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Abstract
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matrices S.

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:

Address:

Max Planck Institute for Max Planck Institute for

Dynamics of Complex Technical Systems

Sandtorstr. 1
39106 Magdeburg

www.mpi-magdeburg.mpg.de/preprints

Dynamics of Complex Technical Systems



1 Introduction

In this paper we discuss algorithms for the solution of generalized eigenvalue problems
with skew-Hamiltonian/Hamiltonian structure. We are interested in the computation
of certain eigenvalues and corresponding deflating subspaces. We have to deal with
the following algebraic structures [4].

0o I,
-1, 0
brevity of notation, we do not indicate the dimension with the matriz J and use it for
all possible values of n.

Definition 1.1. Let J := , where I, is the n X n identity matriz. For

(i) A matriz H € C2"*2" js Hamiltonian if (HJ)" = HJ. The Lie algebra of
Hamiltonian matrices in C2"*2" is denoted by Ha,.

(ii) A matriz S € C2%2" s skew-Hamiltonian if (S7)" = —SJ. The Jordan
algebra of skew-Hamiltonian matrices in C2"*2" is denoted by SHs,,.

(iii) A matriz pencil \S —H € C?"*2" js skew-Hamiltonian/Hamiltonian if S € SHy,
and H € Hgn.

(iv) A matriz S € C?"*2" js symplectic if STSH = J. The Lie group of symplectic
matrices in C?"*2" s denoted by Son,.

(v) A matriz U € C?"*2" js unitary symplectic if UTUT = T and UUT = I,,. The
compact Lie group of unitary symplectic matrices in C?"*?" is denoted by US,,,.

Note that a similar definition can be given for real matrices. As a convention,
all following considerations also hold for real skew-Hamiltonian/Hamiltonian matrix
pencils. Then, all matrices -7 must be replaced by -T, all (skew-)Hermitian matrices
become (skew-)symmetric, and unitary matrices become orthogonal. More significant
differences to the complex case are explicitly mentioned.

Skew-Hamiltonian/Hamiltonian matrix pencils satisfy certain properties which we
will briefly state. Every skew-Hamiltonian/Hamiltonian matrix pencil can be written
as AS —H = A {é fﬁ,} - [g S
mitian matrices F, G. If X is a (generalized) eigenvalue of A\S — H, so is also —\. In
other words, eigenvalues which are not purely imaginary, occur in pairs. For real skew-
Hamiltonian/Hamiltonian matrix pencils we also have a pairing of complex conjugate
eigenvalues, i.e., if A is an eigenvalue of AS — H, so are also A, —\, —\. This leads to
eigenvalue pairs (A, —A) if A is purely real or purely imaginary, or otherwise to eigen-
value quadruples ()\, A, =\, —5\). The structure of skew-Hamiltonian/Hamiltonian ma-

] with skew-Hermitian matrices D, E and Her-

trix pencils is preserved under J-congruence transformations, that is, \S — H :=
JPHIT(AS — H)P with nonsingular P is again skew-Hamiltonian/Hamiltonian. If
we choose P unitary, we additionally preserve the condition of the problem. In this way
there is hope that we can choose a unitary J-congruence transformation to transform
AS — H into a condensed form which reveals its eigenvalues and deflating subspaces.



A suitable candidate for this condensed form is the structured Schur form, i.e., we
compute a unitary matrix Q such that
S11 S H H
H 7T o _ 11 O12| _ |H1 12
setgtos-me=a [ G- [ ]

with the subpencil AS7; — Hy; in generalized Schur form, where Sy; is upper trian-
gular, Hy; is upper triangular (upper quasi-triangular in the real case), S12 is skew-
Hermitian, and Hi, is Hermitian. However, a structured Schur form does not nec-
essarily exist. Conditions for the existence are proven in [I7, [I8] for the complex
case or in [20] for the real case. This problem can be circumvented by embedding
AS — H into a skew-Hamiltonian/Hamiltonian matrix pencil of double dimension in
an appropriate way, as explained in Section Throughout this paper we denote by
A_(8,H), Ao(S,H), Ay (S, H) the set of finite eigenvalues of A\S — H with negative,
zero, and positive real parts, respectively. The set of infinite eigenvalues is denoted by
Ao (S, H). Multiple eigenvalues are repeated in A_(S,H), Ao(S,H), Ay (S,H), and
A (S, H) according to their algebraic multiplicity. The set of all eigenvalues counted
according to multiplicity is A(S,H). Similarly, we denote by Def_ (S, H), Defy (S, H),
Def (S, H), and Def (S, H) the right deflating subspaces corresponding to A_ (S, H),
Ao(S,H), AL (S, H), and A (S, H), respectively.

2 Applications

2.1 Linear-Quadratic Optimal Control

First we consider the continuous-time, infinite horizon, linear-quadratic optimal control
problem:
choose a control function «(t) to minimize the cost functional

s [T [ R[] 0

subject to the linear time-invariant descriptor system
Fi(t) = Axz(t) + Bu(t), xz(t) = 2°. (2)

Here, u(t) € C™ is control input vector, z(t) € C™ is the descriptor vector, and
E, A € (Cnxn7 B c (Cnxm’ Q — QH c Cnxn’ R = RH c mem,s c Cnxm_ For
well-posedness, the (m + n) x (m + n) weighting matrix
_|Q S
R= [SH R
must be Hermitian and positive semidefinite. Typically, in addition to minimizing ,
the control w(t) must make x(t) asymptotically stable. under some conditions, the



application of the maximum principle [19, 22] yields as a necessary condition that the
control u satisfies the two-point boundary value problem of Euler-Lagrange equations

(t) x(t)
o |fu(t)| = Ac n(t)|, a(te) =2, lim E7u(t) =0, (3)
() u(t)

with the matrix pencil

E 0 0 A 0 B
MNe—A.=2|0 —-EHF 0| -|Q A" S
0 0 0 SH pH R

Assuming that the matrix R is nonsingular, we can substitute u(t) = —R™' (¥ x(t)
+B*u(t)) and system (3) simplifies to

s F(“: iy {x(t)} L el =2 Jim EYu() =0,

fi(t) pu(t)
with the skew-Hamiltonian/Hamiltonian matrix pencil
[E 0 A— BR'SH —~BR'BH
AS—H =) — 4
H _0 EH:| l:SRISH_Q _(A_BR—lsH)H ( )

The generalized algebraic Riccati equation associated to the skew-Hamiltonian/Ha-
miltonian matrix pencil is given by [14]

H
0=Q—-SR'S” + Xx* (A-BR'S") + (A- BR'S")" X
~ X" (BR'B") X, ()
EfX =Xx"E.
Under certain conditions the optimal control w.(t) that stabilizes the descriptor sys-
tem can be constructed by using a stabilizing solution X, of . The matrix X,
can be obtained by computing the deflating subspace of associated to the finite
eigenvalues with negative real parts and to some purely imaginary and infinite eigen-
values. Note, that when the matrix R is singular, the problem becomes much more
involved. Then, one has to consider so-called (generalized) Lur’e equations instead of

Riccati equations. However, there is also a connection between Lur’e equations and
skew-Hamiltonian/Hamiltonian and related even matrix pencils [24] 25].

2.2 H..-Optimization

Similar structures as in Subsection occur in Hoo-optimization [I6]. Consider a
descriptor system of the form

Ei(t) = Az(t) + Brw(t) + Bau(t),
z(t) = Crz(t) + D1yw(t) + Digu(t), z(to) = 22, (6)
y(t) = Cgf(t) + Dglw(t) + Dgzu(t)7



where E, A € R"*", B; € R™™i (C; € RP*", and D;; € RP#*™i for i, j = 1,2. In
this system, z(t) € R™ is the (generalized) state vector, u(t) € R™2 is the control input
vector, and w(t) € R™ is an exogenous input that may include noise, linearization
errors, and unmodeled dynamics. The vector y(t) € RP2 contains measured outputs,
while z(t) € RP* is a regulated output or an estimation error.

The H control problem is usually formulated in the frequency domain. For this
we need the space HEX™ which consists of all CP*™-valued functions that are analytic
and bounded in the open right half-plane C*. For F' € HEX™, the Hoo-norm is defined
by

1Pl = SUp Gunae (F ().
seCt
where opax (F(s)) denotes the maximal singular value of the matrix F(s). In robust
control, |[F||,, is used as a measure of the worst-case influence of the disturbances
w on the output z, where in this case F' is the transfer function mapping noise or
disturbance inputs to error signals [27]. Solving the optimal H., control problem is
the task of designing a dynamic controller

’ (7)

k. [EH0 =450 + By,
' u(t) = Cz(t) + Dy(t),

with B, A € RNXN B e RNxp2 (' e Rm2XN ) € R™m2%P2 gyuch that the closed-loop
system resulting from inserting into @, that is,

Ei(t) = (A n 32[32102) 2(t) + BaZoCli(t) + (Bl n 3215211)21) wl(t),
E.’fﬁ(t) = BZngx(t) + (A + BZlDQQC) .’f?(t) + BZnglw(t), (8)

Z(t) = (Cl + DlQZQﬁCQ) l’(t) + DlZZQCi'(t) =+ (D11 + DlgﬁZ1D21) ’LU(t),
o\l R -1
with Z; = (Ipz — DggD) ,and Zy = (Im2 — D.DQQ) has the following properties:

(i) System is internally stable, that is, the solution [Cf(t)} of the system with

(t)

- _ . -z
w = 0 is asymptotically stable, i.e., lim L@(t)} -0

(ii) The closed-loop transfer function T%,, from w to z satisfies T%,, € HEL*™ and is
minimized in the Hs,-norm.

Closely related to the optimal H ., control problem is the modified optimal H ., control
problem. For a given descriptor system of the form @ we search the infimum value ~y
for which there exists an internally stabilizing dynamic controller of the form such
that the corresponding closed-loop system (8) satisfies T%,, € HEL*™ with [T,y <
~. For the construction of optimal controllers, one can make use of the following even



matrix pencils (see [23] for a definition and related software)

0  —AET_AT| 0 0 —CT
ANE— A 0 —B; —B 0
ANg — Myg(h) = |~ 0 B[ . 0 0L |,
0 _BT 0 0o -Dh
-C 0 —Di1 =D —1I,
and
0 —\E - A 0 0 —B
AET — AT g T  —cT 0
)\NJ - MJ(")/) = 0 —Cl —’yzlpl 0 —D11 y (10)
0 —Cy 0 0 —Dq2
BT 0 D%, DY, I,

which can be transformed to skew-Hamiltonian/Hamiltonian structure by using the
method used in [3| [26]. Using appropriate deflating subspaces of the matrix pencils
(9) and it is possible to state conditions for the existence of an optimal H, con-
troller. Then we can check if these conditions are fulfilled for a given value of v. Using
a bisection scheme we can iteratively refine v until a wanted accuracy is achieved (see
[16, 5] for details). Note that the transformation to skew-Hamiltonian/Hamiltonian
structure is done in order to compute the deflating subspaces in a structure-preserving
manner which is still an open problem for even matrix pencils. Finally, when a subop-
timal value v has been found, one can compute the actual controller. The controller
formulas are rather cumbersome and are therefore omitted. For details, see [15].

2.3 L.-Norm Computation

Finally, we briefly describe a method to compute the £,.-norm of an LTI system using
skew-Hamiltonian/Hamiltonian matrix pencils [26, 6, [7]. This norm plays an important
role in robust control or model order reduction (see [Il 20, 27] and references therein).
Consider a descriptor system

Ex(t) = Az(t) + Bu(t), (11)
y(t) = Cx(t) + Du(t), (12)
with E, A € R™*" B € R™*™ (C € RP*" D € RP*™ and descriptor vector z(t) €

R™, control vector u(t) € R™, and output vector y(t) € RP. For such a system its
transfer function is given by

G(s):=C(sE—A)""'B+D,

which directly maps inputs to outputs in the frequency domain [I0]. We define the
space RLEX™ of all proper rational p x m-matrix-valued transfer functions which are
bounded on the imaginary axis. The natural norm of this space is the L.,-norm,
defined by

”GHLOC ‘= SUpP Omax (G(IW)) .
w€ER



Consider the skew-Hamiltonian/Hamiltonian matrix pencils
E 0 A—BR'DTC —yBR~'BT
)‘N_M(V) =A |:0 ET:| - |: ,.ychSflC 7AT+CTDR71.BT (13)
with the matrices R = DTD —~2I,,, and S = DDT —~42[,. It can be shown that
if AE — A has no purely imaginary eigenvalue and v > miﬁ Omax (G(iw)) is not a
we

singular value of D, then |G|, >~ if and only if AN — M(v) has purely imaginary
eigenvalues. In this way we can again use an iterative scheme to improve the value of
~ until a wanted accuracy for the £,.,-norm is achieved.

3 Theory and Algorithm Description

In this section we briefly describe the theory behind the algorithms that we will use. We
refer to [ 2] for a very detailed analysis of the algorithms. We consider complex and
real problems separately since there are significant differences in the theory. We also
distinguish the cases of unfactored and factored skew-Hamiltonian matrices S. Note
that the skew-Hamiltonian matrices in , and the skew-Hamiltonian matrices
resulting from appropriate transformations of the skew-symmetric matrices in @,
are block-diagonal and hence admit a factorization

S=g9z28572z2. (14)

g EOH}’ then Z = é EOH} The factorization can
be understood as a Cholesky-like decomposition of S with respect to the indefinite
inner product (z,y) := 2 Jy, since JZHJ7T is the adjoint of Z with respect to
(-,-). We also say that a skew-Hamiltonian matrix S is J-semidefinite, if it admits a
factorization of the form . Hence, in our implementation we distinguish the cases
that the full matrix S or just its ” Cholesky factor” Z is given. In all cases we apply an
embedding strategy to the matrix pencil AS —H to avoid the problem of non-existence
of a structured Schur form.

For example, if § =

3.1 The Complex Case

Let AS —H be a given complex skew-Hamiltonian/Hamiltonian matrix pencil with J-
semidefinite skew-Hamiltonian part S = J zZHFTZ We split the skew-Hamiltonian
matrix iH =: N = N + iN,, where N; is real skew-Hamiltonian and N5 is real
Hamiltonian, i.e.,

NIZ |:F1 G1:| 5 GIZ_G{u HIZ_H1T7

H, FI
F. G
NQ{Hz _Fﬂ, Gy=Gj, Hy=Hj,



and Fj, G;, H; € R™™™ for j =1, 2. We define the matrices

L, 0 0 O
V2 [, il 0 0 I, 0
h e B A ) IR LS

0 0 0 I,
By using the embedding Byr := diag (J\/, J\7) we obtain that

F1 —F2 Gl _G2

F: F G G
c ._ ypH _ 2 1 2 1
Hy, H, |-Ff FT

is a real 4n x 4n skew-Hamiltonian matrix. Similarly, we define

zZHgT 0
Bz = l:i 27:| s BT = [j j

It can be shown that

S 0
0 JZHJT} > Bs:= {0 S] = BrBz.
Bg = XIBzXx., By :=X'Brx., BS:=X"BsA. (17)

are all real. Hence,

. c AS — N 0
is a real 4n x 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. To compute the
eigenvalues of this matrix pencil we can compute the structured decomposition of the
following theorem [4].

Theorem 3.1. Let \S — N be a real, reqular skew-Hamiltonian/skew-Hamiltonian
matriz pencil with S = JZTTTZ. Then there exist a real orthogonal matriz Q €
R2"%2n gnd a real orthogonal symplectic matriz U € R?"*2" such that

utzo — {Zu Z12} 7

o (18)
gergrne= N .

where Zy1 and Z1, are upper triangular, Ny, is upper quasi triangular and Nig is
skew-symmetric. Moreover,

JATIT(AS —N)Q = A [ZQTQZM 739719 — Z1TQZ22] 7 {Nu le]

0 Z1T1222 0 Nﬂ
. 511 512 Nll N12
— [ g Sﬂ] - { " Nﬂ] (19)

is a J-congruent skew-Hamiltonian/skew-Hamiltonian matriz pencil.



Proof. See [4]. O

By defining

Bu= i S| B— b,

and using Theorem [3.1] we can compute factorizations

5c . 1 Tpc~_ | 211 212
B, —U BZQ_{O ZQJ,
B :=JQ" 7B Q=7Q" J" (-iBY) Q = ~iBy = _US[H —Cmiw :

where ABg — B§, = JQTJT (ABg — BS,) Q are J-congruent complex skew-Hamilto-
nian/Hamiltonian matrix pencils and ABg — B§, is in a structured quasi-triangular
form. Then, the structured Schur form can be obtained by further triangularizing
the diagonal 2 x 2 blocks of )\Bfg — [5’% via a J-congruence transformation. From the
symmetry of the eigenvalues if follows that A (S, H) = A (z,gzlh —W11)~ Now we
can reorder the eigenvalues of )\B’fg — B’% to the top in order to compute the desired
deflating subspaces (corresponding to the eigenvalues with negative real parts). The
following theorem makes statements about the deflating subspaces [4].

Theorem 3.2. Let A\S — H € C**2 be a skew-Hamiltonian/Hamiltonian matriz
pencil with J -semidefinite skew-Hamiltonian matric S = JZHJTZ. Consider the ex-
tended matrices Bz = diag (Z,Z) , By = diag (jZHJT7JZHJT) , Bs = BrBz =
diag (S,S) , By = diag (7—[, —7—2). Let U, V, W be unitary matrices such that

H 2 2]

U BZV = i 0 222:| - RZ7
H [ T2

WY BrU = K Ton| = R,
H C[Hu Hie]

WHByV = 0 Hm] =: Ry,

where A_ (Bs,By) C A (Ti1211, H11) and A (T11211, Hi1) N Ay (Bs,By) = 0. Here,
Z11, Ti1, H11 € C™*™. Suppose A_(S,H) contains p eigenvalues. If [51} € Cinxm
2

are the first m columns of V, 2p < m < 2n — 2p, then there are subspaces L1 and Ly
such that

range Vl = Def_ (877'[) + le ]Ll g DefO(S,H) + Defoo(S,’H),
range Vo = Def (S, H) + Lo, Lo C Defo(S,H) + Def oo (S, H).



If A(Ti1211,H11) = A_ (Bs,By), and {gl} , [%1} are the first m columns of U, W,
2 2

respectively, then there exist unitary matrices Qu, Qv, Qw such that
Up=[P; 0]Qu, Uz=1[0 Pj]Qu,
Vi=[P;, 0]Qv, Va=[0 Pf|Qv,
Wi =[Py 0]Qw, Wo=[0 Py]Qw,
and the columns of P, and Pi‘j' form orthogonal bases of Def _(S,H) and Def, (S, H),

respectively. Moreover, the matrices P, PJ , Py, and PVT, have orthonormal columns
and the following relations are satisfied

ZP; =Py 7y, JZRITP; = PyTy, HP; = PyHy,

ZP} =P} 2, JEZUITR} = PlTo, HP} = P,
Here, Zyk, Ty, and Hy, k = 1,2, satisfy A(Tnzn,ﬁu) = A(T22222,ﬁ2> =
A_(S,H).
Proof. See [4]. O

So, the algorithm for computing the stable deflating subspaces of a complex skew-
Hamiltonian/Hamiltonian matrix pencil AS — H with S = JZ# 77 Z is as follows [4].

ALGORITHM 1. Computation of stable deflating subspaces of complex skew-Hamiltoni-
an/Hamiltonian matriz pencils in factored form

Input: Hamiltonian matric H and the factor Z of S € SH,,.

Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil
ABS — B3, eigenvalues of AS — H, orthonormal bases Py, , P/, of the deflating subspace
Def_ (S,H) and the companion subspace, respectively, as in Theorem

1: Set N' = iH and determine the matrices BS, BS, as in and , respectively. Perform
Algorithm[Z to compute the factorization

sc 74T 4pc _ le 212

Bz =U BZQ*{O Zm},

fe . N,
By =JQ" T B Q= [ 0 }ﬂ :

where Q is real orthogonal, U is real orthogonal symplectic, Z11, 235 are upper triangular
and N11 is upper quasi triangular.

2: Apply the periodic QZ algorithm [9, [13] to the 2 x 2 diagonal blocks of the matriz pencil
)\ZgZH — N11 to determine unitary matricgs Q1, Q2, U such that UHZUQl, QfZgU,

QY N11Q1 are all upper triangular. Define U := diag (U, U), Q := diag (Q1,Q2) and set
B =U"B%Q, Bi =J79"7"B5%0.



3: Use Algorithm@ to determine a unitary matriz Q and a unitary symplectic matriz U such
that

cwpe 5 [Z1n Zio
U BZQ - |: 0 Z~22:| )
“H T ( @\ A_ |Hit  Hiz
go"g" (-iBi) & = [ . 7%],

where Zyv1, Z%, Hi1 are upper triangular such that A_ (J(é%)HJT[;’%, —iéfv) s con-
tained in the spectrum of the 2p X 2p leading principal subpencil of AZB 2 — Hay.

4: Set V= [y 0] X.Q00 {ISP] U = [Ln 0] XUl {ISP
thogonal bases of range V' and range U, respectively, using any numerically stable orthog-

onalization scheme.

] and compute P, , PJ, or-

Next we briefly discuss the algorithms which are used in Algorithm

ALGORITHM 2. Computation of a structured matriz factorization for real skew-Hamilto-
nian/skew-Hamiltonian matriz pencils in factored form

Input: A real skew-Hamiltonian matrizc N' € R**2" and the factor Z € R*"*2" of S.
Output: A real orthogonal matrix Q, a real orthogonal symplectic matriz U and the structured
factorization .
1: Set Q =U = I2,,. By changing the elimination order in the classical RQ decomposition,
determine an orthogonal matriz Q1 such that

Z .= 20, = {Zu le} ’

0 Zoao

where Z11, Z%y are upper triangular. Update N = JOTTTN Q1, Q := Q0.
2: Compute an orthogonal matrix Q1 and an orthogonal symplectic matriz Uy such that

VA 7
Z.—UTZQ { 8 Z;z] ,

N:=JQlT"NQ =: H)“ xﬂ :
i1
where Zyv1, Z1y are upper triangular and N1 is upper Hessenberg. Update Q := QQ;
and U := UU,. This step is performed by using a sequence of orthogonal and orthogonal
symplectic matrices to annihilate the elements in N in a specific order without destroying
the structure of Z (see []]] for details).

3: Apply the periodic QZ algorithm [9, [13] to the matriz pencil MZ5EZ11 — Nu1 to determine
orthogonal matrices Q1, Q2, U such that UT Z11Q1, QY ZLU are both upper triangular
and QY N11Q1 is upper quasi triangular. Set Uy = diag (U,U), Q1 := diag (Q1,Q2).
Update Z2 .= UL Z2Q1, N := JQT TN Qi1, Q:= QQu, U = Ulh.

10



After performing Algorithm the eigenvalues of the complex skew-Hamiltonian/Ha-
miltonian matrix pencil AS — H can be determined by the diagonal 1 x 1 and 2 x 2
blocks of the matrices Z11, Za2, and Nyj.

Next, we describe the eigenvalue reordering technique to reorder the finite, stable
eigenvalues to the top of the matrix pencil, which enables us to compute the corre-
sponding deflating subspaces.

ALGORITHM 3. FEigenvalue reordering for complex skew-Hamiltonian/Hamiltonian ma-
triz pencils in factored form

Input: Regular 2n X 2n complex skew-Hamiltonian/Hamiltonian matriz pencil AS — H with
S=7gz2857Tz, 2z = [g I,;Y] ,H = [{—)I 7ZH] with upper triangular Z, T? and H.
Output: A unitary matriz Q, a unitary symplectic matriz U, and the transformed matrices
UHZQ, TOH TTHQ which have still the same triangular form as Z and H, respectively,
but the eigenvalues in A— (S, H) are reordered such that they occur in the leading principal
subpencil of 7Q7JT (AS —H) Q.
1: Set Q@ =U = I2,,. Reorder the eigenvalues in the subpencil \XTHZ — H.

a) Determine unitary matrices Q1, Qz, Qs such that TH = Q¥ THQ., Z .= Q¥ ZQ:,
H := QY HQ: are still upper triangular but the m_ eigenvalues with negative real part
are reordered to the top of XTI Z — H. Set Q1 := diag (Q1,Qs), Uy := diag (Q2,Q2)
and update Q := Q0O1, U := Ul .

b) Determine unitary matrices Q1, Q2, Q3 such that T = QY THQ., Z := Q¥ ZQ,
H := Q¥ HQ, are still upper triangular but the m. eigenvalues with positive real
part are reordered to the bottom of X\IT'"Z — H. Set Q1 := diag(Q1,Q3), U1 =
diag (Q2,Q2) and update Q := QQ1, U := Ulh.

2: Reorder the remaining n — my + 1 eigenvalues with negative real parts which are now
in the bottom right subpencil of \S — H. Determine a unitary matriz Q1 and a unitary
symplectic matrix Uy such that the eigenvalues of top left subpencil of AS —H with positive
real parts and those of the bottom right subpencil of NS — H with negative real parts are
interchanged. Update Q := QQ1, U :=UU; .

If the matrix S is not given in factored form, we can use the following algorithm for
the computation of the deflating subspaces [4].

ALGORITHM 4. Computation of stable deflating subspaces of complex skew-Hamiltoni-
an/Hamiltonian matriz pencils in unfactored form

Input: Complexr skew-Hamiltonian/Hamiltonian matriz pencil AS — H.

Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pen-
cil \Bs — By, eigenvalues of AS — H, orthonormal basis Py, of the deflating subspace
Def_ (S,H), as in Theorem[3.3

1: Set N' = iH and determine the matrices BS, By as in and (16)), respectively. Perform

11



Algorithm[5 to compute the factorization

AC c S S
Bs=gQ'gTBsQ= 7" o),
N . N
BNZJQTJTBNQ:[JI 17§:|,
where Q is real orthogonal, S11 is upper triangular and N11 is upper quasi triangular.
2: Apply the QZ algorithm [T1)] to the 2 x 2 diagonal blocks of the matriz pencil AS11 —
Ni1 to determine w}itary matrices Q1, Q2 such that QfSllQh QlelQl are both upper
triangular. Define Q := diag (Q1,Q2) and set

Bs =70"7"B50, By =J0"T"B5 Q.

3: Use Algorithm @ to determine a unitary matriz O such that

<H o Tae A [S11 S
JQ T BsQ= { 0 Sﬁ] )
“H T ( @\ A |Hit  Hiz
gong (s e "y Al

where S11, Hi1 are upper triangular such that A_ (Bg, fi[;’f\/) is contained in the spec-

trum of the 2p X 2p leading principal subpencil of AS11 — Hir.

4: Set V = [In 0] X.000 [Ig”

any numerically stable orthogonalization scheme.

and compute Py, , an orthogonal basis of rangeV', using

Now we present the algorithm for the computation of the structured matrix factoriza-
tion for complex matrix pencils in unfactored form.

ALGORITHM 5. Computation of a structured matrix factorization for real skew-Hamilto-
nian/skew-Hamiltonian matriz pencils in unfactored form

Input: A real skew-Hamiltonian/skew-Hamiltonian matriz pencil AS — N
Output: A real orthogonal matriz @ and the structured factorization .
1: Set Q = I2,,. Reduce S to skew-Hamiltonian triangular form, i.e., determine an orthog-
onal matriz Q1 such that

5:=70" 7750, = {S“ S”]

0 ST
with an upper triangular matriz S11. Update N := JOTTTNQ1, Q:= QQ;. This step

is performed by applying a sequence of Householder reflections and Givens rotations in a
specific order, see [J] for details.
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2: Reduce N to skew-Hamiltonian Hessenberg form. Determine an orthogonal matriz Q1
such that

§:=701 7750 = [S“ S”}

0 ST

N N

N:i=JUIT'NQ = [ 0 N?],
i1

where S11 is upper triangular and N11 is upper Hessenberg. Update Q := QQ1. This step

is performed by applying an appropriate sequence of Givens rotations to annihilate the

elements in N in a specific order without destroying the structure of S, for details see []].

3: Apply the QZ algorithm to the matrixz pencil A\S11 — N11 to determine orthogonal matrices
Q1 and Q2 such that QT S11Q1 is upper triangular and QY N11 Q1 is upper quasi triangular.
Set Qi := diag (Q1,Q2) and update S := JQT J*SQ1, N := JQTTTNQ1, Q := Q0.

Again, similar to the factored case, the eigenvalues are determined by the diagonal 1x 1
and 2 x 2 blocks of S1; and Ni;. Also, the following eigenvalue reordering routine is
similar to the one of the factored case.

ALGORITHM 6. Eigenvalue reordering for complex skew-Hamiltonian/Hamiltonian ma-
triz pencils in unfactored form

Input: Regular 2n X 2n complex skew-Hamiltonian/Hamiltonian matriz pencil \S —H of the
S W H D
form § = {0 SH} , H = {0 _gH
Output: A unitary matriz Q and the transformed matrices jQHJTSQ, JOH TTHO which
have still the same triangular form as S and H, respectively, but the eigenvalues in
A_(S,H) are reordered such that they occur in the leading principal subpencil of
TJOHITT (NS —H) Q.
1: Set Q = I»,,. Reorder the eigenvalues in the subpencil A\S — H.
a) Determine unitary matrices Q1, Q2 such that S := QY SQ., H := Q¥ HQ., are still
upper triangular but the m—_ eigenvalues with negative real part are reordered to the
top of AS — H. Set Q1 := diag (Q1,Q2) and update Q := QQ;.

b) Determine unitary matrices Q1, Q2 such that S := Q¥ SQ:, H := Q¥ HQ:, are still
upper triangular but the my eigenvalues with positive real part are reordered to the
bottom of AS — H. Set Q1 := diag (Q1,Q2) and update Q := QQ;.

2: Reorder the remaining n — my + 1 eigenvalues with negative real parts which are now
in the bottom right subpencil of A\S — H. Determine a unitary matriz Q1 such that the
eigenvalues of top left subpencil of AS —H with positive real parts and those of the bottom
right subpencil of AS — H with negative real parts are interchanged. Update Q := QQ;.

} , with upper triangular S, H.

13



3.2 The Real Case

We also briefly recall the theory for the real case which has some significant differences
compared to the complex case. For a very detailed description we refer to [2]. Let
AS — H be a real skew-Hamiltonian/Hamiltonian matrix pencil with J-semidefinite

Z Z F G
_ : . _ T 7T _ |41 12 _
skew-Hamiltonian part § = JZ* J* Z where Z [Z21 Z22:| , {H —FT} We
introduce the orthogonal matrices
\/§ I2n I2n
with P as in . Now we define the double-sized matrices
[z 0
Bz:= K z} '
B _|7E"T" 0 1_[7 0]g[7 0]"
T - = | 0 jZTjT —lo ._7 zZ 0 J ;
(S 0
Bs : = 0 S} = BrBz,
K
b=t 0.
Furthermore, we define
Zii 0 Zip 0
ro._ T 10 Zun 0 Zp
BL =X BzX, = Zow 0 Zey 0|
0 Zgl 0 Z22
By = XIBrx, =7 (B3 I,
By :=XTBsX, = 7 (By)" JTBY,
0 F| o G
F 0 G 0
r . _ T _
H 0 |-F7T 0

It can be easily observed, that the 4n x 4n matrix pencil AB5 — B}, is again real
skew-Hamiltonian/Hamiltonian. For the computation of the eigenvalues of AS —H we
apply the following structured matrix factorization which is also often referred to as
generalized symplectic URV decomposition [2].

Theorem 3.3. Let \S — H be a real skew-Hamiltonian/Hamiltonian matriz pencil
with S = JZTJTZ. Then there exist orthogonal matrices Q1, Qa2 and orthogonal

14



symplectic matrices Uy, Us such that

T T 4T FATEVAT
o (JZJ)ZA:_O TQJ’
T [Zn Zrs
Uy ZQy = K ZQQ:| ; (20)
T _[Hin Hip
QHQ, = | 0 Hypl’

with the formal matriz product Ty,* Hiy Z1) Zay' HiyToy' in real periodic Schur form
[9, [13], where Ty, Z11, Hi1, Ty, Z1y are upper triangular and HI, is upper quasi
triangular.

Proof. The proof is constructive, see [2]. O

By using Theorem (with the same notation) we get the following factorization
of the embedded matrix pencil ABg — B3, with factored matrix Bg. We can compute
an orthogonal matrix Q; and an orthogonal symplectic matrix U/ such that

L 0 | -TL 0 ) )
T e A 0 Zpy 0 Zip | |21 Zi2
Ubz0=1——"9 TH 0 | L0 2y’
0 0| 0 Zy o)
[ O H11 O H12
~ ~ -HL, o0 | H 0 Hi H
T 7Tpr A _ 22 12 | H 12
0 0 |-HL 0
- T -
where Q = PT jQéj QO } PU=PT [L({)l Z/({)] P. From the condensed form
2 D)

we can immediately get the eigenvalues of AS — H as

ASH) = A (2520, Hn) = A (T o 20 2 HRTE). (22)
Note that all matrices of the product are upper triangular, except HJ, which is upper
quasi triangular. Hence, the eigenvalue information can be extracted directly from the
diagonal 1 x 1 or 2 x 2 blocks of the main diagonals. Note that the finite, simple, purely
imaginary eigenvalues of the initial matrix pencil correspond to the positive eigenvalues
of the generalized matrix product. Hence, these eigenvalues can be computed without
any error in their real parts. This leads to a high robustness in algorithms which
require these eigenvalues, e.g., in the L.,-norm computation [6]. However, if two
purely imaginary eigenvalues are very close they might still be slightly perturbed from
imaginary axis. This essentially depends on the Kronecker structure of a close-by skew-
Hamiltonian/Hamiltonian matrix pencil with double purely imaginary eigenvalues.
This problem is similar to the Hamiltonian matrix case, see [21].
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To compute the deflating subspaces we are interested in, it is necessary to compute
the structured Schur form of the embedded matrix pencils AB%5 — Bj,. This can be
done by computing a finite number of similarity transformations to the subpencil
)\ZNQTQZ,N’H — H11 to put Hq into upper quasi triangular form. That is, we compute
orthogonal matrices Qs, Q4, Us such that

Hip = QY H11Qu, 211 =UT 211Q4,  Zop = UL 2203,

where Z1, 21, are upper triangular and H1; is upper quasi triangular. By setting

- 0 -5 0 < -
0=0[% Dl u=ul 01 2, = w20, and Hiy = Q#1204 we
0 Qs 0 U
. ~ - -~ \T -
obtain the structured Schur form of AB%s — B3, as ABs — By, with B = J (B’Z) JTBy
and

BL:=UTBLQ = [311 212} 7

0 Z9
l’;’é_[ = 79T B;,Q = Hix 7'[12T .

Now we can reorder the eigenvalues of /\Bg - 5‘;“_[ to the top in order to compute
the desired deflating subspaces which is similar to the complex case. Then, for the
deflating subspaces we find a similar result as Theorem which we do not state here
for brevity.

If the matrix S is not given in factored form, we need the following slightly modified
version of Theorem from [2].

Theorem 3.4. Let \S — H be a real skew-Hamiltonian/Hamiltonian matriz pencil.
Then there exist orthogonal matrices Q1, Qo such that

oTs70,J" = S Slﬁ] € SHy,,,
L O Sll
[T T
J I8 =" Tiﬂ =T € SHan, (23)
T _ [Hu Hi
Ql HQ? - | 0 H22:| )

with the formal matriz product SﬁlHllTﬁlHQTQ in real periodic Schur form, where
S11, Ti1, Hy1 are upper triangular and HZYy is upper quasi triangular.

Proof. The proof is done by construction, see [2]. O
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Then we can compute an orthogonal matrix Q such that

S 0 | S22 0 R R
ST 2T A 0 Tu| 0 T | [Su Si2
JQ I BsQ= | 0 [Sh o | o Sh)|°
| 0 0 0 T4 (24)
[ O H11 0 H12
~ - ~H, 0 | H 0 Hit H
T 7Tpr A& _ 22 12 | H 12
JT =100 Hm | [ 0 —HlTl]’
0 0 |-HL 0
N T
with © = PT {jgéj QO } P. The spectrum of AS — H is given by
2

A(SH) = iy /A (S Hu Ty H,)

which can be determined by evaluating the entries on the 1 x 1 and 2 x 2 diagonal
blocks of the matrices only. To put the matrix pencil formed of the matrices in
into structured Schur form we have to triangularize )\511 — 7‘211, i.e., we determine
orthogonal matrices Q3 and Q4 such that

S =0781103, Hii= QI H1103

are upper triangular and upper quasi triangular, respectively. By setting the matrices

0=20 [%3 QO } , S12 = ngu Qy4, and Hio = QZﬂ12Q4, we obtain the structured
4
Schur form as
By:=gQT7TBs0 = |1 S|
By, = 7077 ByQ = Hi1 7‘[1% .

By properly reordering the eigenvalues we can compute the desired deflating subspaces
as explained above. As for the complex case we give a brief description of the used
algorithms for the real case from [2].

ALGORITHM 7. Computation of stable deflating subspaces of real skew-Hamiltonian/Ha-
miltonian matriz pencil in factored form

Input: Real Hamiltonian matriz H and the factor Z of S.

Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pencil
ABs — By, eigenvalues of AS — H, orthonormal bases Py, , P/, of the deflating subspace
Def_ (S,H) and the companion subspace, respectively, as in Theorem
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1: Apply Algorithm@ to the matrices Z, JZTJT and H, and determine orthogonal matrices
Q1, Q2 and orthogonal symplectic matrices Ui, Uz such that

T T T [T T
T 21 Zie

u2 ZQ2 - I 0 Z22:| ’
T _ [Hii Hi

Q1 HQ2 = 0 Hgg] ,

with the formal matriz product Ty  Hi1 21 Zayr HayToy” in Teal periodic Schur form,
where Th1, Z11, Hi1, T, ZL are upper triangular and HLy is upper quasi triangular.
2: Apply Algorithm[g to determine orthogonal matrices Qs, Qa, Us such that the matrices

T T
Zn = Ul [T22 0 } Qs and Zss = UL {Tu 0

0 Zn 0 222} Qs are upper triangular and Hi1 =

H
oF [ 0 11] Qu s upper quasi triangular.

—-HL, 0
3: Update
L T _Tlg 0 L T 0 H12
Z19:= U3 [ 0 Z1s Qs, Hiz:= Q3 J7en 0 Qs,
and set

s | 211 Z12 s |Hin Haie
N L e

Apply the real eigenvalue reordering method in Algorithm to the pair (52,5’%) to
determine an orthogonal matrix Q and an orthogonal symplectic matriz U such that
N R A ~\T L

Z/ITBE Q, jQTJTBLQ are in structured triangular form and A_ (J (B%) jTB%, B;Q)

is contained in the leading 2p x 2p principal subpencil of AZ3Z11 — Hi1.

4: Set
veim o (0 [7S7 g)PT o)) [F]
o=t o (0[5 ] 2] [

and compute Py, , P, orthogonal bases of rangeV and rangeU, respectively, using any
numerically stable orthogonalization scheme.

The next algorithm describes the computation of the generalized symplectic URV
decomposition which can, e.g., be used to compute the eigenvalues of a real skew-
Hamiltonian/Hamiltonian matrix pencil in factored form.

ALGORITHM 8. Generalized symplectic URV decomposition

Input: A real 2n X 2n matriz pencil XT Z — H.
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Output: Orthogonal matrices Q1, Q2, orthogonal symplectic matrices Ui, Us and the struc-
tured factorization .

1: Set Q1 = Q2 = Uy = Uz = I2,,. By using different elimination orders in QR and RQ like
decompositions, determine orthogonal matrices Q1 and Qz such that

oAt~ (T Tha 2A |24 Zaa

N U R

where Ty, TS, Zy1, ZL% are n x n and upper triangular. Update H = OTHO,, Q1 =
0191, Q2 = 00, o o

2: Compute orthogonal matrices Q1, Q2 and orthogonal symplectic matrices Ui, Uz such that

AT . [T Tz

T .= Ql TZ/{l . |: 0 T22:| 5

Z. =720, = [ZH Zm] ,

0 Za
AT, A . |Hiun Hiz
H .= Q1 HQQ —- [ 0 H22] 3

where Th1, T, Z11, Zay, Hi1 are upper triangular and H2y is upper Hessenberg. Update
Q1 := 0101, Oy := 030,, Uy := Urlhs, and Us := Uslla. This step is performed by using
a sequence of orthogonal and orthogonal symplectic matrices to annihilate the elements in
H in a specific order without destroying the structure of T and Z (see [2] for details).

3: Apply the periodic QZ algorithm [9, [13] to the formal matriz product

Th'Hin Z1) Zay HayToy"
to determine orthogonal matrices Vi, Va, Va, Va, V5, Vs such that VET Vi, Vi Hy Vs,

VL Z11 Vs, (V4TZ22V5)T, (VGTT22V1)T are all upper triangular and (VGTH22V5)T s upper
quasi triangular. Set

Q) :=diag (Va,Vs), Qo :=diag(Vs,Vs), U :=diag(Vi,V1), Uz :=diag(Va, Vi),

and update T = Qf TUh, Z := U3 2Q2, H := QT HQs, Q1 1= Q1 Q1, Q> = 0Dy,
ul = ulul, Z/{Q = I/{QZ/{Q.

Note that the algorithm above applies to any (unstructured) matrix pencil of the form
AT Z — H, but the application of the eigenvalue formula requires the structural
assumption that the pencil is skew-Hamiltonian/Hamiltonian. Next we present the
triangularization procedure needed for Step 2 of Algorithm [7]

ALGORITHM 9. Triangularization procedure for special matrix pencils in factored form

. ) . ~y[|A11 0| [{Bu O 0 D2
Input: A real matriz pencil A\AB—D = \ { 0 AQJ { 0 Bzz] [D21 0 ] where the

formal matriz product A7} D12 Byt Az, D21 Byt is in real periodic Schur form with upper
triangular Ai1, Asz2, Bi1, B2z, D12 and upper quasi triangular Da; .
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Output: Orthogonal matrices Q1, Qo, Q3 such that QF AQs, QY BQO: are upper triangular
and QYD Q, is upper quasi triangular.

1: Apply the periodic eigenvalue reordering method introduced in [12] to the formal matriz
product

ALy D12B3y' Ay Do1 By

to determine orthogonal matrices Vi, Va, Va, Vi, Vs, Vi such that Vot A1 Vi, Vit D12V,
V4TB22V3, V5TA22V4, V5TD21V6, VITB11V6 keep their upper (quasi) triangular structure but
they can be partitioned into 2 X 2 blocks with the last diagonal blocks corresponding to all
nonpositive eigenvalues of the formal product, and the first diagonal blocks corresponding
to the other eigenvalues.

2: Set Q1 := diag(Vs, V3), Q2 := diag(Vi, Va), Qs := diag(Va, Vs), and update

A Ap ‘ 0 0
a0 An| o0 o0
A= Qs AQe = 0 0 |Asz Asq |’
0 0| 0 Au
By Bi2| O 0 T
s Lo Bn| o0 o0
B:=Q:BQ = 0 0 |Bss B |’
0 0| 0 Bu |
0 0 ‘ D13 Dia
AT . 0 0 0 Doy
D:=Q3DQ; =: Dai Daa | 0 0 )
0 Dyo 0 0

where A;21D24B;11AZ41D4QB§21 has only nonpositive real eigenvalues.
3: Let P be an appropriate permutation matriz such that

I All O A12 O 1 _
_ T _ 0 Ass| 0 Az | JA =
A =P AP = |5 0 [A2 0 | “|o A|’
| 0 0 Au |
B 0 Bia 0 }
T o 0 Bss 0 Bsa . B x
B:=PBP= =400 [Bn 0 | [o B}’
L0 0 0 Ba |
0 Dis| 0 Du .
ST - D3 0 Dso 0 _|D  *
P:=PPP=1"4"0T0 Dun _'[0 ]
0 0 |Dix 0O

and update Q1 := Q1P, Q2 1= Q2P, Qs := Q3P. o
4: Triangularize NAB — D, i.e., compute orthogonal matrices Q1, Qa, Q3~such that A =

. A S B Ao = D
0T A0, =: {0 :J B = OFBO; = {0 ;} ,D = OIDO, = {0 1*)} with up-

per triangular A,~B, upper quast triangular D and unchanged fl, B, D. Update Q1 =
Q1Q1, Q2 = @202, Q3 = Q30s.
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5: Triangularize MAB — D with an appropriate permutation matrix 75, re., A:= PTAP =

A % ._ATA_.E* AT A_.[)* . . P
[O A],B.—P BP =: {0 B],D.—P DP =: {0 D} with upper triangular A, B,

upper quasi triangular D and unchanged A, B, D. Update Q1 = Q1P, Qs = QoP, Q3 =
Q3P.

Note, that the separation of the nonpositive from the other eigenvalues of the formal
matrix product Ay D12Bay Asy Doy Byyt is performed in order to avoid perturbations
of the purely imaginary eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils.
This follows from the connection of the nonpositive eigenvalues of the matrix product
and the matrix pencil AAB — D similar to . When the nonpositive eigenvalues are
separated, the triangularization of the corresponding part of AAB — D can be done
by only applying permutation matrices. When the matrix pencil is triangularized we
apply the following eigenvalue reordering algorithm.

ALGORITHM 10. Figenvalue reordering for real skew-Hamiltonian/Hamiltonian matriz
pencils in factored form

Input: Regular 2n X 2n real skew-Hamiltonian/Hamiltonian matriz pencil AS — H with S =
JzTgTz, 2z = [g I;/} , H = {Ig 724 with upper triangular Z and TT and upper
quast triangular H.

Output: An orthogonal matrix Q, an orthogonal symplectic matriz U, and the transformed
matrices UTZ2Q, TOQTTTHQ which have still the same triangular form as Z and H,
respectively, but the eigenvalues in A— (S,H) are reordered such that they occur in the
leading principal subpencil of 7QTJT (AS —H) Q.

1: Set Q =U = I2,,. Reorder the eigenvalues in the subpencil X127z - H.

a) Determine orthogonal matrices Q1, Qz2, Qs such that TT := Q3T Q2, Z := Q3 ZQx,
H :=QYHQ: are still upper (quasi) triangular but the m_ eigenvalues with negative
real part are reordered to the top of \TTZ — H. Set Q; := diag(Q1,Qs), U =
diag (Q2,Q2) and update Q := QQ1, U := Ul .

b) Determine orthogonal matrices Q1, Q2, Q3 such that TT := QITTQ2, Z := QT ZQ,
H := QYHQ, are still upper (quasi) triangular but the my eigenvalues with positive
real part are reordered to the bottom of N\I'TZ — H. Set Q; := diag (Q1,Q3), Uy :=
diag (Q2,Q2) and update Q := QQ1, U := UU;.

2: Reorder the remaining n — my + 1 eigenvalues with negative real parts which are now
in the bottom right subpencil of AS — H. Determine an orthogonal matriz Q1 and an
orthogonal symplectic matriz Ur such that the eigenvalues of top left subpencil of \S —H
with positive real parts and those of the bottom right subpencil of AS — H with negative
real parts are interchanged. Update Q := QO1, U := Ul .

In case that we have to deal with skew-Hamiltonian/Hamiltonian matrix pencils AS —H
with unfactored matrix & we use the following algorithms.
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ALGORITHM 11. Computation of stable deflating subspaces of real skew-Hamiltonian/Ha-
miltonian matriz pencil in unfactored form

Input: Real skew-Hamiltonian/Hamiltonian matriz pencil A\S — H.

Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pen-
cil \Bs — By, eigenvalues of AS — H, orthonormal basis P, of the deflating subspace
Def_ (S,H) as in Theorem

1: Apply Algorithm[I3 to the matrices S and H and determine orthogonal matrices Q1, Q2
such that

Qrs701 7" = |° 2| ¢ s,
L0 Sih
T T SO, = Tu qug € SHap,
L O Ti
T _ [Hu1 Hi
Ql HQQ - I 0 H22:| )

with the formal matriz product Sl_llHnTl_llHQTQ in real periodic Schur form, where Si1,
Ti1, Hi1 are upper triangular and Hiy is upper quasi triangular.
2: Apply Algorithm to determine orthogonal matrices Qz, Qa such that the matriz S11 =

T S 0 Q3 is upper triangular and Hi1 = QF OT s Qs is upper quasi
0 Ty —Hyp O
triangular.
3: Update
S 0 0 H
Si2 == QF { 52 le} Qu4, Hiz:=Qf |:H1T2 012} Qa,
and set
s [S11 Si2 s | Hir Hae
Bs = [ 0 81T1:| » Bu= { 0 —HlTl]

Apply the real eigenvalue reordering method in Algorithm to the pair (Bg,ég) to
determine an orthogonal matrix Q such that JQTJT (/\Bg — 5’%) Q 18 in structured

Schur form and A_ (@Q,BL) is contained in the leading 2p X 2p principal subpencil of

A&S‘ll - H11~
4: Set

V= [[2n 0] (yr [jQSJT 902] L [%3 904] Q) [Iép] 7

and compute Py, , orthogonal basis of rangeV, using any numerically stable orthogonal-
ization scheme.

The following algorithm is used to compute a structured matrix pencil decomposition
which is similar to the generalized symplectic URV decomposition.
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ALGORITHM 12. Variant of the generalized symplectic URV decomposition for unfactored
real skew-Hamiltonian/Hamiltonian matriz pencils

Input: A real 2n x 2n skew-Hamiltonian/Hamiltonian matriz pencil A\S — H.
Output: Orthogonal matrices Q1, Q2 and the structured factorization .
1: Set Q1 = Q2 = Isp. Reduce S to skew-Hamiltonian triangular form, i.e., determine an
orthogonal matriz Ql such that
S:=01870,7" = {551 gé?]
11

with an upper triangular matriz S11. Update H := Q{HJQ1\7T, Q= 0O, Ql. This step
is performed by applying a sequence of Householder reflections and Givens rotations in a
specific order, see [2] for details.

2: Set '7: =8, Oy := T JT. Perform eliminations in ‘H, i.e., compute orthogonal matri-

ces Q1, Q2 such that

Si= 07870, = [5“ S} € SHan,
0 St
~ ~ T T
T:=J0 T TQs = { 51 TiTj € SHin,
AT, A |Hin Hiz
H:=OTHD: = [ 0 HQJ

where S11, Ti1, Hi1 are upper triangular and HZy is upper Hessenberg. Update Qi :=
0101, Qs = Q20,. This step is performed by applying an appropriate sequence of
Givens rotations to annihilate the elements in H in a specific order without destroying
the structure of S and T, for details see [Z].

3: Apply the periodic QZ algorithm [9, [13] to the formal matriz product

SO HNWT HY,

to determine orthogonal matrices Vi, Va, Vs, Vi such that V1T5'11V3, VlTH11V4, VQTT11V4,
are all upper triangular and (VgTHQQVQ)T is upper quasi triangular. Set

Q, :=diag (Vi,V3), Qo :=diag (Va,Va),

and update S := TSI I, T =T TTT 0o, H = OTHD,, Q1 = 0104, Qs :=
Q2Qs.

Now we present the triangularization algorithm. All remarks which have been made
for the factored case analogously hold for the unfactored case.
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ALGORITHM 13. Triangularization procedure for special matriz pencils in unfactored
form

An 0 0 Bi2
0 A22] B [321 0
product Aﬁl BmA;Ql B21 is in real periodic Schur form with upper triangular A11, Aaz, Bia
and upper quast triangular Ba; .
Output: Orthogonal matrices Q1, Q2 such that QgAQl is upper triangular and QgBQl 18
upper quasi triangular.
1: Apply the periodic eigenvalue reordering method introduced in [1Z] to the formal matriz
product

Input: A real matriz pencil \NA—B = \ { ] where the formal matriz

A1 BiaAsy Ba
to determine orthogonal matrices Vi, Va, Va, Vi such that V& A11 Vi, Vit B1a Vs, ViF Aga Vs,
VI Bo1 Vi, keep their upper (quasi) triangular structure but they can be partitioned into
2 X 2 blocks with the last diagonal blocks corresponding to all nonpositive real eigenvalues
of the formal product, and the first diagonal blocks corresponding to the other eigenvalues.

2: Set Qi := diag(V1, V3), Q2 := diag(V2, V4), and update

Ann Az | O 0
T . 0 Ax| O 0
A:=05A401 = 0 0 A As |
0 0 0 Au
0 0 | Biz B
AT . 0 0 0 Bo
B:=Q;B9; =: B Bas | 0 0 ,
0 Bas2| O 0
where Agy Baa AL}l Baz has only nonpositive real eigenvalues.
3: Let P be an appropriate permutation matriz such that
Ain 0 | Az 0 ] _
L T _ 0 A33 0 A34 . A k
A= PlAp = | D ,.[0 A],
0 0 0 Ay |
0 Biz| 0 B _
L T _ Bgl 0 ng 0 _ B *
B:=PBP=1"0"0T0 Ba *{0 B}’
0 0 | Baz 0 |

and update Q1 := Q1P, Q2 := Q2P. - - ~ ~
4: Triangularize \A—B, i.c., compute orthogonal matrices Q1, Q2 such that A := 0T AQ; =:

0 A 0 B
and unchanged A, B. Update Q1 = ©101, Q2 = Q20s.

A T, A B < ~
[ ﬂi] ,B:= 0¥BO; =: { f] with upper triangular A, upper quasi triangular B,
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5: Triangularize M — B with an appropriate permutation matrix 75, i.e, A:= PTAP =

[g Z] ,B:=PTBP = {103 g] with upper triangular A, upper quasi triangular B and

unchanged A, B. Update Q1 = Q175, Qs = Q5P.

Finally, we describe the reordering of the eigenvalues.

ALGORITHM 14. Figenvalue reordering for real skew-Hamiltonian/Hamiltonian matriz
pencils in unfactored form

Input: Regular 2n X 2n real skew-Hamiltonian/Hamiltonian matriz pencil \S —H of the form
S= [g SW;} , H= H—)I 724 , with upper triangular S an upper quasi triangular H.
Output: An orthogonal matrix @ and the transformed matrices jQTjTSQ, JoTTTHO
which have still the same (quasi) triangular form as S and H, respectively, but the eigen-
values in A_ (S,H) are reordered such that they occur in the leading principal subpencil
of TQTIT (NS —H) Q.
1: Set Q = I2,,. Reorder the eigenvalues in the subpencil A\S — H.
a) Determine orthogonal matrices Q1, Q2 such that S := Q3 SQ1, H := Q3 HQ1, are still
upper (quasi) triangular but the m_ eigenvalues with negative real part are reordered
to the top of AS — H. Set Qi := diag (Q1,Q2) and update Q := Q0Q;.

b) Determine orthogonal matrices Q1, Q2 such that S := QYSQ:1, H := QYHQ:, are still
upper (quasi) triangular but the m4 eigenvalues with positive real part are reordered
to the bottom of NS — H. Set Q, := diag (Q1,Q2) and update Q := QQ;.

2: Reorder the remaining n — m4 + 1 eigenvalues with negative real parts which are now in
the bottom right subpencil of AS — H. Determine an orthogonal matrix Q1 such that the
eigenvalues of top left subpencil of AS —H with positive real parts and those of the bottom
right subpencil of AS — H with negative real parts are interchanged. Update Q := QQ;.

4 Conclusion

We have presented algorithms which can be used to compute the eigenvalues and
deflating subspaces of skew-Hamiltonian/Hamiltonian matrix pencils in a structure-
preserving way which may lead to higher accuracy, reliability and computational per-
formance. Applications which are based on matrix pencils of this structure have been
introduced to show the importance of our considerations. In Part II of this paper
[8] we describe details of the implementation in the style of SLICOT subroutines.
We furthermore present results of some numerical experiments in order to show the
superiority of our method compared to standard approaches.

25



References

[1]

2]

[10]

[11]

A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. Adv. Des.
Control. STAM, Philadelphia, PA, 2005.

P. Benner, R. Byers, P. Losse, V. Mehrmann, and H. Xu. Numerical solution of
real skew-hamiltonian/hamiltonian eigenproblems. Unpublished report, Novem-
ber 2007.

P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical computation of deflat-
ing subspaces of embedded Hamiltonian pencils. Technical Report SFB393/99-15,
Fakultét fiir Mathematik, TU Chemnitz, Germany, 1999. Available online from
http://www.tu-chemnitz.de/sfb393/sfb99pr.html.

P. Benner, R. Byers, V. Mehrmann, and H. Xu. Numerical computation of deflat-
ing subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matriz Anal.
Appl., 24(1):165-190, 2001.

P. Benner, P. Losse, V. Mehrmann, L. Poppe, and T. Reis. 7-iteration for descrip-
tor systems using structured matrix pencils. In Proc. International Symposium
on Mathematical Theory of Networks and Systems, Blacksburg VA, USA, 2008.

P. Benner, V. Sima, and M. Voigt. £.,-norm computation for continuous-time de-
scriptor systems using structured matrix pencils. IEEE Trans. Automat. Control,
57(1):233-238, January 2012.

P. Benner, V. Sima, and M. Voigt. Robust and efficient algorithms for £.,-norm
computation for descriptor systems. In Proc. 7th IFAC Symposium on Robust
Control Design, pages 195-200, Aalborg, Denmark, June 2012.

P. Benner, V. Sima, and M. Voigt. FORTRAN 77 subroutines for the solution
of skew-Hamiltonian/Hamiltonian eigenproblems — Part II: Implementation and
numerical results. Preprint MPIMD/13-12, Max Planck Institute Magdeburg,
2013.

A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposi-
tion. Algorithms and applications. In F.T. Luk, editor, Advanced Signal Processing
Algorithms, Architectures, and Implementations III, volume 1770 of Proc. SPIE,
pages 31-42, 1992.

L. Dai. Singular Control Systems, volume 118 of Lecture Notes in Control and
Inform. Sci. Springer-Verlag, Heidelberg, 1989.

G. H. Golub and C. F. Van Loan. Matriz Computations. The John Hopkins
University Press, Baltimore/London, third edition, 1996.

R. Granat, B. Kagstrom, and D. Kressner. Computing periodic deflating sub-
spaces associated with a specified set of eigenvalues. BIT, 43(1):1-18, 2003.

26


http://www.tu-chemnitz.de/sfb393/sfb99pr.html

[13]

[14]

[18]

[19]

[20]

J. J. Hench and A. J. Laub. Numerical solution of the discrete-time periodic
Riccati equation. IEEE Trans. Automat. Control, 39(6):1197-1210, June 1994.

A. Kawamoto, K. Takaba, and T. Katayama. On the generalized algebraic Riccati
equation for continuous-time descriptor systems. Linear Algebra Appl., 296:1-14,
1999.

P. Losse. The Hoo Optimal Control Problem for Descriptor Systems. Dissertation,
Fakultat fiir Mathematik, Technische Universitdt Chemnitz, February 2012.

P. Losse, V. Mehrmann, L. Poppe, and T. Reis. The modified optimal H, control
problem for descriptor systems. SIAM J. Control Optim., 47(6):2795-2811, 2008.

C. Mehl. Compatible Lie and Jordan algebras and applications to structured ma-
trices and pencils. Dissertation, Chemnitz University of Technology, Faculty of
Mathematics, Germany, Berlin, 1999.

C. Mehl. Condensed forms for skew-Hamiltonian/Hamiltonian pencils. STAM J.
Matriz Anal. Appl., 21(2):454-476, 2000.

V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and
Numerical Solution, volume 163 of Lecture Notes in Control and Inform. Sci.
Springer-Verlag, Heidelberg, July 1991.

V. Mehrmann and T. Stykel. Balanced truncation model reduction for large-
scale systems in descriptor form. In P. Benner, V. Mehrmann, and D. Sorensen,
editors, Dimension Reduction of Large-Scale Systems, volume 45 of Lect. Notes
Comput. Sci. Eng., chapter 3, pages 89-116. Springer-Verlag, Berlin, Heidelberg,
New York, 2005.

V. Mehrmann and H. Xu. Perturbation of purely imaginary eigenvalues of Hamil-
tonian matrices under structured perturbations. FElectron. J. Linear Algebra,

17:234 — 257, 2008.

L. S. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishenko. The Mathe-
matical Theory of Optimal Processes. Interscience, New York, 1962.

L. Poppe, C. Schroder, and I. Thies. PEPACK: A software package for computing
the numerical solution of palindromic and even eigenvalue problems using the pen-
cil Laub trick. Preprint 22-2009, Institut fiir Mathematik, Technische Universitat
Berlin, October 2009.

T. Reis. Lur’e equations and even matrix pencils. Linear Algebra Appl.,
434(1):152-173, 2011.

T. Reis and M. Voigt. Spectral factorization and linear-quadratic optimal control
for differential-algebraic systems, 2013. In preparation.

M. Voigt. Lso-norm computation for descriptor systems. Diploma thesis, Chem-
nitz University of Technology, Faculty of Mathematics, Germany, July 2010.

27



[27] K. Zhou and J. D. Doyle. Fssentials of Robust Control. Prentice Hall, Upper
Saddle River, NJ, 1st edition, 1998.

28



Max Planck Institute Magdeburg Preprints



	Introduction
	Applications
	Linear-Quadratic Optimal Control
	H-Optimization
	L-Norm Computation

	Theory and Algorithm Description
	The Complex Case
	The Real Case

	Conclusion

