈ {u,v,c}. In this paper, we consider a class of distributed
optimal control problems governed by a system of convection dominated PDEs

min J(u,v,c) =
ωu

2
‖u−ud‖2

L2(Ω)+
ωv

2
‖v− vd‖2

L2(Ω)+
ωc

2
‖c‖2

L2(Ω), (1.1)

subject to −ε1∆u+β1 ·∇u+α1u+ γ1r1(u)r2(v) = f1 + c in Ω, (1.2a)
−ε2∆v+β2 ·∇v+α2v+ γ2r1(u)r2(v) = f2 in Ω, (1.2b)

u = g1 on Γ1, (1.2c)
v = g2 on Γ2. (1.2d)

We refer to u and v as the state variables, to c as the control variable and to (1.2) as the state
system. Moreover, we have nonlinear reaction terms γir1(u)r2(v), in which r1(u) only depends
on the first state variable u, whereas r2(v) only depends on the second state variable v. The
constants γi are non-negative for i = 1,2.

In large chemical systems, the reaction terms γir1(u)r2(v) are assumed to be expressions
which are products of some function of the concentrations of the chemical component, i.e.,
u,v, and an exponential function of the temperature, called Arrhenius kinetics expression. As
an example, the rate of conversion of u and v in the reaction

u+ v→ products

can be expressed as
γr1(u)r2(v),

where u and v are the concentrations of the reactants, γ = k0e−
E

R T with pre-exponential factor
k0, the activation energy E, the universal gas constant R , and T is the absolute reaction tem-
perature. For simplicity, we here take γ as non-negative constant. We would like to emphasize
that the extension of anything derived in this paper to more than two reactants is straight-
forward. We restrict ourselves to two reactants in order to not obscure the presentation by
technicalities.

Problems of the form (1.2) are strongly coupled such that inaccuracies in one unknown
directly affect all other unknowns. Therefore, prediction of these unknowns is very important
for the safe and economical operation of biochemical and chemical engineering processes.
Typically, in (1.2) the size of the diffusion parameters εi is small compared to the size of the
velocity fields βi. Then, such a convection diffusion system is called convection-dominated.

For convection-dominated problems, especially in the presence of boundary and/or interior
layers, the standard finite element methods may result in spurious oscillations causing in turn
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a severe loss of accuracy and stability. Therefore, we need special techniques to eliminate
spurious oscillations. One way to avoid spurious oscillations is the artificial viscosity pro-
posed in [30], which is used in many numerical techniques, i.e., streamline upwind Galerkin
method (SUPG) discretization in [16] for linear convection dominated problems and in [2] for
nonlinear convection dominated problems, and symmetric interior penalty Galerkin (SIPG)
discretization in [36] for scalar and/or coupled convection dominated problems with nonlinear
reaction terms. Although adding artificial viscosity reduces spurious oscillations, the accuracy
of numerical solutions is not enhanced due to the additional artificial cross-wind diffusion. An-
other approach is to use adaptive mesh refinement producing generally better accuracy with
fewer degrees of freedom.

Adaptive mesh refinement is particularly attractive for the solution of optimal control prob-
lems governed by convection dominated PDEs since both state and adjoint PDEs are convec-
tion dominated, but the convection term of the adjoint PDE is the negative of the convection
term of the state PDE. As a consequence, errors in the solution can potentially propagate in
both directions. Residual-type a posteriori error estimators for convection dominated optimal
control problems have been studied in [3, 6, 14, 21, 32], but they all use continuous finite
element discretizations. A discontinuous Galerkin (DG) discretization, i.e., SIPG, is used in
[33, 35] for distributed linear optimal control problems governed by convection dominated
problems. The numerical results obtained in [33, 35] show that the adaptive methods based
on the SIPG method refine more narrowly around regions where layers occur than the SUPG
discretization does. The reason is that the errors in boundary layers do not propagate into the
entire domain [18]. In this paper, we consider a class of distributed optimal control problems
governed by a system of convection dominated PDEs. Similar optimal control problems with-
out convection terms in the constraints have been discussed in [1, 8, 9, 24]. Our goal here is to
extend the residual based a posteriori error estimator applied to distributed linear optimal con-
trol problems governed by scalar convection dominated equation [33, 35] to optimal control
problems governed by a system of convection diffusion PDEs with nonlinear reaction terms
as in (1.2).

Our paper is organized as follows. In the next section we specify the problem data and
derive the Newton system to solve the optimal control problem. Section 3 introduces the DG
discretization, i.e., SIPG discretization for the diffusion term and an upwinding discretization
for the convection term. An effective preconditioner is also proposed to solve the saddle
point system. The reliability and efficiency estimates of our error estimator are proven in
Section 4. The proof uses the reliability and efficiency estimate of a scalar equation, the
continuous dependence of the solution of scalar state and adjoint equations on the right hand
sides of these equations, boundedness and the locally continuous Lipschitz condition of the
nonlinear terms as well as the convexity of the cost functional. Section 5 briefly describes the
standard adaptive procedure. In the final section we present numerical results that illustrate
the performance of the proposed error estimator.

2 The Nonlinear Optimal Control Problem

In this section, we first discuss some properties of the state equation (1.2), namely existence,
uniqueness and regularity of the state solution to prove the existence of the solution of the
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optimal control problem (1.1)-(1.2). We use the method of ordered upper and lower solutions
introduced in [23] and applied in an optimal control context in [1, 8, 9].

The state PDEs (1.2) require a different choice of the state space than linear PDEs due to
the nonlinear terms. We need a higher regularity of u and v to make the nonlinearities well
defined [8].

Let us start with the weak formulation of the state system (1.2). The state space, the control
space and the space of the test functions are

Y = H1(Ω)∩L2(Ω), C = L2(Ω) and W = H1
0 (Ω),

respectively. Then, it is well known that the weak formulation of the state PDEs (1.2) is such
that ∀w ∈W ,

a1(u,w)+
∫

Ω

γ1r1(u)r2(v)w dx+b(c,w) = l1(w),

a2(v,w)+
∫

Ω

γ2r1(u)r2(v)w dx = l2(w),

where

ai(z,w) =
∫

Ω

(
εi∇z ·∇w+βi ·∇zw+αizw

)
dx, b(c,w) =−

∫
Ω

cw dx,

li(w) =
∫

Ω

fiw dx, for i = 1,2.

We make the following assumptions for the functions and parameters on the optimal control
problem (1.1)-(1.2) for i = 1,2:

A1 fi ∈ L2(Ω)≥ 0,ud ,vd ∈ L2(Ω),gi ∈ H3/2(Γi),βi ∈ (W 1,∞(Ω))2.

A2 αi ∈ L∞(Ω)≥ 0,γi ≥ 0,εi > 0,ωu,ωv,ωc > 0.

A3 There exist constants κi > 0 such that

αi(x)−
1
2

∇ ·βi(x)≥ κi > 0 x ∈Ω. (2.1)

A4 There also exist constants κ∗i ≥ 0 such that

‖−∇ ·βi +αi‖L∞(Ω) ≤ κ
∗
i κi. (2.2)

The conditions (A1-A3) ensure the well-posedness of the linear part of the optimal control
problem [11, 18]. The condition (A4) is required to prove the efficiency of the error estimator
[27, 29]. Although our error estimators can be formulated for κi = 0, we require κi > 0 to
prove reliability and efficiency of our estimator. Of course, if κi > 0, we can always find κ∗i
such that (A4) holds and the condition (A4) is more critical if κi = 0, which is allowed in
[27, 29]. In this case, the condition (A4) holds only for the case αi ≡ ∇ ·βi. Hence, we also
require ∇ ·βi ≥ 0 to satisfy the condition (A3).

To ensure non-negativity of the concentrations u,v, the source functions fi and reaction
coefficients αi,γi are assumed to be non-negative. Due to the nonlinear terms in (1.2), we also
make the following assumptions on the nonlinear terms ri for i = 1,2:
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A5 The nonlinear terms ri satisfy the following assumptions [28, Sec. 4.3.2]:
the boundedness condition of order k = 0,1

|Dk
zri(z)| ≤CM, CM > 0, ∀z ∈ [−M,M], (2.3)

and the continuous Lipschitz condition of order k = 0,1, for s ∈ [1,∞]

‖Dk
zri(z1)−Dk

zri(z2)‖Ls(Ω) ≤ L(M)‖z1− z2‖Ls(Ω), ∀zi ∈ L∞(Ω). (2.4)

To show the existence and uniqueness of the system (1.2), we refer to the procedures in [1, 8]
for optimal control of a reaction-diffusion system. The main idea follows such that we first find
the upper and lower solutions which yield pointwise bounds for the desired solution. Then,
we use these bounds as initial iterates to construct two monotonically convergent (nested)
sequences. Hence, their common limit is the unique solution of the state system (1.2). In the
following theorem, we can state the existence and uniqueness of the state system (1.2) for each
control variable c.

Theorem 2.1 Under the assumptions (A1-A5), the system (1.2) admits a unique solution
(u,v) ∈ Y ×Y for each c ∈C = L2(Ω).

Now, we can give the existence of a solution (ū, v̄, c̄) for the optimal control problem (1.1)-
(1.2) in the following theorem.

Theorem 2.2 There exists at least one global optimizer (ū, v̄, c̄) of the optimal control problem
(1.1)-(1.2) provided that the assumptions (A1-A5) hold.

Proof. Let us only briefly sketch the proofs done in [Thm. 2.4, Thm. 7.4] [1, 8]. First, the
existence of a bounded sequence of state/control pairs whose objective value converges to the
overall infimum is established. Then, a subsequence of this sequence is weakly convergent due
to the boundedness of this sequence. By compact embedding results, strong convergence of
the state components in a weaker norm is obtained. Hence, a feasibility of the limit point can
be deduced and finally, a continuity argument is used to obtain convergence of the objective
function. �

By taking the Fréchet derivative of the Lagrangian functional of the optimal control problem
(1.1)-(1.2) as done in [1, 8, 24], we obtain the following optimality system consisting of the
coupled adjoint system

−ε1∆p−β1 ·∇p+(α1−∇ ·β1)p+ γ1 pr
′
1(u)r2(v)

+ γ2qr
′
1(u)r2(v) =−ωu(u−ud) in Ω, (2.5a)

−ε2∆q−β2 ·∇q+(α2−∇ ·β2)q+ γ1 pr1(u)r
′
2(v)

+ γ2qr1(u)r
′
2(v) =−ωv(v− vd) in Ω, (2.5b)

p = 0 on Γ1, (2.5c)
q = 0 on Γ2, (2.5d)
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the gradient equation

ωcc− p = 0 in Ω, (2.6)

and the coupled state system

−ε1∆u+β1 ·∇u+α1u+ γ1r1(u)r2(v) = f1 + c in Ω, (2.7a)
−ε2∆v+β2 ·∇v+α2v+ γ2r1(u)r2(v) = f2 in Ω, (2.7b)

u = g1 on Γ1, (2.7c)
v = g2 on Γ2. (2.7d)

The optimality system (2.5-2.7) can be written in terms of (bi)-linears forms such that

a1(w, p)+(γ1 pr
′
1(u)r2(v),w)

+(γ2qr
′
1(u)r2(v),w)+ωu(u,w) = ωu(ud ,w) ∀w ∈W, (2.8a)

a2(w,q)+(γ1 pr1(u)r
′
2(v),w)

+(γ2qr1(u)r
′
2(v),w)+ωv(v,w) = ωv(vd ,w) ∀w ∈W, (2.8b)

b(w, p)+ωc(c,w) = 0 ∀w ∈C, (2.8c)
a1(u,w)+(γ1r1(u)r2(v),w)+b(c,w) = l1(w) ∀w ∈W, (2.8d)

a2(v,w)+(γ2r1(u)r2(v),w) = l2(w) ∀w ∈W. (2.8e)

The optimality system (2.5-2.7) can be described as a set of nonlinear equations with the
notation Φ(x) = 0. The Newton’s method can be used to solve this problem via the relation
Φ
′
(xk)sk =−Φ(xk). Then, an infinite dimensional system is described such that[

A BT

B 0

]
s =−Φ (2.9)

with

A =

 A11 A12 0
A21 A22 0
0 0 ωcI

 , B =

[
B11 B12 −I
B21 B22 0

]
and s = [∆p,∆q,∆c,∆u,∆v]T ,

where I denotes the identity operator and

A11 = r
′′
1(u)r2(v)(γ1 p+ γ2q)+ωu,

A12 = A21 = r
′
1(u)r

′
2(v)(γ1 p+ γ2q),

A22 = r1(u)r
′′
2(v)(γ1 p+ γ2q)+ωv,

B12 = γ1r1(u)r
′
2(v),

B21 = γ2r
′
1(u)r2(v),

B11 =−ε1∆+β1 ·∇+α1 + γ1r
′
1(u)r2(v),

B22 =−ε2∆+β2 ·∇+α2 + γ2r1(u)r
′
2(v).
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3 Discontinuous Galerkin Discretization

The DG discretization of (2.9) is based on the SIPG discretization for the diffusion and an
upwind discretization for the convection. The same discretization is used, e.g., in [15, 27] for
a single linear convection diffusion equation and in [18, 33, 34, 35] for linear optimal control
problems.

Let {Th}h be a family of shape regular meshes such that Ω = ∪K∈ThK, Ki ∩K j = /0 for
Ki,K j ∈ Th, i 6= j. The diameter of an element K and the length of an edge E are denoted by
hK and hE , respectively.

We split the set of all edges Eh into the set E0
h of interior edges, and the set E∂

h of boundary
edges so that Eh = E∂

h ∪E0
h . Let n denote the unit outward normal to ∂Ω. We define the inflow

boundary
Γ
− = {x ∈ ∂Ω : β ·n(x)< 0} ,

and the outflow boundary Γ+ = ∂Ω \Γ−. The boundary edges are decomposed into edges
E−h =

{
E ∈ E∂

h : E ⊂ Γ−
}

that correspond to the inflow boundary and edges E+
h = E∂

h \E−h
that correspond to the outflow boundary.

The inflow and outflow boundaries of an element K ∈ Th are defined by

∂K− = {x ∈ ∂K : β ·nK(x)< 0} , ∂K+ = ∂K \∂K−,

where nK is the unit normal vector on the boundary ∂K of an element K.
Let the edge E be a common edge for two elements K and Ke. For a piecewise continuous

scalar function u, there are two traces of u along E, denoted by u|E from inside K and ue|E
from inside Ke. Then, the jump and average of y across the edge E are defined by:

[[u]] = u|EnK +ue|EnKe , {{u}}= 1
2
(
u|E +ue|E

)
. (3.1)

Similarly, for a piecewise continuous vector field ∇u, the jump and average across an edge
E are given by

[[∇u]] = ∇u|E ·nK +∇ue|E ·nKe , {{∇u}}= 1
2
(
∇u|E +∇ue|E

)
. (3.2)

For a boundary edge E ∈ K ∩Γ, we set {{∇u}}= ∇u and [[u]] = un where n is the outward
normal unit vector on Γ.

3.1 Discretization of State System

We here describe the discretization of the state system (1.2) for a fixed distributed control c.
Let P1(K) be the set of all polynomials on K ∈ Th of degree at most 1. Then, we define the

discrete state and control spaces to be

Wh = Yh =
{

y ∈ L2(Ω) : y |K∈ P1(K) ∀K ∈ Th
}
, (3.3a)

Ch =
{

c ∈ L2(Ω) : c |K∈ P1(K) ∀K ∈ Th
}
, (3.3b)
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respectively. The space Yh of discrete states and the space of test functions Wh are identical
due to the weak treatment of boundary conditions for DG methods.

The DG method proposed here is based on the upwind discretization for the convection
term and on the SIPG discretization for the diffusion term. This leads to the formulation

a1
h(u,w)+ γ1 ∑

K∈Th

∫
K

r1(uh)r2(vh)wh dx+bh(c,w) = l1
h(w), (3.4)

a2
h(v,w)+ γ2 ∑

K∈Th

∫
K

r1(uh)r2(vh)wh dx = l2
h(w), (3.5)

where the (bi)-linear terms are defined as for i = 1,2 and ∀w ∈Wh as

ai
h(z,w) = ∑

K∈Th

∫
K

εi∇z ·∇w dx

− ∑
E∈Eh

∫
E

{{εi∇z}} · [[w]] ds− ∑
E∈Eh

∫
E

{{εi∇w}} · [[z]] ds

+ ∑
E∈Eh

σεi

hE

∫
E

[[z]] · [[w]] ds+ ∑
K∈Th

∫
K

βi ·∇zw+αizw dx

+ ∑
K∈Th

∫
∂K−\Γ

βi ·n(ze− z)w ds− ∑
K∈Th

∫
∂K−∩Γ−

βi ·nzw ds, (3.6a)

bh(c,w) = − ∑
K∈Th

∫
K

cw dx, (3.6b)

li
h(w) = ∑

K∈Th

∫
K

fiw dx+ ∑
E∈E∂

h

σεi

hE

∫
E

gin · [[w]] ds− ∑
E∈E∂

h

∫
E

gi{{εi∇w}} ds

− ∑
K∈Th

∫
∂K−∩Γ−

βi ·n giw ds (3.6c)

with the nonnegative real parameter σ being called the penalty parameter. We choose σ to be
sufficiently large, independently of the mesh size h and the diffusion coefficient ε to ensure the
stability of the DG discretization as described in [25, Sec. 2.7.1] with a lower bound depending
only on the polynomial degree.

Now, we describe the discretized optimal control problem by

min J(uh,vh,ch) = ∑
K∈Th

(
ωu

2
‖uh−ud

h‖2
K +

ωv

2
‖vh− vd

h‖2
K +

ωc

2
‖ch‖2

K

)
(3.7a)

subject to

a1
h(uh,wh)+(γ1r1(uh)r2(vh),wh)+bh(ch,wh) = l1

h(wh) ∀w ∈Wh, (3.7b)

a2
h(vh,wh)+(γ2r1(uh)r2(vh),wh) = l2

h(wh) ∀w ∈Wh (3.7c)
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with (uh,vh,ch) ∈ (Yh,Yh,Ch). Then, the optimality system of the discretized optimal control
problem (3.7) is

a1
h(wh, ph)+(γ1 phr

′
1(uh)r2(vh),wh)

+(γ2qhr
′
1(uh)r2(vh),wh)+ωu(uh,wh) = ωu(ud

h ,wh) ∀wh ∈Wh, (3.8a)

a2
h(wh,qh)+(γ1 phr1(uh)r

′
2(vh),wh)

+(γ2qhr1(uh)r
′
2(vh),wh)+ωv(vh,wh) = ωv(vd

h ,wh) ∀wh ∈Wh, (3.8b)

bh(wh, ph)+ωc(ch,wh) = 0 ∀wh ∈Ch, (3.8c)

a1
h(uh,wh)+(γ1r1(uh)r2(vh),wh)+bh(ch,wh) = l1

h(wh) ∀wh ∈Wh, (3.8d)

a2
h(vh,wh)+(γ2r1(uh)r2(vh),wh) = l2

h(wh) ∀wh ∈Wh. (3.8e)

Note that we can neglect the errors introduced by the discretization of coefficients γ1 and γ2
since they are taken as constant coefficients. Hence, we take γ1 = γ1

h and γ2 = γ2
h throughout

this paper.

3.2 DG Discretization of the Newton System

The DG discretization of the right-hand side Φ(xk) of the Newton system in (2.9) is written as

Φ(xk) =


AT

u pk + γ1Fpk,u
′
k,vk

+ γ2Fqk,u
′
k,vk

+ωuMuk− lp

AT
v qk + γ1Fpk,uk,v

′
k
+ γ2Fqk,uk,v

′
k
+ωvMvk− lq

ωcMck−Mpk
Auuk + γ1Fuk,vk −Mck− lu

Avvk + γ2Fuk,vk − lv

 , (3.9)

where

Fpk,u
′
k,vk

=
∫

Ω

pkr
′
1(uk)r2(vk)ϕi dx, Fqk,u

′
k,vk

=
∫

Ω

qkr
′
1(uk)r2(vk)ϕi dx,

Fpk,uk,v
′
k
=

∫
Ω

pkr1(uk)r
′
2(vk)ϕi dx, Fqk,uk,v

′
k
=

∫
Ω

qkr1(uk)r
′
2(vk)ϕi dx,

Fuk,vk =
∫

Ω

r1(uk)r2(vk)ϕi dx.

Au and Av correspond to the bilinear forms a1
h(u,w) and a2

h(v,w), whereas lu and lv correspond
the linear forms l1

h(w) and l2
h(w). Further, lp =

∫
Ω

ωuudw dx, lq =
∫

Ω
ωvvdw dx and mass

matrix Mi j =
∫
Ω

ϕiϕ j dx.

The discretized form of the Φ
′
(xk) (2.9) is given by

Φ
′
(xk) =

[
A BT

B 0

]
:= A (3.10)
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with

A =

 γ1Mp,u′′ ,v + γ2Mq,u′′ ,v +Mωu γ1Mp,u′ ,v′ + γ2Mq,u′ ,v′ 0
γ1Mp,u′ ,v′ + γ2Mq,u′ ,v′ γ1Mp,u,v′′ + γ2Mq,u,v′′ +Mωv 0

0 0 ωcM

 ,
B =

[
Au + γ1Mu′ ,v γ1Mu,v′ −M

γ2Mu′ ,v Av + γ2Mu,v′ 0

]
,

where
Mi, j

u′ ,v
=

∫
Ω

r
′
1(uk)r2(vk)ϕiϕ j dx, Mi, j

u,v′
=

∫
Ω

r1(uk)r
′
2(vk)ϕiϕ j dx,

Mi, j
p,u′′ ,v

=
∫
Ω

pkr
′′
1(uk)r2(vk)ϕiϕ j dx, Mi, j

q,u′′ ,v
=

∫
Ω

qkr
′′
1(uk)r2(vk)ϕiϕ j dx,

Mi, j
p,u,v′′

=
∫
Ω

pkr1(uk)r
′′
2(vk)ϕiϕ j dx, Mi, j

q,u,v′′
=

∫
Ω

qkr1(uk)r
′′
2(vk)ϕiϕ j dx,

Mi, j
p,u′ ,v′

=
∫
Ω

pkr
′
1(uk)r

′
2(vk)ϕiϕ j dx, Mi, j

q,u′ ,v′
=

∫
Ω

qkr
′
1(uk)r

′
2(vk)ϕiϕ j dx.

In this paper, we use the SIPG method due to its symmetric property. It guarantees that
the discretization of the optimality system is the same as the optimality system of the SIPG
discretized optimal control problem, i.e., the ”optimize-then-discretize” and the ”discretize-
then-optimize” commute. This commutative property does not hold for several other popular
DG methods (see, e.g., [17, 34]).

3.3 Fast solution of the Newton system and alternatives

We now briefly want to discuss the efficient solution of the linear system (3.10), which is a
linear system in saddle point form (see [5, 7] for introductions to this field). As the linear
system A is typically of large dimension, the use of direct solvers is often not feasible. Hence,
iterative solvers have to be employed. Here, we focus on methods of Krylov subspace type
that build up a low-dimensional subspace, to then find a good approximation to the solution
within this subspace. The approximation quality typically depends on the system parameters
such as the mesh-size and regularization parameters. In order to achieve robust performance,
the linear system Ax = b is multiplied by a preconditioner P such that the equivalent system
P−1Ax = P−1b can be solved. Here we assume that the matrix P−1A has better numerical
properties compared to the original one. For symmetric problems, and in some sense also
for nonsymmetric ones, this is achieved by guaranteeing that P−1A has a small number of
distinct eigenvalues or clusters of eigenvalues. To achieve this, the matrix P has to resemble
A in some sense while still being easy to invert. For this we follow [20] where it is shown that
efficient approximations of the (1,1)-block A and the Schur complement BA−1BT result in
good convergence behaviour. For the derivation of the preconditioners we follow [24], where
preconditioners for time-dependent reaction-diffusion problems were introduced. We first
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discuss the approximation of the matrix A. Note that depending on the parameters γ1, γ2 and
the values of state, control, and adjoint, this block may become indefinite, which means that
the reduced Hessian of the overall problem is not symmetric positive definite. One remedy is
to apply a Gauss-Newton technique [10, 22], where we ignore second derivatives with respect
to the Lagrange multipliers leading to a (1,1)-block of the form

AGN =

 Mωu 0 0
0 Mωv 0
0 0 ωcM

 .
Note that we denote the original block of the Newton matrix by AG. It is easy to see that
the matrix AGN can trivially be inverted in the case of diagonal mass matrices, which is sat-
isfied for our DG scheme. Otherwise, the Chebyshev semi-iteration is a suitable candidate
to approximate the individual sub-blocks [31]. The situation is more complicated when the
Newton method is applied as we then need a more involved approximation

AG ≈ ÂG =

 AS 0 0
γ1Mp,u′ ,v′ + γ2Mq,u′ ,v′ γ1Mp,u,v′′ + γ2Mq,u,v′′ +Mωv 0

0 0 ωcM

 ,
where we assume that the blocks ωcM and γ1Mp,u′′ ,v + γ2Mq,u′′ ,v +Mωu can easily be inverted
as the matrices are diagonal. The matrix AS represents the Schur complement of the upper left
block, i.e.,

AS = γ1Mp,u′′ ,v + γ2Mq,u′′ ,v +Mωu−
(

γ1Mp,u′ ,v′ + γ2Mq,u′ ,v′
)

(
γ1Mp,u,v′′ + γ2Mq,u,v′′ +Mωv

)−1(
γ1Mp,u′ ,v′ + γ2Mq,u′ ,v′

)
,

where we assume that all matrices involved are diagonal and hence trivially invertible. We now
have to efficiently approximate the Schur complement, which in general is a more difficult
task. Following [24], we derive a preconditioner that approximates all terms of the Schur
complement

S = BA−1BT = KL−1KT +
1

ωc
M ,

where we use the notation that

K =

[
Au + γ1Mu′ ,v γ1Mu,v′

γ2Mu′ ,v Av + γ2Mu,v′

]
, M =

[
M 0
0 0

]
,

L =

[
γ1Mp,u′′ ,v + γ2Mq,u′′ ,v +Mωu γ1Mp,u′ ,v′ + γ2Mq,u′ ,v′

γ1Mp,u′ ,v′ + γ2Mq,u′ ,v′ γ1Mp,u,v′′ + γ2Mq,u,v′′ +Mωv

]
.

A technique that has proven to provide good convergence uses an approximation of the fol-
lowing form

Ŝ = (K +M̂1)L̂−1(K +M̂2)
T ,
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where L̂ approximates the upper 2×2-block of AG/GN . The goal is for

M̂1L̂−1M̂ T
2 ≈

1
ωc

M ,

which is achieved when

M̂1 =

[
1√
ωc

M 0
0 0

]
and M̂2 =

[
1√
ωc

AS 0
0 0

]
.

Note that this approximation can be used for both the Newton and Gauss-Newton approach.
In the Gauss-Newton approach the matrix AS is simply given by Mωu. Note that we now need
to approximate the inverse of (K + M̂1,2), which we can efficiently do using a fixed number
of steps of a preconditioned Uzawa method with a block-diagonal preconditioner where the
diagonal blocks of (K +M̂1,2) need to be approximated. We currently use a proof-of-concept
implementation that uses a factorisation of these block but appropriately chosen multigrid
schemes are of course possible.

The above mentioned preconditioner is embedded into a Krylov subspace solver. These
solvers approximate the solution within the Krylov subspace

span
{

r0,P−1Ar0,
(
P−1A

)2
r0, . . .

}
,

where r0 is the initial residual. In our case we employed GMRES [26], which minimizes the
norm of the residual over the current Krylov subspace.

4 A Posteriori Error Estimator

Our a posteriori error estimator builds upon the work by Schötzau and Zhu [27] for the SIPG
method and by Verfürth [29] for continuous finite element methods. Similar error estimators
are also used in the optimal control context [33, 35]. Here, we extend this concept to optimal
control problems governed by a system of convection diffusion PDEs with nonlinear reaction
terms.

We measure the error of control c in the L2 norm, while we measure the error of the state
variables (u,v) and the adjoint variables (p,q) in the norm ‖| · |‖ and the semi-norm | · |A [27],
which are defined by

‖|z|‖2 = ∑
K∈Th

(‖ε∇z‖2
L2(K)+κ‖z‖2

L2(K))+ ∑
E∈Eh

σε

hE
‖[[z]]‖2

L2(E), (4.1)

|z|2A = |βz|2∗+ ∑
E∈Eh

(κhE +
hE

ε
)‖[[z]]‖2

L2(E), (4.2)

where

|q|∗ = sup
w∈H1

0 (Ω)\{0}

∫
Ω

q ·∇wdx

‖|w|‖
for q ∈ L2(Ω)2. (4.3)
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The terms |βz|2∗ and hEε−1‖[[z]]‖2
L2(E) of the semi-norm | · |A will be used to bound the con-

vective derivative, similar to [27, 29]. The other term κhE‖[[z]]‖2
L2(E) is related to the linear

reaction term.
Let

f i
h,u

d
h ,v

d
h ,α

i
h,γ

i
h ∈Wh, β

i
h ∈W 2

h

denote approximations to the right hand sides fi, the desired states ud ,vd , the linear reaction
terms αi, the nonlinear reaction coefficients γi, and the convection terms βi, respectively, for
i = 1,2.

We define weights by ρK,i = min{hKε
− 1

2
i ,κ

− 1
2

i } and ρE,i = min{hEε
− 1

2
i ,κ

− 1
2

i }, for i = 1,2.

When κi = 0, ρK,i = hKε
− 1

2
i and ρE,i = hEε

− 1
2

i are taken.
For each element K ∈ Th, the error indicators of the state ηu

K ,η
v
K and the adjoint η

p
K ,η

q
K are

given by
(ηz

K)
2 =

[
(ηz

RK
)2 +(ηz

EK
)2 +(ηz

JK
)2
]
, z ∈ {u,v, p,q},

where for K ∈ Th the interior residual terms are defined by

η
u
RK

= ρK,1‖ f 1
h + ch + ε1∆uh−β

1
h ·∇uh−α

1
huh− γ

1
hr1(uh)r2(vh)‖L2(K),

η
v
RK

= ρK,2‖ f 2
h + ε2∆vh−β

2
h ·∇vh−α

2
hvh− γ

2
hr1(uh)r2(vh)‖L2(K),

η
p
RK

= ρK,1‖−ωu(uh−ud
h)+ ε1∆ph +β

1
h ·∇ph− (α1

h−∇ ·β1
h)ph

− γ
1
h phr

′
1(uh)r2(vh)− γ

2
hqhr

′
1(uh)r2(vh)‖L2(K),

η
q
RK

= ρK,2‖−ωv(vh− vd
h)+ ε2∆qh +β

2
h ·∇qh− (α2

h−∇ ·β2
h)qh

− γ
1
h phr1(uh)r

′
2(vh)− γ

2
hqhr1(uh)r

′
2(vh)‖L2(K),

the edge residuals for z = u, p and s = v,q are

(ηz
EK
)2 =

1
2 ∑

E∈∂K\Γ
ε
− 1

2
1 ρE,1‖[[ε1∇zh]]‖2

L2(E),

(ηs
EK
)2 =

1
2 ∑

E∈∂K\Γ
ε
− 1

2
2 ρE,2‖[[ε2∇sh]]‖2

L2(E),

and the terms measuring the jumps for (z, i) ∈ {(u,1),(v,2),(p,1),(q,2)} are

(ηz
JK
)2 =

1
2 ∑

E∈∂K\Γ

(σεi

hE
+κihE +

hE

εi

)
‖[[zh]]‖2

L2(E)

+ ∑
E∈∂K∩Γ

(σεi

hE
+κihE +

hE

εi

)
‖[[zh]]‖2

L2(E).

Finally, our a posteriori error indicators of the optimal control problem (1.1)-(1.2) are given
by

η
z =
(

∑
K∈Th

(ηz
K)

2
)1/2

z ∈ {u,v, p,q}. (4.4)
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The data approximation errors are

θ
z =
(

∑
K∈Th

(θz
K)

2
)1/2

z ∈ {u,v, p,q}, (4.5)

where

(θu
K)

2 = ρ
2
K,1

(
‖ f1− f 1

h ‖2
L2(K)+‖(β1−β

1
h) ·∇uh‖2

L2(K)+‖(α1−α
1
h)uh‖2

L2(K)

)
,

(θv
K)

2 = ρ
2
K,2

(
‖ f2− f 2

h ‖2
L2(K)+‖(β2−β

2
h) ·∇vh‖2

L2(K)+‖(α2−α
2
h)vh‖2

L2(K)

)
,

(θ
p
K)

2 = ρ
2
K,1

(
‖ωu(ud

h−ud)‖2
L2(K)+‖(β1−β

1
h) ·∇vh‖2

L2(K)

+‖
(
(α1−∇ ·β1)− (α1

h−∇ ·β1
h)
)

ph‖2
L2(K)

)
,

(θ
q
K)

2 = ρ
2
K,2

(
‖ωv(vd

h− vd)‖2
L2(K)+‖(β2−β

2
h) ·∇qh‖2

L2(K)

+‖
(
(α2−∇ ·β2)− (α2

h−∇ ·β2
h)
)
qh‖2

L2(K)

)
.

Assume that (A1)-(A5) are satisfied. Let (u,v,c, p,q) and (uh,vh,ch, ph,qh) be the solutions
of (2.8) and (3.8), respectively. Furthermore, let the error estimators ηz (4.4) and the data
approximation errors θz (4.5) be defined for z ∈ {u,v, p,q}. We will prove the reliability
estimate

‖c− ch‖L2(Ω)+∑
z
‖|z− zh|‖+ |z− zh|A > ∑

z
(ηz +θ

z)

(see Theorem 4.6) and the efficiency estimate

∑
z

η
z > ‖c− ch‖L2(Ω)+∑

z
‖|z− zh|‖+ |z− zh|A +θ

z.

(see Theorem 4.7).

Remark 4.1 Our a posteriori error indicators are defined for κi ≥ 0, i = 1,2. Although the
a posteriori error indicators (4.4) work in numerical examples, we need κi > 0 to prove the
constants independent of εi in the proof of our reliability and efficiency estimates. We note that
this assumption is also made for analysis of optimal control problems governed by convection
dominated equations [4, 14, 18, 32, 33, 35].

Throughout this section we use the symbols > and ? to denote bounds that are valid up to
positive constants independent of the local mesh sizes, the diffusion coefficients εi, i = 1,2,
and the penalty parameter σ, provided that σ≥ 1.

The reliability and efficiency estimates of our estimator are proven provided that the state
equations (1.2) have homogeneous boundary conditions, i.e., gi = 0, i = 1,2 as proven in
[27, 33, 35].
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4.1 Reliability of a Posteriori Error Estimator

The following reliability results (4.6-4.9) are obtained by adapting the notation in [27, Thm. 3.2].
Nonlinear terms are eliminated by using the boundedness and continuous Lipschitz conditions
given in assumption (A5).

Theorem 4.2 Let (A1-A5) be satisfied. If u[ch] is the solution of (2.8d) with v = vh, c = ch
and uh is the solution of (3.8d), then

‖|u[ch]−uh|‖+ |u[ch]−uh|A > η
u +θ

u. (4.6)

If ṽ is the solution of (2.8e) with u = uh and vh is the solution of (3.8e), then

‖|ṽ− vh|‖+ |ṽ− vh|A > η
v +θ

v. (4.7)

If p̃ is the solution of (2.8a) with u = uh,v = vh,q = qh and ph is the solution of (3.8a), then

‖|p̃− ph|‖+ |p̃− ph|A > η
p +θ

p. (4.8)

If q̃ is the solution of (2.8b) with u = uh,v = vh, p = ph and qh is the solution of (3.8b), then

‖|q̃−qh|‖+ |q̃−qh|A > η
q +θ

q. (4.9)

We also need the following result on the continuous dependence of the solution to the scalar
linear state equation with homogeneous boundary conditions, and of the solution to the adjoint
equation.

Lemma 4.3 Let (A1-A5) be satisfied and let g ∈ L2(Ω). If z ∈ Y solves ai(z,w) = (g,w) for
all w ∈W and i = 1,2, then

‖|z|‖+ |z|A > ‖g‖L2(Ω), z ∈ {u,v}. (4.10)

If s ∈ Y solves ai(w,s) = (g,w) for all w ∈V and i = 1,2, then

‖|s|‖+ |s|A > ‖g‖L2(Ω), s ∈ {p,q}. (4.11)

Proof. The papers [29, L. 3.1] and [27, L. 4.4] prove the existence of a constant C > 0 such
that

inf
z∈H1

0 (Ω)\{0}
sup

w∈H1
0 (Ω)\{0}

ai(z,w)
(‖|z|‖+ |u|A)‖|w|‖

≥C > 0.

Since κ > 0 we have (g,w) ≤ ‖g‖L2(Ω)‖w‖L2(Ω) > ‖g‖L2(Ω)‖|w|‖. If z ∈ Y solves ai(z,w) =
(g,w) for all w ∈W and i = 1,2, then the inf−sup condition implies

(‖|z|‖+ |z|A)‖|w|‖> ai(z,w) = (g,w) > ‖g‖L2(Ω)‖|w|‖,

which is the desired inequality (4.10).
The inequality (4.11) can be proven analogously. �
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To prove our reliability result, we need the following auxiliary equations. For given c ∈
L2(Ω) we let u[c] ∈ H1(Ω)∩L2(Ω) denote the solution of

a1(u[c],w)+(γ1r1(u[c])r2(v),w)− (c,w) = ( f1,w) ∀w ∈W, (4.12a)
a2(v,w)+(γ2r1(u[c])r2(v),w) = ( f2,w) ∀w ∈W, (4.12b)

and let p[c] ∈ H1(Ω)∩L2(Ω) denote the solution of

a1(w, p[c])+(γ1 p[c]r
′
1(u[c])r2(v),w)

+(γ2qr
′
1(u[c])r2(v),w)+ωu(u[c],w) = ωu(ud ,w) ∀w ∈W, (4.13a)

a2(w,q)+(γ1 p[c]r1(u[ch])r
′
2(v),w)

+(γ2qr1(u[c])r
′
2(v),w)+ωv(v,w) = ωv(vd ,w) ∀w ∈W. (4.13b)

The next result is a common ingredient in error analyses for optimal control problems (see,
e.g., [19, pp. 1328,1329]) and essentially uses the convexity of the cost functional and bound-
edness and the locally continuous Lipschitz condition of the nonlinear terms in assumption
(A5).

Lemma 4.4 Assume that (A1-A5) are satisfied. If (u,v,c, p,q) and (uh,vh,ch, ph,qh) are the
solutions of (2.8) and (3.8), respectively, then

‖c− ch‖2
L2(Ω) > ‖ph− p[ch]‖2

L2(Ω)+‖u[ch]−u‖2
L2(Ω)+‖p− p[ch]‖2

L2(Ω). (4.14)

Proof. Let u[ch], p[ch] solve (4.12a) and (4.13a) with c = ch. For any w ∈W we have

(w,ωcc− p)− (w,ωcch− p[ch]) = (w, p[ch]− p)+ωc(c− ch,w)

Setting w = c− ch this leads to

(c− ch,ωcc− p)− (c− ch,ωcch− p[ch])

= (c− ch, p[ch]− p)+ωc‖c− ch‖2
L2(Ω). (4.15)

From (4.12a) and (4.13a) we can deduce

(c− ch, p[ch]− p) = (c, p[ch]− p)− (ch, p[ch]− p)

= a1(u−u[ch], p[ch])−a1(u−u[ch], p)

+(γ1r2(v)(r1(u)− r1(u[ch])), p[ch]− p)

= ωu‖u−u[ch]‖2
L2(Ω)

+
(
γ1r2(v)(pr

′
1(u)− p[ch]r

′
1(u[ch])),u−u[ch]

)
+
(
γ2qr2(v)(r

′
1(u)− r

′
1(u[ch])),u−u[ch]

)
+
(
γ1r2(v)(r1(u)− r1(u[ch])), p[ch]− p

)
. (4.16)
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Using equations (4.15) and (4.16), the gradient equations (2.8c) and (3.8c), we obtain

ωc‖c− ch‖2
L2(Ω) ≤ (c− ch,ωcc− p)− (c− ch,ωcch− p[ch])

+
(
γ1r2(v)(p[ch]r

′
1(u[ch])− pr

′
1(u)),u−u[ch]

)
+
(
γ2qr2(v)(r

′
1(u[ch])− r

′
1(u)),u−u[ch]

)
+
(
γ1r2(v)(r1(u[ch])− r1(u)), p[ch]− p

)
= (c− ch, p[ch]− ph)− (ωcch− ph,c− ch)

+
(
γ1r2(v)(p[ch]r

′
1(u[ch])− pr

′
1(u)),u−u[ch]

)
+
(
γ2qr2(v)(r

′
1(u[ch])− r

′
1(u)),u−u[ch]

)
+
(
γ1r2(v)(r1(u[ch])− r1(u)), p[ch]− p

)
. (4.17)

With the help of the assumption (A5), the boundedness of the solutions and Young’s inequality,
we obtain (

γ1r2(v)(p[ch]r
′
1(u[ch])− pr

′
1(u)),u−u[ch]

)
> ‖p[ch]r

′
1(u[ch])− pr

′
1(u)‖2

L2(Ω)+‖u[ch]−u‖2
L2(Ω)

= ‖r′1(u[ch])(p[ch]− p)+ p(r
′
1(u[ch])− r

′
1(u))‖2

L2(Ω)+‖u[ch]−u‖2
L2(Ω)

> ‖p[ch]− p‖2
L2(Ω)+‖u[ch]−u‖2

L2(Ω). (4.18)

Similarly, the last two terms of (4.17) are bounded by(
γ2qr2(v)(r

′
1(u[ch])− r

′
1(u)),u−u[ch]

)
> ‖u[ch]−u‖2

L2(Ω). (4.19)(
γ1r2(v)(r1(u[ch])− r1(u)), p[ch]− p

)
> ‖u[ch]−u‖2

L2(Ω). (4.20)

Inserting (4.18-4.20) into (4.17) and applying Young’s inequality, the desired result is ob-
tained. �

Lemma 4.5 Let (A1-A5) be satisfied. If (u[ch],v, p[ch],q) solves (2.8) and (uh,vh, ph,qh)
solves (3.8), then we have

‖|u[ch]−uh|‖+ |u[ch]−uh|A > η
u +θ

u +‖v− vh‖L2(Ω), (4.21a)
‖|v− vh|‖+ |v− vh|A > η

v +θ
v +‖u−uh‖L2(Ω), (4.21b)

‖|p[ch]− ph|‖+ |p[ch]− ph|A > η
p +θ

p +‖u[ch]−uh‖L2(Ω)

+‖v− vh‖L2(Ω)+‖q−qh‖L2(Ω), (4.21c)
‖|q−qh|‖+ |q−qh|A > η

q +θ
q +‖u−uh‖L2(Ω)

+‖v− vh‖L2(Ω)+‖p− ph‖L2(Ω). (4.21d)

Proof. Let ũ ∈ H1(Ω)∩L2(Ω) solve (2.8d) with v = vh,c = ch. The difference u[ch]− ũ ∈
H1(Ω)∩L2(Ω) solves

a1(u[ch]− ũ,w)+(γ1r1(u[ch])r2(v)− γ1r1(ũ)r2(vh),w) = 0 ∀w ∈W.
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Note that we can write

γ1r1(u[ch])r2(v)− γ1r1(ũ)r2(vh) = γ1r1(ũ)
(
r2(vh)− r2(v)

)
+ γ1r2(v)

(
r1(ũ)− r1(u[ch])

)
.

Then, Lemma 4.3, assumption (A5) and ‖u[ch]− ũ‖L2(Ω) > ‖|u[ch]− ũ|‖ yield

‖|u[ch]− ũ|‖+ |u[ch]− ũ|A > ‖v− vh‖L2(Ω). (4.22)

Moreover, Theorem 4.2 implies

‖|ũ−uh|‖+ |ũ−uh|A > η
u +θ

u. (4.23)

Hence, the desired inequality (4.21a) follows from (4.22) and (4.23).
Similarly, let p̃ ∈ H1(Ω)∩ L2(Ω) solve (2.8a) with u = uh,v = vh,q = qh,c = ch. The

difference p[ch]− p̃ ∈ H1(Ω)∩L2(Ω) solves

a1(w, p[ch]− p̃)+(γ1 p[ch]r
′
1(u[ch])r2(v)− γ1 p̃r

′
1(uh)r2(vh),w)

+(γ2qr
′
1(u[ch])r2(v)− γ2qhr

′
1(uh)r2(vh),w) = 0 ∀w ∈W.

By adding and subtracting suitable terms and then using Lemma 4.3, assumption (A5), the
boundedness of solutions, ‖p[ch]− p̃‖L2(Ω) > ‖|p[ch]− p̃|‖ and Theorem 4.2, the desired result
(4.21b) is obtained. The inequalities (4.21c-4.21d) can be proven analogously.

�

Theorem 4.6 Assume that assumptions (A1-A5) are satisfied. Let (u,v,c, p,q) and (uh,vh,ch, ph,qh)
be the solutions of (2.8) and (3.8), respectively. If the error estimators ηz and θz are defined
by (4.4) and (4.5) for z ∈ {u,v, p,q}, then we have the a posteriori error bound

‖c− ch‖L2(Ω)+∑
z
‖|z− zh|‖+ |z− zh|A > ∑

z
(ηz +θ

z) .

Proof. From (4.12)-(4.13) and (2.8), we have ∀w ∈Wh

a1(u−u[ch],w) =
(
γ1r2(v)(r1(u[ch])− r1(u)),w

)
+(c− ch,w), (4.24)

a1(w, p− p[ch]) =
(
γ1r2(v)(p[ch]r

′
1(u[ch])− pr

′
1(u)),w

)
+
(
γ2qr2(v)(r

′
1(u[ch])− r

′
1(u)),w

)
−ωu(u−u[ch],w). (4.25)

By the continuity results in Lemma 4.3 and assumption (A5) we have

‖|u−u[ch]|‖+ |u−u[ch]|A > ‖c− ch‖L2(Ω), (4.26)

‖|p− p[ch]|‖+ |p− p[ch]|A > ‖u−u[ch]‖L2(Ω). (4.27)

Now, using the estimate ‖w‖L2(Ω) > ‖|w|‖ for w ∈Wh and applying Lemma 4.4, Lemma 4.5,
and Theorem 4.2, we obtain the desired bound. �
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4.2 Efficiency of a Posteriori Error Estimator

Theorem 4.7 Assume that assumptions (A1-A5) are satisfied. Let (u,v,c, p,q) and (uh,vh,ch, ph,qh)
be the solutions of (2.8) and (3.8), respectively. If the error estimators ηz and θz are defined
by (4.4) and (4.5) for z ∈ {u,v, p,q}, then we have the upper bound

∑
z

η
z > ‖c− ch‖L2(Ω)+∑

z
‖|z− zh|‖+ |z− zh|A +θ

z.

Proof. The proof of the efficiency result is similar to Thm. 3.2 in [27]. For each variable, that
is, u,v, p,q, the bounds are found by applying the same procedure. The nonlinear terms are
bounded by the assumption (A5) and the inequality ‖z− zh‖L2(Ω) > ‖|y− yh|‖ is used. �

5 The Adaptive Loop

The adaptive procedure consists of successive execution of the several steps:

SOLVE→ ESTIMATE→MARK→ REFINE.

The SOLVE step is the numerical solution of the optimal control problem with respect to the
given triangulation Th using the DG discretization. For the ESTIMATE step, the residual
error estimator (ηu

K)
2 +(ηv

K)
2 +(η

p
K)

2 +(η
q
K)

2, K ∈ Th defined in Section 4 is used. In the
MARK step, the edges and elements for the refinement are specified by using the a posteriori
error indicator (4.4) and by choosing subsets MK ⊂ Th such that the following bulk criterion
is satisfied for the given marking parameter θ:

∑
K∈Th

(ηu
K)

2 +(ηv
K)

2 +(η
p
K)

2 +(η
q
K)

2 ≤ θ ∑
K∈MK

(ηu
K)

2 +(ηv
K)

2 +(η
p
K)

2 +(η
q
K)

2. (5.1)

Finally, in the REFINE step, the marked elements are refined by longest edge bisection, where
the elements of the marked edges are refined by bisection.

6 Numerical Results

We present numerical results for optimal control problems governed by a system of convection-
diffusion PDEs with nonlinear reaction terms. When the analytical solutions of the state and
the adjoint variables are given, the Dirichlet boundary data gi, the source functions fi and the
desired states ud ,vd are computed from (2.5-2.7) using the exact state, adjoint and control. We
use piecewise linear polynomials for discretization of the state, adjoint and control variables.
The penalty parameter in the SIPG method is chosen as σ = 6 on interior edges and σ = 12
on boundary edges. The marking parameter θ in (5.1) varies between 0.3 and 0.6.

6.1 Example with Interior Layers

The following example is constructed by using the examples in [14, 32]. The problem data are

Ω = (0,1)2, ωu = ωv = 1, ωc = 0.1, ε1 = ε2 = 10−6,
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β1 = (2,3)T , β2 = (1,0)T , α1 = α2 = 1, r1(u) = u and r2(v) = v.

The exact state solutions

u(x1,x2) =
2
π

arctan
(

1√
ε1

[
−1

2
x1 + x2−

1
4

])
,

v(x1,x2) = 4e
−1√

ε2

(
(x−0.5)2+3(y−0.5)2

)
sin(xπ)cos(yπ)

are constructed to have a straight interior layer and an interior layer at the center, respectively,
whereas the exact adjoint solutions

p(x1,x2) =16x1(1− x1)x2(1− x2)

×

(
1
2
+

1
π

arctan

[
2√
ε

(
1

16
−
(

x1−
1
2

)2

−
(

x2−
1
2

)2
)])

,

q(x1,x2) =e
−1√

ε2

(
(x−0.5)2+3(y−0.5)2

)
sin(xπ)cos(yπ)

are constructed to have a circular interior layer and an interior layer at the center, respectively.

Figure 1: Example 6.1: The plots in the top row show the computed states u, v and control c
on a uniformly refined mesh with 16641 vertices for γi = 0.1, i = 1,2. The plots in
the bottom row show the computed states u, v and control c on an adaptively refined
mesh with 15826 vertices for γi = 0.1, i = 1,2.
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Figure 2: Example 6.1: Adaptively refined meshes for γi = 0.1,1,5, i= 1,2 (from left to right).

Figure 3: Example 6.1: The plots show the L2 errors of the adjoint q on a uniformly refined
mesh with 16641 vertices and on an adaptively refined mesh with 15118 vertices,
respectively, for γi = 5, i = 1,2.

The example having exact solutions of the state u and adjoint p has been used in [14] with
an edge stabilization for the control constraint and in [33] with SIPG discretization for the
unconstrained case. Also, the example having exact solutions of the state v and adjoint q has
been studied in [32] with an edge stabilization and in [35] with SIPG discretization for the
control constraint. We here construct a coupled state system with a nonlinear reaction term by
combining these two examples.
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Figure 4: Example 6.1: The plots in the top row show the L2 errors of the states u, v and control
c on a uniformly refined mesh with 16641 vertices for γi = 0.1, i = 1,2. The plots in
the bottom row show the L2 errors of the adjoints p, q on an adaptively refined mesh
with 15826 vertices for γi = 0.1, i = 1,2.

Figure 1 shows that oscillations occur on the interior layers when the initial mesh is refined
uniformly with 16641 vertices for γi = 0.1. However, picking out the layers by using the error
indicators given in (4.4), the oscillations are reduced. This proves the performance of the
adaptive refinement over the uniform refinement. Figure 2 reveals adaptively refined meshes
for γ1 = 0.1,1,5 for i = 1,2, respectively. The adaptive mesh obtained for γi = 0.1 is similar
to the numerical results obtained in [33] for the linear problems. However, extra regions are
refined when we increase values of γi. The reason is that the interaction of variables increases
with higher values of γi. We also observe that the unexpected oscillations occur for the adjoint
q when the values of γi are increased as shown in Figure 3.
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Figure 5: Example 6.1: Iteration numbers for the second step of the Gauss-Newton method
and a variety of adaptively refined meshes.

The errors measured in the L2 norm for the state, adjoint and control are decreasing faster
for the adaptively refined mesh than for the uniformly refined mesh as shown in Figure 4 for
γi = 0.1. We also observe that the errors of adaptive refinement decrease monotonically.

Additionally, we want to briefly illustrate the performance of the proposed preconditioner
shown in Figure 5, where we show the GMRES iteration numbers for the second step of the
Gauss-Newton method on a variety of adaptively refined meshes and two different values of
the regularization parameter ωc. The convergence of GMRES is measured in the relative norm
of the preconditioned residual and the iterations are stopped when the relative residual norm
is smaller than 1e−6. It can be seen that the iteration numbers for both problems are almost
constant with respect to the mesh-size and the value of the regularization parameter.

At the moment we only have a proof-of-concept implementation as we have not yet used
multigrid techniques to approximate the preconditioning sub-blocks. Also, the presented ex-
amples are all set up in two dimensions, where typically sparse factorisations show outstanding
performance. This is no longer the case for three-dimensional examples, whereas our precon-
ditioners do utilize the two-dimensional nature of the problem.
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6.2 Example with Boundary Layers

The problem data are

Ω = (0,1)2, ωu = ωv = 1, ωc = 10−4, ε1 = ε2 = 10−6,

β1 = (1,1)T , β2 = (−1,−2)T , α1 = 0 and α2 = 1.

The source functions and desired state functions are defined by

f1 = 0, f2 = 1, ud = 1 and vd = 1.

The Dirichlet boundary conditions, i.e., gi = 0 for i = 1,2, are homogeneous. The nonlinear
reaction term is defined by

r1(u) = u and r2(v) =
−v

1+ v
.

[level,vertices]=[8,3796] [level,vertices]=[6,3926] [level,vertices]=[4,3715]

Figure 6: Example 6.2: Adaptively refined meshes for γi = 0.1,1,5 for i = 1,2 (from left to
right).

Figure 7 reveals the computed solutions of the control c on the uniformly refined mesh
with 4225 vertices and on an adaptively refined mesh with 3796 vertices for γi = 0.1, i = 1,2.
The numerical solution on the uniform mesh exhibits oscillations due to the boundary layers as
shown in Figure 6. By resolving the boundary layers, the oscillations are reduced as illustrated
in Figure 7. From Figure 7, it is evident that substantial computing work can be saved by using
efficient adaptive mesh refinement.

As in the previous example, the error estimator (4.4) refines extra regions when the values
of the coefficients γi of the nonlinear terms are increased, see Figure 6.
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Figure 7: Example 6.2: The computed control c on a uniformly refined mesh (4225 vertices)
and on an adaptively refined mesh (3796 vertices) for γi = 0.1, i = 1,2.

7 Conclusions

In this paper, we have studied a posteriori error estimates of the symmetric interior penalty
Galerkin (SIPG) method for the optimal control problems governed by a system of convection-
diffusion PDEs with nonlinear reaction terms, arising from chemical process engineering.
The saddle point system resulting from the optimality conditions and discretized with piece-
wise linear polynomials is solved by using a suitable preconditioner within a Krylov subspace
method. We have proven the reliability and efficiency of our estimator. The extension of the
results here to unsteady optimal control problems with state and/or control constraints in 2D
and 3D is the topic of current investigations and will be addressed in coming work.

References
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