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Abstract

Numerical simulation of large-scale dynamical systems plays a fundamental role in studying
a wide range of complex physical phenomena; however, the inherent large-scale nature of the
models leads to unmanageable demands on computational resources. Model reduction aims to
reduce this computational burden by generating reduced models that are faster and cheaper to
simulate, yet accurately represent the original large-scale system behavior. Model reduction
of linear, non-parametric dynamical systems has reached a considerable level of maturity,
as reflected by several survey papers and books. However, parametric model reduction has
emerged only more recently as an important and vibrant research area, with several recent
advances making a survey paper timely. Thus, this paper aims to provide a resource that
draws together recent contributions in different communities to survey state-of-the-art in
parametric model reduction methods.

Parametric model reduction targets the broad class of problems for which the equations gov-
erning the system behavior depend on a set of parameters. Examples include parameterized
partial differential equations and large-scale systems of parameterized ordinary differential
equations. The goal of parametric model reduction is to generate low cost but accurate mod-
els that characterize system response for different values of the parameters. This paper surveys
state-of-the-art methods in parametric model reduction, describing the different approaches
within each class of methods for handling parametric variation and providing a comparative
discussion that lend insights to potential advantages and disadvantages in applying each of the
methods. We highlight the important role played by parametric model reduction in design,
control, optimization, and uncertainty quantification—settings that require repeated model
evaluations over a potentially large range of parameter values.

Keywords. Dynamical systems, parameterized model reduction, interpolation, proper orthogonal
decomposition, balanced truncation, greedy algorithm.

AMS subject classifications. 35B30, 37M99, 41A05, 65K99, 93A15, 93C05.

1 Introduction

Dynamical systems are the basic framework for modeling and control of an enormous variety of
complex systems of scientific interest or industrial value. Examples include heat transfer, fluid
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dynamics, chemically reacting flows, biological systems, signal propagation and interference in
electric circuits, wave propagation and vibration suppression in large structures, and design of
micro-electro-mechanical systems (MEMS). Numerical simulation of the associated models has
been one of the few available means for studying complex underlying physical phenomena. How-
ever, the ever increasing need for improved accuracy requires the inclusion of more detail in the
modeling stage, leading inevitably to larger-scale, more complex models of dynamical systems.
The ever increasing push towards improving system performance leads to a need to simulate many
different possible realizations of the system. Performing multiple simulations in such large-scale
settings often presents unmanageably large demands on computational resources. Alleviation of
this computational burden is the main motivation for deriving reduced models—low-dimensional,
efficient models that are fast to solve but that approximate well the underlying high-resolution
simulations. The field of model reduction encompasses a broad set of mathematical methods to
generate and evaluate these reduced models.

In this paper, we focus on the broad class of problems for which the equations representing the
system dynamics depend on a set of parameters and the goal is to characterize system response
for different values of the parameters. These parameters may enter the models in many ways,
representing, for example, material properties, system geometry, system configuration, initial con-
ditions, and boundary conditions. This parametric dependence presents a unique set of challenges
for model reduction, since one cannot afford to create a new reduced model for every change in
the parameter values. Hence, the desired approach is to generate a parametric reduced model,
that approximates the original full-order dynamical system with high fidelity over a range of pa-
rameters. This is the goal of parametric model reduction. This survey provides an overview of
state-of-the-art methods in parametric model reduction for large-scale dynamical systems. Recent
years have seen considerable progress in this field, with several classes of methods emerging. This
paper highlights the different approaches within each class of methods for handling parametric
variation. We provide a comparative discussion that lend insights to potential advantages and
disadvantages in applying each of the methods. We rarely elaborate on technical details and for
proofs mostly give pointers to the relevant literature.

Why is parametric model reduction important and useful? It fills a critical need in design, con-
trol, optimization, and uncertainty quantification settings—settings that require repeated model
evaluations over a potentially large range of parameter values. These are settings in which we
are willing to forego a large up-front cost, the so-called offline cost, in order to obtain a reduced
model that allows rapid yet accurate simulation over the range of parameters, the so-called online
phase.

The design setting may require evaluation of system performance over a range of parameter
values representing critical design constraints. For example, parametric reduced models capturing
the coupled fluid dynamic and structural dynamic behavior of an aircraft configuration provide
rapid evaluation of aeroelastic performance over a range of aircraft operating conditions [109, 108,
2]. This enables rapid characterization of the aircraft’s flight envelope, calculations that would
otherwise require many weeks of computation time. Parametric reduced models have also shown
to be an important enabling technology in the synthesis and design of interconnect [48, 37] and
MEMS [21, 63] as well as in electro-chemical [65] and electro-thermal applications [66].

In control design we desire to drive the system dynamics into a desired configuration, while
accounting for parametrically varying dynamics. Examples include design process control in
Rayleigh-Bénard convection with varying Rayleigh number [112], and control for fluid flow with
varying Reynolds number and/or shape parameters [88, 115]. Instead of designing a new controller
for every new parameter, which would be a large computational burden and intractable for online
controller design, one could design either a single reduced-order controller that performs effectively
over the full parameter space or one that parametrically adapts to the changes.

Both design and control can involve optimization, where the goal may be an optimal system
configuration with respect to a certain performance objective (e.g., maximal throughput, minimal
weight, minimal energy consumption, etc.) or an optimal controller. Most optimization algorithms
require multiple evaluations of the forward model for varying parameter configurations; this is
where parametric reduced models can play a role. Past work has used trust regions to manage the
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reduced model as the optimization proceeds in an optimal control problem [11]. Another approach
for optimal control incorporates the optimality conditions into derivation of the reduced model
[100]. A combination of domain decomposition and model reduction has also been developed
for optimal control and shape optimization problems [6, 7]. Another recent framework employed
parametric reduced models that ensure exact matching of the objective function and gradient
evaluations for a subset of parameter values [20, 22, 56, 160].

Uncertainty quantification is another area that demands repeated model evaluations–often many
thousands of evaluations are needed to sample the uncertainty space (e.g., using Monte Carlo sam-
pling). For example, using parametric reduced models, the forward propagation of uncertainty
through complex systems, such as those typically modeled using large-scale computational fluid
dynamic (CFD) models, can be achieved in turnaround times useful for design [42]. Parametric
reduced basis models have also been combined with stochastic collocation to solve PDEs with ran-
dom coefficients [59]. Another example is large-scale statistical inverse problems for which Markov
chain Monte Carlo methods are computationally intractable, either because they require excessive
amounts of CPU time or because the parameter space is too large to be explored effectively by
state-of-the-art sampling methods. In these cases, parametric model reduction over both state and
parameter spaces can make tractable the solution of large-scale inverse problems that otherwise
cannot be solved [156, 69, 107, 56, 22].

The rest of the paper is organized as follows: In Section 2, we define the problem setup and
introduce the general framework for projection-based model reduction of parameterized dynamical
systems. We also discuss measures of reduced model error. Sections 3 and 4 discuss in detail the
building blocks of parametric model reduction. In particular, Section 3 presents three different
methods for deriving the reduced-order basis: rational interpolation methods, balanced truncation
and proper orthogonal decomposition. We also discuss methods for sampling the parameter space.
Section 4 covers methods for constructing the parameterized reduced model. These construction
methods are divided into those that use global information over the parameter space, and those
that use local information combined with an interpolation method. Section 5 provides a compara-
tive discussion of the various approaches, along with their relative advantages and disadvantages.
Finally, Section 6 concludes the paper with a discussion of open challenges and future outlook.

2 General problem setup

In this section we define the parameterized dynamical systems of interest. We present the general
projection-based model reduction framework for systems that are linear in state but have general
nonlinear parametric dependence. The projection framework also applies to systems that are
nonlinear in state, but as discussed in Section 6, the model reduction theory in this case is much
less developed. Throughout the discussion, we indicate which aspects of the methods carry over
to the nonlinear-in-state case. This section concludes with a discussion of error measures to assess
the quality of the reduced model.

2.1 Parameterized dynamical systems

We consider dynamical systems that are linear in state and parameterized with d parameters
p = [p1, ..., pd]

T ∈ Ω ⊂ Rd (usually, Ω is a bounded domain) as:

E(p) ẋ(t; p) = A(p) x(t; p) + B(p) u(t), y(t; p) = C(p) x(t; p). (1)

The state-vector is denoted by x(t; p) ∈ Rn. u(t) ∈ Rm and y(t; p) ∈ Rq denote, respectively, the
inputs (excitations) and outputs (observations) of the underlying model. Hence, the model has m
inputs and q outputs. The state-space matrices, then, have the dimensions E(p), A(p) ∈ Rn×n,
B(p) ∈ Rn×m, and C(p) ∈ Rq×n. We focus on models that are linear in state, but we allow
nonlinear parametric dependency in all system matrices. The length of the state-vector x(t) (i.e.,
n) is called the dimension of the parametric model (1). We will assume that for every p ∈ Ω, E(p)
is nonsingular even though most of the discussion can be extended to the singular E(p) case. We
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will further assume that the original model in (1) is asymptotically stable for every p ∈ Ω; i.e.,
the eigenvalues of the pencil λE(p)−A(p) have negative real parts; however, most of the methods
can be applied with small modifications to unstable systems, as discussed further in Section 6.

We are interested in cases where n is very large, typically exceeding hundreds of thousands.
The goal is to replace the original large-scale model (1), sometimes called the “truth model,” with
a reduced model of the form

Er(p) ẋr(t; p) = Ar(p) xr(t; p) + Br(p) u(t), yr(t; p) = Cr(p) xr(t; p), (2)

such that the reduced output yr(t; p) ∈ Rq is a good approximation of y(t; p) with respect to
an appropriate error measure. Note that the reduced state-vector xr(t; p) has length r � n, and
the reduced state-space matrices have dimensions Er(p), Ar(p) ∈ Rr×r, Br(p) ∈ Rr×m, and
Cr(p) ∈ Rq×r; hence the dimension is reduced from n down to r � n. This reduction process is
illustrated pictorially in Figure 1 below:

n

n

E(p), A(p)

m

B(p)

q C(p)

r

r

E r(p), Ar(p)

m

Br(p)

q Cr(p)
=⇒

Parametric Model
Reduction

Figure 1: Parametric Model Reduction

2.2 Projection-based model reduction

Parametric model reduction can be approached from a variety of viewpoints. This paper focuses on
projection-based approaches. To motivate the challenges associated with parameterized systems,
first consider the general projection-based reduction approach for a system with no parametric
dependence; i.e.,

E ẋ(t) = A x(t) + B u(t), y(t) = C x(t). (3)

We approximate the unknown state quantities in a basis of reduced dimension and project the
governing equations onto a suitably defined low-dimensional subspace. In particular, choose r-
dimensional test and trial subspaces, denoted by V and W, respectively, where r � n. We
define the associated basis matrices V ∈ Rn×r and W ∈ Rn×r, where V = Range(V) and
W = Range(W). Using the approximation that the full state x(t) evolves in the r-dimensional
subspace V, we write x(t) ≈ Vxr(t), where xr(t) ∈ Rr. Using this approximation in (3) defines a
residual (EVẋr(t)−AVxr(t)−B u(t)) and defines the reduced model output yr(t) = CVxr(t).
Then, enforcing the Petrov-Galerkin condition

WT
(
EVẋr(t)−AVxr(t)−B u(t)

)
= 0,

leads to the reduced system

Er ẋr(t) = Ar xr(t) + Br u(t), yr(t) = Cr xr(t),

where the reduced matrices are given by

Er = WTEV, Ar = WTAV, Br = WTB, and Cr = CV. (4)
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2.3 Projection framework for parameterized systems

In the case of a system with no parametric dependence, the reduced quantities in (4) are pre-
computed constant matrices and the reduced model can be evaluated with no further reference to
the full model. However, in the case of a parameterized system, the reduced model will also be
parameter-dependent. Several challenges arise in achieving efficient construction and evaluation
of a reduced model as the parameters vary.

The first challenge is how to introduce parametric dependence into the basis matrices V and
W. One option is to construct “global” basis matrices over the parameter space; that is, a single
matrix V and a single matrix W, each of which captures parametric dependence by embedding
information regarding the entire parameter space (e.g., information collected by sampling multiple
parameter values). A second option is to construct “local” basis matrices. That is, we consider K
parameter sample points p̂1, . . . , p̂K . For the realization of the dynamical system corresponding
to p̂i (i.e., E(p̂i) ẋ(t) = A(p̂i) x(t) + B(p̂i) u(t), y(t) = C(p̂i) x(t)), the state-space matrices are
constant and we compute appropriate local basis matrices Vi and Wi. There are several ways
one could then use these local basis matrices to construct the parametric reduced model. For
example, one might interpolate the local basis matrices over the parameter space and construct
a single reduced model, or one might construct local reduced models and then interpolate the
reduced models themselves. These global and local approaches are discussed in detail in Section 4.

A second challenge is achieving efficient evaluations of the parametric reduced model. For
example, for a given V and W (either global or local) consider evaluating Ar(p) = WTA(p)V.
For general parametric dependence, Ar cannot be precomputed; instead, evaluating the reduced
model for a new parameter value p requires computing A(p) and subsequent pre- and post-
multiplication by WT and V, respectively. These operations all depend on the (large) dimension
n of the original problem. Fortunately, in many cases the structure of the problem admits an
efficient strategy. For example, consider the case of affine parameter dependence

A(p) = A0 +

M∑
i=1

fi(p)Ai, (5)

where the scalar functions fi determine the parametric dependency, which can be nonlinear, and
Ai ∈ Rn×n for i = 0, . . . ,M . Then, the reduced matrix is given by

Ar(p) = WTA(p)V = WTA0V +

M∑
i=1

fi(p)WTAiV.

For affine parametric dependence in the other matrices E(p), B(p), and C(p), analogous expres-
sions can be derived for the reduced-order counterparts. The two most important advantages
of an affine parameterization are clear from the structure of the reduced-model: First, once the
basis matrices V and W are chosen, the component reduced-order matrices, (e.g., WTAiV,
i = 0, . . . ,M) can be precomputed in the offline phase. Hence, the reduced model for a given p
can be constructed without referring back to the original system, thus having a small online cost.
Second, the reduced model has the same parametric structure as the original one, which may be
appealing to designers who work with these models.

For the more general case where the parametric dependence is non-affine, typically one must
introduce an approximation strategy in order to avoid costly O(n) evaluations in forming the
reduced matrices for each different parameter value–though some parametric model reduction
methods do not require affine parameter dependence, see Section 4. In some cases, the low-order
terms of a Taylor series expansion provide a suitable approximate affine decomposition of the sys-
tem matrices [154, 75, 42]. A more general approach that has been used successfully for nonlinear
model reduction is interpolation. Among this class of methods, the Missing Point Estimation [12]
and Gauss Newton with approximated tensors (GNAT) [45] methods both build upon the gappy
POD interpolation method [60]; the Empirical Interpolation Method (EIM) [17] and its discrete
variant, the Discrete Empirical Interpolation Method (DEIM) [46], conduct interpolation on a
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low-dimensional basis for the nonlinear term. The EIM has been recently extended to the case
where A(p) represents a PDE operator (see [53], for example).

In our finite-dimensional state-space framework as in (1), the fast evaluation of WTA(p)V can
be explained by exploiting how DEIM is used in handling nonlinearities for model reduction of
finite-dimensional nonlinear dynamical systems ẋ(t) = F(x(t)), where F : Rn → Rn is a nonlinear

mapping. Let a(p) = vec(A(p)) ∈ Rn
2

denote the vector obtained by stacking the columns of
A(p). Similarly, define

ar(p) = vec(Ar(p)) = vec(WTA(p)V) = (VT ⊗WT )a(p) ∈ Rr
2

.

The goal is to approximate a(p) as a(p) ≈ ã(p) = Φα(p), where Φ ∈ Rn
2×M is constant and

α(p) ∈ RM so that ar(p) can be approximately computed, independent of n, using

ar(p) = (VT ⊗WT )a(p) ≈ (VT ⊗WT )ã(p) = (VT ⊗WT )Φα(p) = ãr(p). (6)

In (6), (VT⊗WT )Φ can be precomputed and only M evaluations appearing in α(p) need comput-
ing. One can interpret ã(p) as ã(p) = vec(Ã(p)) such that Ã(p) is an approximation to A(p) that
will allow faster on-line computation of Ar(p). The DEIM basis Φ is constructed by sampling the
coefficient matrix A(p) at parameter values p1, . . . ,pM . If we let φi = vec(A(pi)), then the basis

Φ is given by Φ = [φ1, φ2 . . . ,φM ] ∈ Rn
2×M . Using the DEIM algorithm, we choose α(p) to

enforce that selected entries of ã(pi) interpolate the corresponding entries of a(pi). Once mapped
back to A(p) (i.e., when the vec operation is reversed), this corresponds to a selected set of entries
of Ã(pi) exactly matching the corresponding entries of A(pi).

Let z1, z2, . . . , zM be the indices to be exactly matched. There are a variety of methods to select
these interpolation indices [17, 123, 46]. Construct the permutation matrix Z = [ez1 , ez2 , . . . , ezM ] ∈
Rn

2×M where ei is the ith canonical vector in Rn
2

. Then, forcing interpolation at the selected
rows implies

ZTa(p) = ZTΦα(p) =⇒ α(p) = (ZTΦ)−1ZTa(p). (7)

Hence, the approximation is given by

ã(p) = Φ(ZTΦ)−1ZTa(p). (8)

Note that, as discussed in [46], Φ(ZTΦ)−1ZT in an oblique projector onto the range of Φ and

ZT ã(p) = ZTa(p),

i.e., the interpolation conditions are met at the required entries. Then, using (8) in (6), we obtain

ãr(p) = vec(Ãr(p)) = (VT ⊗WT )Φ(ZTΦ)−1ZTa(p).

After reversing the vec operation, we obtain the reduced parametric coefficient matrix

Ãr(p) = WT
( M∑
i=1

αi(p)Ai(p)
)
V =

M∑
i=1

αi(p)
(
WTA(pi)V

)
. (9)

Note that in (9), the matrices WTA(pi)V can be precomputed. Hence, for a new parameter value
p, the reduced-order matrix Ãr(p) can be computed without any O(n) operations, by exploiting
(9) and (7).

2.4 Error measures

In model reduction, parametric or non-parametric, one needs to quantify the error introduced
by the underlying approximation scheme. Different communities have used different, but closely
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related, error measures. In the POD and reduced-basis communities, one usually measures the
error in time domain; for a given p̂, for example, mostly using either

‖y(· ; p̂)− yr(· ; p̂)‖L2
=

(∫ ∞
0

∥∥y(t; p̂)− yr(t; p̂)
∥∥2

2
dt

)1/2

, (10)

or
‖y(· ; p̂)− yr(· ; p̂)‖L∞ = sup

t≥0

∥∥y(t; p̂)− yr(t; p̂)
∥∥
∞. (11)

In the systems and control theory community, on the other hand, the concept of transfer function
is used to analyze the accuracy of the reduced model by measuring the error in the frequency
domain. For simplicity, assume x(0; p) = 0. Let Y(s; p) and U(s) denote the Laplace transforms
of y(t; p) and u(t), respectively, where s ∈ C is the Laplace variable. Then, one can take Laplace
transforms of (1) and (2) to obtain

Y(s; p) = H(s; p) U(s) and Yr(s; p) = Hr(s; p) U(s), (12)

where H(s; p) and Hr(s; p) are, respectively, the (parameterized) full and reduced-order transfer
functions defined by

H(s; p) = C(p) (sE(p) − A(p))
−1

B(p) (13)

and
Hr(s; p) = Cr(p) (sEr(p) − Ar(p))

−1
Br(p). (14)

From (12), one can see that the output error Y(s; p)−Yr(s; p) in the frequency domain is directly
related to how well the reduced-order transfer function Hr(s; p) approximates H(s; p). For a given
p̂, the two most common error measures are the H∞ error norm, defined as∥∥H(· ; p̂)−Hr(· ; p̂)

∥∥
H∞

= sup
ω∈R

∥∥H(ıω; p̂)−Hr(ıω; p̂)
∥∥

2
, (15)

and the H2 error norm defined as∥∥H(· ; p̂)−Hr(· ; p̂)
∥∥
H2

=

(
1

2π

∫ ∞
−∞

∥∥ H(ıω; p̂)−Hr(ıω; p̂)
∥∥2

F
dω

)1/2

, (16)

where ‖ · ‖F denotes the Frobenius form.
There is a strong connection between the frequency-domain error measures (15)–(16) and the

aforementioned time-domain error measures (10)–(11); namely for a given input u(t) with bounded
L2 norm,

‖y(· ; p̂)− yr(· ; p̂)‖L2
≤
∥∥H(· ; p̂)−Hr(· ; p̂)

∥∥
H∞
‖u‖L2

(17)

and
‖y(· ; p̂)− yr(· ; p̂)‖L∞ ≤

∥∥H(· ; p̂)−Hr(· ; p̂)
∥∥
H2
‖u‖L2

. (18)

Hence, there is an equivalency in measuring the error in the time domain and the frequency
domain. Even though these types of error measures, which are pointwise in the parameter p,
prove effective in practice, the ultimate goal is to minimize a joint error measure defined on a
composite frequency and parameter space. Baur et al. [20] introduced such a composite error
measure, L2 error in the parameter space and H2 error in the frequency domain, leading to

‖H−Hr‖2H2⊗L2(Ω)
def
=

1

2π

∫ +∞

−∞

∫
Ω

∥∥H(ıω, p)−Hr(ıω, p)
∥∥2

F
dp1 . . . dpd dω. (19)

Then, for a specific parameter dependency, [20] has introduced a method to minimize this error
measure, as explained in Section 3.4. One can similarly define a composite error measure in
uniform norm in both frequency and parameter domain, namely

‖H−Hr‖H∞⊗L∞(Ω)
def
= sup

ω∈R, p∈Ω

‖H(ıω, p)−Hr(ıω, p)‖2 . (20)

The ultimate goal is to construct parametric reduced models minimizing these composite measures;
however, except for special cases as considered in [20], this goal remains an open challenge.
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3 Basis computation

This section presents three different methods for deriving the reduced basis matrices V and W:
rational interpolation methods, balanced truncation and proper orthogonal decomposition (POD).
The section concludes with a discussion of strategies for sampling the parameter space.

3.1 Rational interpolation methods

Over the last decade, numerous parametric model reduction methods based on a rational in-
terpolation framework have been suggested. In accordance with the historical development, we
first present the idea of multivariate Padé approximation, or “multi-moment matching,” and then
discuss the more general tangential interpolation approach. The tangential interpolation setting
proposed in [20] provides a unifying framework for interpolatory projection-based model reduction
of parametric systems and also paves the way to H2⊗L2-type optimal (locally, at least) parametric
reduced models.

Moment-Matching

Moment-matching and Padé(-type) approximation for linear non-parametric systems determine a
reduced model that satisfies the Hermite interpolation conditions

dk

dsk
H(ŝ) =

dk

dsk
Hr(ŝ) for k = 0, 1, . . . , N,

up to a maximal order N for ŝ ∈ C not a pole of H. This yields a reduced model whose transfer
function Hr(s) coincides in as many coefficients of its Taylor expansion (also called “moments”)
about ŝ as possible for a given order of the reduced model. See, e.g., [13, 68] for a review of
this approach and its close connection to the (nonsymmetric) Lanczos process. The case ŝ = 0 is
generally referred to as moment-matching, while for ŝ 6= 0 we obtain shifted moments, and ŝ =∞
leads to matching of the Markov parameters of the full system. One can also match moments (i.e.,
Taylor series coefficients) around multiple expansion (interpolation) points ŝ1, . . . ŝk as opposed
to a single expansion point ŝ, leading to the concept of multi-point moment-matching, also called
multi-point rational interpolation. Surveys on this class of model reduction methods can be found
in [13, 68], see also [9, 8, 29, 141].

The moment-matching idea can easily be extended to parametric model reduction by using
multivariate Taylor expansion of H(s,p) about (ŝ, p̂). This has been discussed in numerous pub-
lications in the past two decades, e.g., [64, 38, 48, 58, 61, 63, 66, 82, 81, 104, 106, 113, 121, 158].
Moment-matching/interpolation properties can be proved (see, e.g., [64, 48, 158, 82]) analogously
as for standard moment-matching methods such as Padé-via-Lanczos [62, 70].

Tangential Interpolation

In the tangential interpolation setting, the model reduction task is posed as follows: Given a
frequency interpolation point ŝ ∈ C, a parameter interpolation point p̂ ∈ Rd, and a nontrivial
direction vector r̂ ∈ Cm, construct a reduced parametric model via projection as in (4) such that
Hr(s,p) interpolates H(s,p) at (s,p) = (ŝ, p̂) along the direction r̂, i.e., Hr(ŝ, p̂)r̂ = H(ŝ, p̂)r̂. In
this case, we say Hr(s,p) tangentially interpolates H(s,p) at (s,p) = (ŝ, p̂) along the right direc-

tion vector r̂. Similarly, if ˆ̀THr(ŝ, p̂) = ˆ̀TH(ŝ, p̂) for a nontrivial vector ˆ̀ ∈ Cq, we say Hr(s,p)

tangentially interpolates H(s,p) along the left direction vector ˆ̀. Finally, if ˆ̀TH′r(ŝ, p̂)r̂ =

ˆ̀TH′(ŝ, p̂)r̂, where ′ denotes differentiation with respect to the frequency variable s, we say
Hr(s,p) is a bitangential Hermite interpolant to H(s,p). For a discussion of projection-based
tangential interpolation for nonparametric systems, we refer the reader to [71]. Note that if m > 1
or q > 1, i.e. if the system is not SISO (single-input single-output), the tangential interpolation
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framework is different to the standard interpolation in moment-matching where one enforces ma-
trix interpolation, i.e., H(ŝ, p̂) = Hr(ŝ, p̂). This difference can prove crucial, especially for systems
with a large number of inputs and outputs, as discussed in more detail below in Remark 1.

Computing the basis for rational interpolation methods

The recent work by Baur et al. [20] provided a unifying projection-based framework for structure-
preserving, tangential interpolatory parametric model reduction, which also permitted a robust
implementation. In what follows, we present the main results using the framework of [20]. As
stated earlier, optimal control and optimization are two of the common applications for parametric
model reduction. In these settings, when the objective functions are approximated, [1] shows that
to establish convergence of the underlying optimization technique it is sufficient that the approxi-
mate models are first-order accurate, meaning that the gradient with respect to the optimization
variable is matched. In our setting, this first-order accuracy corresponds to matching the gradient
of the transfer function H(s,p). Therefore, we present the results only up to matching the first
derivatives with respect to p (although higher derivatives can be matched in this framework).

The following theorem from [20] describes the conditions on the matrices V and W such that

Hr(s,p) = Cr(p) (sEr(p) − Ar(p))
−1

Br(p), obtained by projection as in (4), is a rational tan-
gential interpolant to H(s,p). ŝ ∈ C denotes an interpolation point in the frequency domain and
p̂ is an interpolation point in the parameter domain.

Theorem 1 Let ŝ ∈ C and p̂ ∈ Cd be chosen such that both ŝE(p̂) − A(p̂) and ŝEr(p̂) − Ar(p̂)

are invertible. Suppose r̂ ∈ Cm and ˆ̀ ∈ Cq are two nontrivial vectors.

(a) If
(
ŝE(p̂)−A(p̂)

)−1
B(p̂)r̂ ∈ Ran(V), then

H(ŝ, p̂)r̂ = Hr(ŝ, p̂)r̂. (21)

(b) If
(

ˆ̀TC(p̂) (ŝE(p̂)−A(p̂))
−1
)T
∈ Ran(W), then

ˆ̀TH(ŝ, p̂) = ˆ̀THr(ŝ, p̂). (22)

(c) Suppose, in addition, that E(p), A(p), B(p), and C(p) are continuously differentiable in a

neighborhood of p̂. If (ŝE(p̂)−A(p̂))
−1

B(p̂)r̂ ∈ Ran(V) and
(

ˆ̀TC(p̂) (ŝE(p̂)−A(p̂))
−1
)T
∈

Ran(W), then

∇p
(

ˆ̀TH(ŝ, p̂)r̂
)

= ∇p
(

ˆ̀THr(ŝ, p̂)r̂
)

(23)

and
ˆ̀TH′(ŝ, p̂)r̂ = ˆ̀TH′r(ŝ, p̂)r̂, (24)

where ′ denotes differentiation with respect to s and ∇p denotes differentiation with respect to
p.

This theorem states that given ŝ, p̂ and a right direction vector r̂, adding one vector to the basis
matrix V will satisfy the required right tangential interpolation condition (and analogously for the

left direction vector ˆ̀). The cost in each case is simply solving a (sparse) linear system, namely(
ŝE(p̂) − A(p̂)

)
v = B(p̂)r̂ in the case of right tangential interpolation. This simplicity, both

conceptually and with respect to implementation, is an advantage of the rational interpolation
methods for parametric model reduction. As shown in Theorem 1, they also require basically no
assumptions on system properties. The reduced model is generated quickly, usually requiring less
time than generating a trajectory of the full-order model, making the “offline” phase cheap.

Theorem 1(c) reveals an important additional fact. By adding one vector each to the bases V
and W to tangentially interpolate H(s, p), one would match additionally, for free, the gradient
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of the transfer function H(s,p) with respect to p and the derivative with respect to s as shown
in (23) and (24), respectively. Note that these quantities are matched without being computed;
in other words no gradient with respect to p and no derivative with respect to s is computed
in the construction of V or W, yet they are still matched. This differs from the earlier work
in interpolatory parametric model reduction methods, such as [81, 82, 48, 38, 37], where one-
sided projection is employed, i.e., W = V. In one-sided approaches, to satisfy (23), gradients of
sE(p) −A(p) with respect to p need to be computed and added to the basis V. Of course, we
emphasize that in applications where E(p) and A(p) are symmetric and symmetry needs to be
preserved in the reduced model, one might be restricted to the one-sided projection due to the
nature of the problem. However, for the general non-symmetric case, by taking advantage of the
flexibility in choosing W, one can obtain greater accuracy.

To illustrate Theorem 1 for multiple points, assume that the frequency interpolation points
{si}Li=1 ∈ C, the parameter interpolation points {pj}Kj=1 ∈ Rd are given together with the right

tangential directions {rij}K,Li=1,j=1 ∈ Cm and the left tangential directions {`ij}K,Li=1,j=1 ∈ Cq. For
i = 1, . . . ,K and j = 1, . . . , L, define the vectors

vij =
(
siE(pj)−A(pj)

)−1
B(pj)rij and wij =

(
siE(pj)−A(pj)

)−T
C(pj)

T `ij ,

and construct the model reduction bases V and W as follows:

V = [v11, . . . ,v1L,v21, . . . ,v2L, . . . ,vK1, . . . ,vKL] ∈ Cn×(KL),

W = [w11, . . . ,w1L,w21, . . . ,w2L, . . . ,wK1, . . . ,wKL] ∈ Cn×(KL).

Then, the resulting projection-based parametric reduced model satisfies the interpolation condi-
tions of Theorem 1 for every pair (ŝ, p̂) = (si,pj) where i = 1, . . . , L and j = 1, . . . ,K. We can go
one step further and match the Hessian (curvature) information with respect to the parameters as
well. This is done in a similar way by adding additional vectors to the reduction subspaces. For
details, see [20].

Remark 1 Given ŝ ∈ C, p̂ ∈ Cd, and r̂ ∈ Cm, tangential interpolation requires
(
ŝE(p̂) −

A(p̂)
)−1

B(p̂)r̂ ∈ Ran(V); i.e., a single vector is added to the subspace. On the other hand,

full matrix interpolation requires
(
ŝE(p̂)−A(p̂)

)−1
B(p̂) ∈ Ran(V); i.e., m new vectors are added

to the subspace. If we require interpolation at, for example, L frequency points and K parameter
points, full matrix interpolation can lead to Ran(V) having dimension as large as mLK. For
applications where the system input dimension m is large, this would lead to a rather large reduced
model dimension. In comparison, tangential interpolation will at most lead to a reduced dimension
of LK, thus making the reduced order independent of the input dimension. We note that in the
full matrix interpolation case one can keep the dimension grow modest by truncating the linearly
dependent components from the model reduction bases V and W while still obtaining accurate
reduced models; see, for example, [39, 47, 22].

Remark 2 As noted above, if the system is not SISO, the tangential interpolation is different than
the full-matrix interpolation, i.e., full moment matching, such as in [64, 38, 48, 58, 61, 82, 106,
121, 158]. Different methods proposed in these references differ in the way moments are computed
(implicitly vs. explicitly) and in the number of (mixed) moments that are matched. Approaches
based on explicitly computed moments suffer from the same numerical instabilities as analogous
methods for model reduction of non-parametric systems. Implicit approaches appear to provide a
robust resolution of these difficulties at least for low-dimensional parameter spaces.

Optimal-H2 tangential interpolation for nonparametric systems

In rational interpolation methods, the choice of expansion methods and tangential directions
determines the accuracy of the reduced model. Until recently, this choice was largely ad hoc. For
systems without parametric dependency, recently Gugercin et al. [78] have introduced the Iterative
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Rational Krylov Algorithm (IRKA) to compute the frequency interpolation points optimally (at
least locally) to minimize the H2 error norm defined in (16) using the optimality conditions by
Meier and Luenberger in [118]; see also, [44, 151], for related work. IRKA can be used for
parametric systems as well to compute locally optimal reduced models for the given parameter
sample. This local information can then be used to construct a parametric reduced model using
the ideas of Section 4, as done in [20, 56].

Suppose Hr(s) is an H2 optimal approximation to H(s) = C(sE − A)−1B. Let H̃r(s) =∑r
i=1

1

s−λ̃i
c̃ib̃

T
i be a partial fraction expansion of Hr(s). Note that c̃ib̃

T
i is the residue of Hr(s)

at s = λ̃i; c̃i and b̃Ti are called the residue directions. Then, the H2 optimality of Hr(s) means
that, for i = 1, · · · , r,

H(−λ̃i)b̃i = H̃r(−λ̃i)b̃i, c̃Ti H(−λ̃i) = c̃Ti H̃r(−λ̃i),

and c̃Ti H′(−λ̃i)b̃i = c̃Ti H̃′r(−λ̃i)b̃i. (25)

In other words, an H2-optimal reduced model Hr(s) is a bitangential Hermite interpolant to
H(s). The optimal interpolation points are the mirror images of the poles of Hr(s) and the
optimal tangential directions are the corresponding residue directions. Thus, the optimal points
and associated tangent directions depend on the reduced model and are not known a priori. Then,
starting with an initial selection of interpolation points and tangential directions, IRKA [78], using
successive substitution, iteratively corrects the interpolation points and tangential directions until
the optimality conditions in (25) are satisfied. For details of IRKA, we refer the reader to [78, 9].

3.2 Balanced truncation

In the systems and control theory community, balanced truncation (BT) [122, 120] is one of
the most common techniques for approximating linear dynamical systems without parametric
dependency. In the parametric setting, BT can be employed to construct local reduced models at
given parameter values. These local models can be used in various ways to construct a parametric
reduced model, as will be discussed in Section 4. Here we describe construction of a BT reduced
model at a single parameter point, p̂. For ease of notation, for the remainder of this subsection
we denote E(p̂) by E and similarly for the other matrices, so that H(s) = C(sE−A)−1B is our
dynamical system (1) evaluated at p̂.

The BT basis matrices V and W depend on the two system Gramians, which are defined by
the integrals

P =

∫ ∞
0

eE
−1At E−1BBTE−T eA

TE−T tdt (26)

and

Q =

∫ ∞
0

E−T eA
TE−T t CTC eE

−1AtE−1dt. (27)

Here, P ∈ Rn×n and Q ∈ Rn×n are called the reachability Gramian and the observability Gramian,
respectively. The “reachability” of a state x is a measure of how easy it is to reach the state x
from the zero state. On the other hand, the observability of a state x0 is a measure of how easy it
is to distinguish the initial state x0 from the zero state by observing the output y(t) in the case
of zero input.

To explain these concepts further, define

Jr(x) := min
x(−∞)=0, x(0)=x

‖u(t)‖2, t ≤ 0 (28)

Jo(x0) := ‖y(t)‖2, x(0) = x0, u(t) = 0, t ≥ 0. (29)

Jr(x) is the minimal energy required to drive the system from the zero state at t = −∞ to the
state x at t = 0. On the other hand, Jo(x0) is the energy obtained by observing the output due
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to the initial state xo with zero input. The smaller the reachability energy Jr(x), the easier to
reach the state x. The larger the observability energy Jo(x0), the easier to observe the state x0.
These two energies are completely determined by the gramians P and Q:

Jr(x) = xTP−1x, and Jr(x0) = xT0 Qx0.

Thus, P and Q explain how important a state x is for the input-to-state and the state-to-output
mapping, respectively.

When H(s) is asymptotically stable, both P and Q are positive semi-definite matrices. Square
roots of the eigenvalues of the product PQ are called the Hankel singular values of H(s), denoted
by ηi(H), and they are are the singular values of the Hankel operator associated with H(s). The
states corresponding to the smallest Hankel singular values are the least important states in terms
of both the input-to-output map; that is, these are hard to reach and hard to observe states.
Model reduction via BT corresponds to eliminating those states corresponding to small Hankel
singular values.

In practice one does not need to evaluate the infinite integrals (26) and (27); instead one solves
the corresponding Lyapunov equations that P and Q satisfy, namely

APET + EPAT + BBT = 0 and ATQE + ETQA + CTC = 0. (30)

Instead of forming the full gramians P and Q explicitly, one computes P = UUT and Q = LLT

in the factored form. See [132, 105, 79, 139, 155, 91, 95, 31, 54, 94, 142, 148] and the references
therein for effective solution methods for Lyapunov equations.

Given the factorizations P = UUT and Q = LLT , let UTEL = ZSYT be the singular value
decomposition with S = diag(η1, η2, . . . , ηn). Let Sr = diag(η1, η2, . . . , ηr) with ηr+1 < ηr and
r < n. BT chooses

V = UZrS
−1/2
r and W = LYrS

−1/2
r , (31)

where Zr and Yr denote the leading r columns of left singular vectors, Z, and right singular
vectors, Y, respectively. Then the reduced model is obtained by following the projection in (4).
The reduced model Hr(s) obtained by BT is asymptotically stable and the H∞ norm of the error
system satisfies ‖H−Hr‖H∞ ≤ 2(ηr+1 + · · ·+ ηn). For more details on BT, see [8].

3.3 Proper orthogonal decomposition

Due to its broad applicability to linear and nonlinear systems, the proper orthogonal decomposition
(POD) has become widely used in many different application domains as a method for computing
the reduced basis. While the rational interpolation methods of Section 3.1 formulate the basis
computation task in the frequency domain, POD formulations typically use the time domain. In
the case of LTI systems, duality between time and frequency domain formulations reveals the
connections between POD and balanced truncation.

Time domain POD

POD was introduced for the analysis of turbulent flows by Lumley [111], and is closely related
to methods used in other fields such as Karhunen-Loéve expansions in stochastic process model-
ing [110, 98], principal component analysis in statistical analysis [90], and empirical orthogonal
eigenfunctions in atmospheric modeling [124]. POD basis vectors are computed empirically using
sampled data collected over a range of relevant system dynamics, typically using the method of
snapshots, introduced by Sirovich [143].

Consider a set of “snapshots”, x1,x2, . . . ,xns
: state solutions computed at different instants in

time and/or different parameter values, where xj ∈ Rn denotes the jth snapshot and we collect a
total of ns snapshots. Define the snapshot matrix X ∈ Rn×ns whose jth column is the snapshot
xj . The (thin) singular value decomposition of X is written

X = UΣYT , (32)
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where the columns of the matrices U ∈ Rn×ns and Y ∈ Rns×ns are the left and right singular
vectors of X, respectively. Σ ∈ Rns×ns = diag(σ1, σ2, . . . , σns), where σ1 ≥ σ2 ≥ . . . ≥ σns ≥ 0,
are the singular values of X. The POD basis is chosen as the r left singular vectors of X that
correspond to the r largest singular values, V = U1:r.

The POD basis is “optimal” in the sense that, for a basis of size r, it minimizes the least squares
error of snapshot reconstruction,

min
V∈Rn×r

ns∑
i=1

||xi −VVTxi||22 =

ns∑
i=r+1

σ2
i . (33)

As can be seen from (33), the error in snapshot representation is given by the sum of the squares
of the singular values corresponding to those left singular vectors not included in the POD basis.
Thus, the singular values provide quantitative guidance for choosing the size of the POD basis. A
typical approach is to choose r so that ∑r

i=1 σ
2
i∑ns

i=1 σ
2
i

> κ, (34)

where κ is a user-specified tolerance, often taken to be 99.9% or greater. The numerator of (34)
is often referred to as the “energy” captured by the POD modes.

Since the POD basis is constructed from sampled solutions, it makes no assumptions about the
form of the full model; it applies to both linear and nonlinear systems, as well as to parametrically-
varying systems. It is important to note that the optimality of the POD basis applies only to error
in reconstruction of the snapshots, not to the error in solution of the POD-based reduced model.
Clearly, the choice of snapshots is critical to the quality of the reduced model, although the POD
theory per se gives no guidance on how to select the snapshots. Strategies for snapshot selection
are discussed in Section 3.4.

Frequency domain POD

For linear systems, one can derive the POD in the frequency domain. We present a brief discussion
here because it highlights the connection between POD and balanced truncation. The POD basis
vectors are the left singular vectors of the snapshot matrix X, and thus are the eigenvectors of the
matrix

K = XXT =

ns∑
i=1

xix
T
i . (35)

In the original formulation of the POD method of snapshots, K is referred to as the kernel [143].
In some applications of POD, the snapshots are centered to have zero mean, in which case K is a
covariance matrix.

Kim [97] develops the frequency domain POD method by showing that through a simple appli-
cation of Parseval’s theorem, one can write the kernel as

K =
1

2π

ns∑
i=1

x̄ix̄
∗
i∆ωi. (36)

Here, x̄i is now the ith (complex) snapshot computed at sample frequency ωi,

x̄i = (jωiE−A)−1B, (37)

∆ωi = ωi − ωi−1, and ∗ denotes the complex conjugate transpose.
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Balanced POD

The connection between POD and balanced truncation is described in [101]. As discussed in [159],
the approximation introduced by the POD is further highlighted through the frequency domain
formulation. Using (37) in (36), we write

K =
1

2π

ns∑
i=1

(jωiE−A)−1BB∗(−jωiE∗ −A∗)−1∆ωi, (38)

which shows that the frequency domain kernel POD approximates the integral defining the reach-
ability gramian,

P =
1

2π

∫ ∞
−∞

(jωE−A)−1BB∗(−jωE∗ −A∗)−1 dω. (39)

The POD basis vectors are the dominant eigenvectors of the POD kernel and thus approximate
the most reachable modes in the system.

Based on this observation, [159] proposed an approximate balanced truncation approach using
the POD method of snapshots. Computing a set of dual POD modes from snapshots of the dual
(adjoint) system leads to an approximation of the most observable modes in the system. Appro-
priately combining the primal and dual snapshots leads to an approximate balanced truncation.
A modified algorithm for computing this snapshot-based approximate balanced truncation was
proposed in [136].

3.4 Parameter sampling

We conclude this section on basis computation with a discussion of parameter sampling. The
choice of parameter sample points is a critical question that arises in all methods to compute the
basis. In the rational interpolation methods, we must select parameter samples at which interpola-
tion conditions are applied; for balanced truncation, we must select parameter samples to generate
the local LTI systems at which balanced truncation is applied; and in the POD, we must select
parameter samples at which snapshots are computed. For problems with a small number of pa-
rameters, a structured or random sampling method (e.g., grid-based sampling or Latin hypercube
sampling) is the simplest approach and, with a sufficiently high number of samples, will generate
a rich set of data that covers the parameter space. For a moderate number of parameters, a sparse
grid sampling approach will likely be effective. However, when the dimension of the parameter
space is large (d > 10), it becomes challenging to balance sampling cost with coverage of the
parameter space. In these cases, we require more sophisticated sampling approaches, such as a
problem-aware adaptive search of the parameter space. In this section, we review adaptive sam-
pling via greedy search methods. We also discuss sparse grid sampling and optimal interpolation
points for a special class of systems.

Adaptive parameter sampling via greedy search

Greedy sampling methods for model reduction approach the task of choosing parameter sample
points one-by-one in an adaptive manner. The general steps in the greedy sampling approach are
as follows. First, given a current reduced model,

Er(p) ẋr(t; p) = Ar(p) xr(t; p) + Br(p) u(t),yr(t; p) = Cr(p) xr(t; p),

find the parameter value for which the error between the reduced model and the full model is
largest:

p̂ = arg max
p
‖y(· ; p)− yr(· ; p)‖L2

. (40)

Second, sample p̂ (i.e., solve the full model at p̂) to generate new information with which to update
the reduced model. Then with the updated reduced model, repeat these two steps until the error
is acceptable. The greedy sampling method was first introduced in the context of reduced basis
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methods in [134, 154, 153, 75, 74]. It has since been applied in conjunction with POD methods
[41, 84] and rational interpolation methods [55]. The key advantage of the greedy approach is that
the search over the parameter space embodies the structure of the problem, so that the underlying
system dynamics guide the selection of appropriate parameter samples.

In the first step, the task of finding the worst-case parameter value can be approached in a
variety of ways. In the general case, using the actual reduced model error as a metric leads
to a computationally intractable algorithm, since it requires evaluating the full model solution
at many parameter points. Instead, one can use a posteriori error estimators for parameterized
elliptic and parabolic PDEs [134, 154, 153, 75, 74] or a residual-based error indicator [41]. The
process of locating the parameter of maximal error indicator or error estimate can be conducted
by a simple grid search if the parameter dimension is low. For problems with more than a handful
of parameters, the greedy sampling approach can be formulated as a sequence of adaptive model-
constrained optimization problems [41]. In the linear case, these optimization problems have
explicit solutions in the form of an eigenvalue problem [18]. In [107], the optimization-based
greedy sampling approach was extended to construct both a basis for the state and a basis for the
parameter, leading to models that have both reduced state and reduced parameters.

Sparse grids

Another strategy for an effective and representative choice of parameter points in higher dimen-
sional parameter spaces (for example, say, with d = 10) comes through the use of sparse grids.
Based on Smolyak’s [144] earlier construction, sparse grid methods have gained increasing popular-
ity over the past two decades in various areas within computational science and engineering dealing
with high-dimensional approximation. This popularity is due to the development of numerical al-
gorithms to implement them, see, e.g., [43, 96, 76, 161]. Sparse grids are based on a hierarchical
basis and a sparse tensor product construction. This way, a significant reduction of interpolation
points is achieved while preserving the level of accuracy obtainable on a tensor grid with the same
spatial resolution. Popular constructions on bounded domains are the Clenshaw-Curtis rules based
on Gaussian quadrature. Since refining the corresponding mesh yields non-nested interpolation
points, it is often more efficient to apply multivariate extensions of the nested Gauss-Kronrod rules
(i.e., the Kronrod-Patterson or Gauss-Patterson rules). Although these methods do not yield the
optimal convergence rate, due to the re-usability of computed snapshots of model evaluations from
coarser grids, they are generally preferred from an efficiency point of view in parametric model
reduction applications. They also provide easy-to-implement error estimators. The application of
sparse grid methods in parametric model reduction was first discussed in [19]; applications of the
resulting methods in the design of MEMS can be found in [21].

Optimal interpolation points for a special class of systems

Even though the parameter selection strategies outlined above have led to high quality reduced
parametric models, they are not optimal in the error measures defined in Section 2.4. In this
section, for a special class of parametric dependency we will outline an optimal parameter se-
lection strategy introduced by Baur et al. [20]. Inspired by IRKA of [78] for the nonparamet-
ric systems, [20] proposed a method to minimize the system-theoretic composite error measure
‖H−Hr‖H2⊗L2(Ω) defined in (19) in order to find optimal sampling points in both frequency and
parameter space.

To simplify the presentation, we will assume a single-input/single-output dynamical system;
extension to the multi-input/multi-output dynamical system case is trivial. The special parametric
dependency assumes affine parameterization parameters in B(p) and C(p) and no parameter
dependency in either A(p) or E(p). Without loss of generality, assume only one parameter in
B(p) and C(p). Let p = [p1, p2]T . Then, the parametric model we consider has the form

H(s,p) = (cT0 + p1c
T
1 ) (sE − A)

−1
(b0 + p2b1), (41)
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where c0, c1,b0,b1 ∈ Rn and [p1, p1] ∈ Ω ∈ R2. For H(s,p) as in (41), then, the goal is to find an
optimal reduced model, Hr(s,p), such that the composite error ‖H−Hr‖H2⊗L2(Ω) defined in (19)
is minimized. The crucial observation of [20] is that solving the parametricH2⊗L2(Ω) optimization
problem is equivalent to solving a nonparametric H2 optimization problem. Then, [20] used IRKA
to solve the equivalent nonparametricH2 optimal problem and constructed theH2⊗L2(Ω) optimal
parametric reduced model Hr(s,p) = (c0,r + p1 c1,r)

T (sEr −Ar)
−1(b0,r + p2 b1,r). Let {p̃i}ri=1

denote the resulting optimal interpolation points. Then, for i = 1, . . . , r,

H(−λ̃i, p̃i) = Hr(−λ̃i, p̃i), H′(−λ̃i, p̃i) = H′r(−λ̃i, p̃i),

and ∇pH(−λ̃i, p̃i) = ∇pH̃r(−λ̃i, p̃i), (42)

where {λ̃i}ri=1 are the eigenvalues of the reduced pencil sEr −Ar. In other words, the optimal

reduced model is an Hermite interpolant in both s and p. Note that every λ̃i is associated with
a different p̃i; in other words the frequency and the parameter interpolation points are selected
jointly to minimize an associated system theoretic H2 ⊗ L2(Ω) error measure.

4 Parameterized reduced model generation

In this section, we discuss different strategies for constructing the parameterized reduced model.
Many of these construction options are broadly applicable in that they can be used with any of
the basis computation methods discussed in Section 3. Section 4.1 discusses approaches that use
a single global basis computed by sampling many parameter values, while Section 4.2 presents
methods that use multiple local basis matrices each computed at different parameter values. In
the following discussion, our parameter p belongs to a single domain Ω ⊂ Rd. Recent work has
proposed approaches to split Ω into multiple subdomains and construct reduced models in each
subdomain [83, 52, 57, 4, 157]. Any of the model generation strategies described in the following
can be applied in a partitioning setting by replacing Ω with the corresponding subdomain.

4.1 A global basis over the parameter space

A global basis is defined by a single pair of basis matrices V and W, which are built by sampling
information over a range of parameters. These basis matrices could be computed using any one
of the methods described in Section 3. In this case, the parametric reduced model takes the form

WTE(p)V ẋr(t; p) = WTA(p)V xr(t; p) + WTB(p) u(t),
yr(t; p) = C(p)V xr(t; p).

(43)

(43) shows that construction of the ROM requires evaluation of terms such as Ar(p) = WTA(p)V,
Er(p) = WTE(p)V, etc. As already discussed in Section 2, if we evaluate Ar, Er, and the other
reduced matrices in this way for every new parameter value p, then our reduced model will be
inefficient and computational savings over solving the original full system will be small. Section 2
showed that for system matrices that depend affinely on the parameter p, computational efficiency
can be recovered. In this case, the parameterized reduced model is decomposed into reduced-order
matrices that do not depend on the parameter and hence can be precomputed. In the more general
case, a method such as EIM or DEIM (also discussed in Section 2) is used to approximate Ar(p)
and the other reduced-order matrices in a way that admits efficient evaluation over the parameter
space.

Concatenation of the basis

One of the common approaches to obtain the global basis matrices V and W is to concatenate the
local basis matrices obtained for several parameter samples p1, . . . ,pK . Suppose that V1, . . . ,VK
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and W1, . . . ,WK denote the local basis matrices corresponding to p1, . . . ,pK . Then, one can
construct the global basis matrices V and W using

V = [V1, V2, . . . , VK ] and W = [W1, W2, . . . , WK ].

However, it is quite possible that the local matrices have common components among each other;
leading to potentially rank-deficient global basis matrices V and W. To avoid this scenario, the
concatenation step is usually followed by an SVD or a rank-revealing QR factorization to remove
these rank deficient components from V and W, leading to global basis matrices with orthonormal
columns. It is important to note that even though theoretically it would not matter whether the
local matrices Vi and Wi are orthogonalized prior to the concatenation step (since the reduced
model is determined by the range, not by a specific basis), numerically it might.

The local basis matrices can be obtained using any one of the methods described in Section 3.
However, the method of choice results in different properties in the reduced model. The concate-
nation approach is especially appropriate when the local basis matrices are obtained by rational
interpolation methods of Section 3.1. Due to Theorem 1, even after concatenation, the final re-
duced parameterized model obtained by the global basis matrices will still interpolate the original
model at every frequency and parameter interpolation point combination used in constructing ev-
ery local basis matrix, assuming that the SVD performed on the concatenated matrices removed
only the zero singular values. If this SVD step removes some small non-zero singular values be-
low a numerical tolerance, then the interpolation will be approximate. This is in contrast to, for
example, the balanced truncation (BT) approach. If the local basis matrices are obtained via BT
(i.e., Vi and Wi are the BT basis matrices at the parameter values pi), then once the concate-
nation is performed the resulting reduced model is no longer guaranteed to be balanced even at
the parameter value pi. Nevertheless, concatenation of local BT basis may yield a good reduced
parametric model as balancing is not an important?property of the reduced model and is actually
usually avoided in numerical implementations of BT even in the nonparametric case.

4.2 Local bases at multiple parameter points

As opposed to constructing fixed global basis matrices V and W, one might construct several
local ones by sampling the parameter space at points p1, . . . ,pK . As before, we denote these local
bases by Vk and Wk for k = 1, . . . ,K.

Interpolating the local bases

Given a set of local basis matrices, {Vk}Kk=1 and {Wk}Kk=1, a basis matrix for a new parameter
value can be obtained by interpolating the local reduced bases. Straightforward interpolation of
the entries in the basis vectors can lead to an interpolated quantity that does not preserve desired
properties (e.g., the interpolated vectors might no longer have desired orthogonality properties). A
better method interpolates the local reduced bases Vk and Wk for k = 1, . . . ,K on a tangent space
to a manifold of these reduced bases [2]. The manifold is chosen so as to preserve desired properties.
Below we briefly explain this approach for the particular case of constructing an orthonormal V,
where the Vk, k = 1, . . . ,K, each represents an orthonormal basis, and the interpolation is done
on the tangent space to the Stiefel manifold.

The Stiefel manifold, Sn,r, is the set of all r-dimensional orthonormal bases of Rn, for 1 ≤ r ≤ n.
The orthonormal basis Vk ∈ Rn×r is a point on the Stiefel manifold Sn,r. The first step in the
approach proposed by Amsallem et al. [2] is to choose a reference point. For simplicity, we will
take V1 as the reference point. Let TV1

be the tangent space of Sn,r at V1 ∈ Sn,r. The next step
is to map all other local bases V2,V3, . . . ,VK onto the tangent space defined by V1. A point
Vk ∈ Sn,r in a neighborhood of V1 can be mapped to TV1 by the logarithmic map:

Tk = LogV1
(Vk) ∈ TV1

. (44)

To compute Tk, one first computes a short SVD:

(I−V1V
T
1 )Vk(VT

1 Vk)−1 = UkΣkZ
T
k .
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Then,
Tk = Uk arctan(Σk)ZTk .

The map Tk defines a geodesic on the tangent manifold from V1 to Vk.
Now, given a new parameter point p̂, the method interpolates the local bases in their mapped

representations. That is, we interpolate {Tk}Kk=1 using the parameter interpolation points {pk}Kk=1.
For example,

T(p̂) =

K∑
k=1

lk(p̂)Tk,

where lk(p̂) are the Lagrange basis functions. After T(p̂) ∈ TV1
is computed, the exponential map

V = ExpV1
(T) ∈ Sn,r, (45)

maps it back to the original manifold Sn,r. The result is an interpolated basis V at the new param-
eter point (p̂) that preserves the desired properties (in this case, orthonormality). Numerically,
the step mapping back to the original manifold is achieved by computing a short SVD,

T(p̂) = Û Σ̂ ẐT ,

followed by
V(p̂) = V1Ẑ cos(Σ̂) + Û sin(Σ̂).

Interpolating the local reduced model matrices

Interpolating the local basis matrices as outlined above has the disadvantage that when the new
basis matrices are computed for a given p̂, the multiplications WTE(p̂)V and WTA(p̂)V need to
be recomputed. In general, these multiplications depend on the original system dimension n and
thus are expensive. Recent work has addressed this issue for affine parametric dependence (as in
(5)) by precomputing those quantities that do not depend on the parameters [145]. An approach to
overcome this problem in the general non-affine case is to interpolate reduced state-space quantities
as opposed to the basis matrices themselves. This idea has been recently introduced in [130, 3, 50].
The methods proposed in [3, 130] first perform a congruence transformation of the local basis
matrices in {Vk}Kk=1 (and similarly for {Wk}Kk=1), so that the reduced systems are expressed in the
same generalized coordinate system. Then the reduced-order coefficient matrices constructed from
these transformed projection matrices can be interpolated by using matrix manifold interpolation
[3] and direct interpolation [130]. In [50], only one pair of basis matrices Vk = V and Wk = W
is used for all pk where V and W can be obtained, for example, by collecting all the local
information into a pair of global basis matrices, and therefore there is no need to perform the
congruence transformation on the bases before interpolating.

Suppose we have local reduced-order coefficient matrices Ar(pk) = WT
k A(pk)Vk corresponding

to parameters {pk} for k = 1 . . . ,K. To perform the congruence transformation, we first select
a reference reduced system. For simplicity, we will take k = 1 as the reference system. Next, we
compute transformation matrices Qk ∈ Rr×r and Pk ∈ Rr×r, for all k = 1, . . . ,K, by solving

Qk = arg min
Q
‖VkQ−V1‖2 subject to QTQ = Ir (46)

and

Pk = arg min
P
‖WkP−W1‖2 subject to PTP = Ir. (47)

The optimization problems (46) and (47) are solved using the SVD. Towards this goal, define the
SVDs VT

k V1 = Uvk
Σvk

ZTvk
and WT

k W1 = Uwk
Σwk

ZTwk
. Then the solutions to (46) and (47)

are given by

Qk = Uvk
ZTvk

and Pk = Uwk
ZTwk

, for k = 1, . . . ,K. (48)
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For k = 1, the reference system, Q1 = P1 = Ir. For k = 1, . . . ,K, define the transformed local

reduction matrices by Ṽk := VkQk and W̃k := WkPk. Then the congruence-transformed local
state-space matrices are given by

Ãr(pk) := PT
kWT

k A(pk)VkQk = PT
kAr(pk)Qk, for k = 1, . . . ,K.

Note that the transformed basis matrices Ṽk and W̃k are applied throughout the original system
associated with pk and therefore not only transform Ar(pk) to Ãr(pk), but also transform other
coefficient matrices. More specifically, the kth local reduced model

Er(pk)ẋr = Ar(pk)xr + Br(pk)u, yr = Cr(pk)xr, (49)

is transformed to

Ẽr(pk) ˙̃xr = Ãr(pk)x̃r + B̃r(pk)u, ỹr = C̃r(pk)x̃r, (50)

where Ẽr(pk) = PT
kEr(pk)Qk, B̃r(pk) = PT

kBr(pk), and C̃r(pk) = Ĉr(pk)Qk. In contrast to the
local systems in (49), the transformed systems in (50) are expected to lie in the same generalized
coordinate system.

Then, the question becomes how to construct the reduced order matrices Ar(p̂), Er(p̂), Br(p̂)
and Er(p̂) for a new parameter value p̂ using the local congruence-transformed matrices. Ar(p̂)
and Er(p̂) are obtained by applying (similar) manifold interpolation ideas explained in the pre-

vious section to the matrices {Ãr(pk)}Kk=1 and {Ẽr(pk)}Kk=1, respectively, assuming nonsingular
transformed matrices. On the other hand, when the transformed coefficient matrices are not
square as in the case of B̃r(pk) and C̃r(pk), or are singular, the reduced-order matrices can be
obtained for the new parameter p̂ by using direct interpolation from [3].

A similar approach based on matrix interpolation is also proposed in [130]. In this approach,
the local reduced-order matrices are also first transformed and then interpolated; however, the
transformation and the interpolation techniques are different from the ones used in [3]. Let Ur

denote the first r dominant left singular vectors of [V1, . . . ,VK ]. Define Mk := (WT
k Ur)

−1, and
Tk := (VT

k Ur)
−1. Then, the reduced system (49) is transformed to

Ēr(pk) ˙̄xr = Ār(pk)x̄r + B̄r(pk)u, ȳr = C̄r(pk)x̄r, (51)

where Ēr(pk) = MkEr(pk)Tk, Ār(pk) = MkAr(pk)Tk, B̄r(pk) = MkBr(pk), and C̄r(pk) =
Cr(pk)Tk. After this transformation, for a given parameter p̂, the matrices {Ēr(pk)}Kk=1, {Ār(pk)}Kk=1,
{B̄r(pk)}Kk=1, and {C̄r(pk)}Kk=1 are directly interpolated using any appropriate interpolation
method.

Interpolating the local transfer functions

Yet another option for interpolating local information is to interpolate the transfer functions of
local reduced models. Given the sampled parameter points pk, k = 1, . . . ,K, the local reduced
models have transfer functions

Hr(s,pk) = Cr(pk)(sEr(pk)−Ar(pk))−1Br(pk), k = 1, . . . ,K, (52)

where Hr(s,pk) denotes the transfer function of the reduced model constructed at p = pk. We
allow the order of each local reduced model to differ, and denote the order of reduced model
Hr(s,pk) as rk. These local reduced models can be constructed with any set of local bases.

The reduced-order transfer function at a new parameter point p̂ can then be obtained by inter-
polating the Hr(s,pk):

Ĥr(s, p̂) =

K∑
k=1

Lk(p̂)Hr(s,pk), (53)
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where Lk(pj) = δkj , k, j = 1, . . . ,K. This yields the “functional” interpolation condition

Ĥr(s,pk) = Hr(s,pk) for k = 1, . . . ,K.

This strategy was studied in detail in [19, 21]. Generally speaking, any multivariate interpolation
technique could be used to select the functions Lk. Considering first the case of a scalar parameter,
d = 1, one choice is the Lagrange polynomials, which were used in [19]. A computationally more
efficient and reliable form is obtained if we use the barycentric form of Lagrange interpolation [35].
Other choices are rational interpolation (which is used in [21] in barycentric form based on [34]),
variants of Hermite interpolation, Sinc or spline interpolation, etc. These interpolation techniques
can all be generalized to d > 1, using, e.g., tensorization or more sophisticated approaches.

We will discuss one particular case to highlight the advantages and disadvantages of interpolating
the reduced-order transfer functions. Consider the case of a scalar parameter, where balanced
truncation with a specified error tolerance τBT is used for generating all the local reduced models,
as in [19]. Noting that the representation (53) separates the variables s and p, we are now free
to put the parametric dependence in any one of the matrices realizing the reduced model. A
convenient choice results from the following representation:

K∑
k=1

Lk(p)Hr(s,pk) = Ĉr(p)(sÊr − Âr)
−1B̂r = Ĥr(s,p),

where

Âr = diag
(
Ar(p1), . . . ,Ar(pK)

)
∈ Rr×r, Êr = diag

(
Er(p1), . . . ,Er(pK)

)
∈ Rr×r,

B̂r =

 Br(p1)
...

Br(pK)

 ∈ Rr×m, Ĉr(p) = [L1(p)Cr(p1), . . . , LK(p)Cr(pK)] ∈ Rq×r,

with r = r1 + r2 + · · ·+ rK .
The method is flexible in the sense that it applies directly to parametric systems with non-affine

parameter dependence since only evaluations of Lk(p) are necessary. In addition, the structure of
the approximate transfer function permits using local reduced models of different orders. This is
important since balanced truncation with adaptive order will in general yield models with varying
rk. Another advantage is that the main features of balanced truncation are inherited. In particular,
if the full model is uniformly stable in the parameter domain Ω, then this property is preserved in
the reduced model: for a uniformly stable system, (E(p),A(p)) is an asymptotically stable matrix
pencil for all p ∈ Ω, hence (E(pk),A(pk)) is asymptotically stable for all k if the parameter samples
are taken from Ω. By stability preservation of balanced truncation, then also (Er(pk),Ar(pk))

is asymptotically stable for all k and due to the block-diagonal structure, (Êr, Âr) inherits this
property. Also, instead of balanced truncation, other balancing-based strategies can be employed
(e.g., LQG balancing, which is also applicable in the unstable case). See [24, 126] for overviews of
possible choices and corresponding properties preserved in the reduced models.

Using balanced truncation for the local models induces an error bound which is obtained by
splitting the interpolation error in parameter space from the balanced truncation error. Since
the expressions for the error bound depend strongly on the chosen interpolation method, we only
provide a version for (polynomial) Lagrange interpolation, but writing the bounds down for other
interpolation techniques is straightforward. Assume H is uniformly stable in Ω, at least K times
differentiable with respect to p, and let ΛK−1 denote the Lebesgue constant of our node set
{p1, . . . ,pK}. Then, we obtain∥∥∥H(s, p̂)− Ĥr(s, p̂)

∥∥∥
2
≤ ρ(H,p, s) + τBTΛK−1, (54)

where ρ(H, p̂, s) is the interpolation error, which for polynomial interpolation is given by

ρ(H, p̂, s) =
1

K!

∥∥∥∥ ∂K∂pK
H(s, ξ(p))

∥∥∥∥
2

·
K∏
k=1

|p̂− pk|,
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with ξ(p) ∈ ( mink pk, maxk pk ) (to be understood componentwise). The presence of the Lebesgue
constant in the error bound suggests using a node set that produces a small ΛK−1; hence, a uniform
distribution of the pk should be avoided. A reasonable choice is the Chebyshev nodes, particularly
in their second form. As usual, the interpolation error will in general not be determined explicitly,
but can be estimated, using, e.g., the reduced model instead of H.

A clear disadvantage of the transfer function interpolation approach is that the state-space
obtained from the realization Âr, B̂r, Êr, Ĉr(p) may grow quickly with the number of parameter
samples. However, we note that for evaluating the reduced model online, it is not necessary to
explicitly form this realization since the only computation required is the evaluation of the reduced-
order transfer functions at the given value s and the evaluation of the (scalar) parametric functions
Lk. This amounts to interpolating the outputs computed by the reduced-order models using the
given Lk’s. A similar idea is used in [112], where interpolation is used to create a parametric POD
model for a convection problem where the mathematical model is unknown.

Another disadvantage is that by interpolating the reduced-order transfer functions as in (53),

the poles of Ĥr are fixed and do not vary with p as the poles of H most likely do. In addition,
some poles of the original model may be duplicated in several of the local reduced models, leading
to spurious poles of the reduced-order transfer function. These observations are reported in [130],
where it is suggested to interpolate the realizations of the local reduced models instead, as already
discussed in the previous subsection.

Finally, we comment on extension of the transfer function interpolation to the multivariate
case. For regular grids, tensorization of scalar interpolation methods is fairly easy, resulting, e.g.,
in bi-/tri-linear/-cubic (Hermite, spline) interpolation. Due to the curse of dimensionality, the
resulting reduced models quickly become complex even for small d. In [19], the use of sparse
grid interpolation [43, 76, 161] is suggested. The coupling of balanced truncation with piecewise
polynomial interpolation using sparse grid points is reported in [19]. Promising results are obtained
for this approach for examples with d < 10, see [21]. Another possibility to extend the idea of
interpolating local transfer functions would be to use irregular grid interpolation approaches such
as radial basis functions. Results reported in [150] are also promising and certainly deserve further
investigation.

4.3 Comparing different reduced model generation approaches

This section has discussed several approaches for parametric reduced model generation, either
using a global basis as in Section 4.1, or interpolating local information as in Section 4.2. The
specific approaches presented are:

• using a single global basis;

• interpolating among local bases;

• interpolating among local reduced-order state-space matrices; and

• interpolating among local reduced-order transfer functions.

The following discussion provides some insight into the class of problems for which the different
approaches may be most appropriate.

Parameter Sampling

All the presented reduced model generation approaches require an effective sampling of the pa-
rameter space, whether samples are used to construct global or local bases. For high-dimensional
parameter spaces, the global basis approach is particularly amenable to the greedy adaptive pa-
rameter sampling approach discussed in Section 3.4, as shown in [41] for building a global POD
basis. Similarly a greedy sampling approach can be easily combined with balanced truncation or
rational interpolation methods as well to construct a global basis. In theory, it would be possible
to wrap a greedy sampling approach around the local interpolation methods, although in practice
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formulation of the problem would be more complicated (and perhaps expensive to solve). Adap-
tive selection of parameter sample points in conjunction with these local interpolation methods
has not been explored in the literature. The parameter selection strategies that are optimal in
the composite system-theoretic error measures defined in (19) and (20) remains an open challenge
except for the very special parameter dependence as in (41).

Reduced model construction

In terms of basis construction, any of the methods for computing the basis matrices can be used
with any of the reduced model generation approaches. However, the global basis approach is a
more compelling choice to use with model reduction by rational (tangential) interpolation since the
final parametric reduced model then retains the interpolation property in both the frequency and
parameter domains. The global basis and interpolation among local bases approaches both require
construction of a new reduced model (via projection) at every parameter value to be solved; hence it
is important that the original system has an affine parametrization or is approximated by an affine
decomposition so that the repeated reduced model construction is not too costly. However, for
the other two methods of interpolating the local reduced matrices and interpolating local transfer
functions, reduced models are only constructed at the parameter sample points and not at other
parameter values to be solved. Thus, these latter two methods may be more appropriate in the
case of general parameter dependence where a DEIM or other affine approximation is inaccurate.

Reduced model size

The different methods vary in how the overall size of the reduced model behaves, as well in their
flexibility to adapt order in different regions of the parameter space. Interpolating local transfer
functions allows for local models with different orders, whereas interpolating the local bases and
local reduced matrices both require the same order of local models. The flexibility of having
different local orders is important in problems where the system dynamics are significantly more
or less rich (i.e., significantly harder or easier to approximate) at different parameter values. In
the global basis approach there is only a single order of the basis, but adaptivity can be achieved
by uneven sampling of the parameter space (e.g., using the greedy adaptive sampling approach).
An advantage of interpolating the local bases or local reduced matrices is that the order of the
reduced model does not grow with the number of parameter samples (it is fixed at the local
reduced order). This is in contrast to the transfer function interpolation approach, where the
order of the parametric reduced model can grow quickly due to the block diagonal structure of
construction. For the global basis approach, the order will also grow if the global basis is obtained
by concatenating the local bases. However, if the concatenation is followed by a rank revealing
QR or SVD, growth in the overall reduced model order can be managed appropriately.

Error estimates

An advantage of interpolating local reduced-order transfer functions is that it separates the inter-
polation error in the parameter space from model reduction error (in the frequency domain) and
allows an error bound as shown in (54), assuming that local reduced models are obtained with
an error tolerance. Thus, balanced truncation, which has an a priori error bound, is appropriate
to employ in this approach. For other methods, a posteriori error estimates may be possible for
certain classes of problems and could be similarly combined with the interpolation error estimate.

Dynamical system poles

For the global basis, interpolating local bases, and interpolating local reduced matrices approaches,
the poles of the reduced models vary with the parameter p, due to the parametric dependency in
the reduced Er(p) and Ar(p) matrices. This is desirable, since the poles of the original model also
vary with the parameter p. This is not the case for the reduced models obtained by interpolating
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the local transfer functions, for which the poles are fixed at the poles of the local models, which
can lead to spurious poles in the reduced model.

5 Discussion

The preceding sections have presented the different elements for projection-based model reduction
of parameterized systems: computing the basis, sampling the parameter space, constructing the
reduced model, and representing parametric dependence in the reduced model. Within each
element we have highlighted a number of different methods that can be employed. While in
general there is no definitive “recipe” on how to combine elements to achieve the most effective
reduction strategy for a given problem, we highlight here some of the relative advantages and
disadvantages of the various methods and how that relates to their effectiveness for various classes
of problems. We also cite examples from the literature that demonstrate the effectiveness of
different reduction strategies for different applications.

Commonalities among model reduction methods

We begin with the observation that there are significant commonalities among the different meth-
ods for computing the reduction bases V and W. While the specific strategies used in rational
interpolation methods, balanced truncation, POD and the Reduced Basis Method are at surface
level quite different, their commonalities are perhaps stronger than the usual presentation of the
methods suggests. Rational interpolation methods, POD and the Reduced Basis Method are all
snapshot-based methods. In classical rational interpolation methods, the snapshots correspond
to sampled solutions over the complex frequency domain, with extensions to sampling over the
parameter domain for the parametric model reduction variants. In the Reduced Basis Method,
snapshots correspond to sampled solutions over the parameter domain, while for POD, the snap-
shots typically correspond to sampled solutions over both time and parameter domains. Different
communities seem to prefer different strategies for sampling the parameter domain, but as dis-
cussed in Section 3.4, there is a great deal of flexibility in combining sampling strategies with basis
computation strategies. For example, the combination of POD with a greedy parameter sampling
strategy as in [84, 41] results in an overall reduction approach that is essentially the same as the
Reduced Basis Method. The reduced basis community largely focuses on formulation of the model
reduction problem in the continuous (PDE) domain; however, the resulting numerical algorithms
build a projection basis as the span of a set of discrete snapshots over the parameter domain,
just as in the POD. As discussed in Section 3.3, duality between time and frequency domain for-
mulations for linear systems also reveals the connections between POD and balanced truncation,
and between POD and rational interpolation methods. Nonetheless, some important differences
remain among the methods, most notably the error bounds associated with balanced truncation
(for a fixed parameter sample) and the applicability of POD to general nonlinear systems.

Applicability of the basis computation methods

POD is the most generally applicable of the methods for computing the basis, since it relies only
on snapshots of the underlying simulation code. As a result, the POD basis can be computed
easily, even when the simulation is a black-box code (although note that in the black-box case, the
projection step to determine the reduced model remains a challenge). The POD can also be applied
to general nonlinear problems, since computation of the POD basis does not rely on a specific
problem structure. POD can also be used with any of the sampling strategies discussed. POD has
shown to be effective in many application domains including fluid dynamics, structural dynamics,
thermal modeling, atmospheric modeling and many more. The early applications of POD include
unsteady flows and turbulence modeling [143, 49, 72], and unsteady fluid-structure interaction
[51]. Perhaps the earliest example of POD snapshots being computed over the parameter domain
is [112], which considered Rayleigh-Bénard convection with varying Rayleigh number.

23



In contrast, balanced truncation and rational interpolation methods are based on system-
theoretic quantities such as Gramians and transfer functions, and exploit the specific dynamical
system structure. This paper has focused on systems that are linear in state. Balanced truncation
has been extended to bilinear systems [28]. Rational interpolation methods have been extended
to bilinear [133, 15, 27, 40, 25, 26, 67] and quadratic-in-state systems [77, 26]. Even though these
methods have proven effective for a wide range of problem settings, they are most widely used in
circuit theory, such as [62, 127, 14, 135, 29], e.g., to analyze and predict signal propagation and
interference in electric circuits; in structural mechanics, such as [149, 73, 119, 36, 138], to study,
e.g., vibration suppression in large structures or behavior of micro-electro-mechanical systems; and
in (optimal) control and controller reduction, such as [128, 32, 87, 5, 152, 162], e.g., in LQR/LQG
control design.

Capturing parametric dependence

Section 4.3 discussed the different attributes of the approaches for generating the parametric re-
duced model, including both global and local approaches. Clearly there is no one “best” approach;
rather, the different approaches will work well for different problems depending on the model’s
underlying parametric structure. As already discussed, the literature shows several examples of
successful applications of these approaches; however, it is lacking a rigorous analysis that connects
the performance of the methods with the structure of the parametric dependence in the problem.
Since most of the methods rely on interpolation in one form or another, it might be expected that
the large body of mathematical literature on analysis of interpolation methods is a fruitful avenue
of investigation. The manifold interpolation methods are particularly novel and interesting; again,
more work is needed to understand for what class of problems they are best.

Preservation of properties

When choosing a model reduction method, it is also important to consider what mathematical
properties are essential to preserve in the reduced model. Rational interpolation methods have
the advantage that the transfer function of the parametric reduced model exactly interpolates
the transfer function of the full model at sampled frequency and parameter points (as long as
the required vectors are included in the global basis). Stability of the parametric reduced model
remains an important open question in most cases. Other than for a few exceptions related to
specific problem structure, the approach of interpolating the local transfer functions is the only
way to guarantee that the reduced model is stable for the full parameter range (provided each
local reduced model is stable). Even for linear problems, the other approaches do not guarantee in
general that an interpolation of stable models yields a globally stable parametric reduced model.
Exceptions include the case of negative definite pencils (E(p),A(p)), where one-sided projection,
V = W, combined with either a global basis approach or with positive interpolation weights on
local reduced-order matrices will also guarantee stability. However, the general stability preserva-
tion property by transfer function interpolation comes at a cost—it results from the fact that the
approach does not let the reduced model poles vary as the parameters change. Preservation of
other properties such as passivity and contractivity may be important in some applications, but
have yet received little attention in parametric model reduction methods.

Error bounds and error estimates

Guarantees on the quality of the parametric reduced models remains an important question. The
reduced basis community in particular has promoted a strong emphasis on the derivation of error
estimates for parametric model reduction [131, 85, 137, 154, 153, 75]. This work has created new
methods that “certify” the reduced model through error estimates that can be computed without
recourse to the full model [131]. An important observation is that these error estimates are related
to the structure of the system (e.g., properties of the underlying partial differential equations)
being approximated but are not specific to a particular basis computation method. In other
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words, the basis behind the model reduction step can come from rational interpolation, balanced
truncation or POD. This can be seen by analyzing these error estimates in state-space form as
recently presented in [85]. Recall that projection-based model reduction as in (43) corresponds
to approximating x(t; p) by Vxr(t; p). As in [85], we take E = I and let e(0; p̂) denote the error
in the state x(t; p) at time t = 0 and at parameter p = p̂. Then, e(0; p̂) = (I − VWT )x(0; p̂).
Similarly define the residual in the state equation

R(t; p̂) = A(p̂)Vxr(t; p̂) + B(p̂)u(t)−Vẋr(t; p̂).

Let ξ(p̂) = supt

∥∥∥eA(p̂)t
∥∥∥

2
. Then, the error in the state variable at time t and at parameter p̂ is

bounded by

‖x(t; p̂)−Vx(t; p̂)‖2 ≤ ξ(p̂)

(
‖e(0; p̂)‖2 +

∫ t

0

‖R(τ ; p̂)‖2dτ
)
. (55)

The output error at time t and the parameter p̂ can be bounded similarly using

‖y(t; p̂)− yr(t; p̂)‖2 ≤ ‖C(p̂)‖ ‖x(t; p̂)−Vx(t; p̂)‖2. (56)

Although the error estimates apply to a general basis, the key remaining question is the com-
putability of the constant ξ(p̂). This computation must be done in an efficient way, without
recourse to the full model, otherwise the error estimate is of limited practical value. Again, the
reduced basis community has derived efficient offline/online decomposition approaches to address
this issue [131].

Extensions to more general system structure

The extension of the parametric reduction methods to general nonlinear systems was discussed
above. Another assumption on system structure in this paper is that the E(p) matrix is nonsingular
for any parameter selection p. However, in several important applications (e.g., incompressible
flows, circuit design, etc.) one obtains a system of the form (1) where E(p) could be singular
for some or all selections of p. Such systems with a singular E(p) matrix are called systems
of differential algebraic equations (DAEs). Projection-based model reduction of DAEs has been
studied extensively; see, for example, [146, 30, 147, 135, 117, 33, 89, 80]. The theoretical discussions
of this paper directly extend to this setting. While in many cases numerical methods can be
implemented as effectively as for the ODE case, there exist scenarios in which reducing a system
of DAEs might prove more costly due to the need for computing projectors on certain deflating
subspaces; for details, we refer the reader to the above references.

We also assume that the full-order model H(s,p) is asymptotically stable for every p ∈ Ω;
indeed the discussion as presented only requires that H(s,pi) be stable where pi, for i = 1, . . . ,K,
are the sampled parameter points. However, even this is unnecessary since most of the model
reduction methods presented have been already extended to reducing unstable systems. From a
numerical implementation perspective, the rational interpolation methods do not require H(s,pi)
to be stable. The only requirement is that the frequency interpolation points ŝ should not be a
pole of H(s,pi). In the asymptotically stable case, this is easily guaranteed by choosing ŝ ∈ C+.
In the unstable case, however, one needs to be more careful since some of the poles lie in C+ and
they need to be avoided. Even the optimal rational interpolation-based model reduction methods
have been extended to unstable systems; see, e.g., [114, 99]. Balanced truncation has been also
generalized to reducing unstable systems, by either appropriately re-defining the system Gramians
[163, 16, 164] or by using different balancing techniques, such as LQG balancing [128]. For the
POD, the frequency domain formulation will be the appropriate choice for unstable systems since
the time-domain snapshots will grow exponentially in this case.

Non-projection based model reduction

In this paper, we have focused on projection-based model reduction techniques; i.e., we have
assumed the availability of a state-space description of the original model (1) and an explicit
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projection was applied to state-space dimension. However, in settings where equations describing
the evolution of a system are not explicitly specified (i.e., E(p),A(p) etc. are not available) and
the only access to dynamics is via input/output measurements. This might be in the form of
system responses such as measurements of H(s,p), or simulation outputs of a black-box code.
In these cases, a reduced parametric model as in (2) is obtained directly from measurements
or from simulation outputs without access to internal dynamics. One commonly used approach
is to assume a specified functional form (e.g., a polynomial response surface) of the surrogate
model, which is fit using output data. Other ways to specify the form of the approximation in
this setting include radial basis functions and Kriging. For the case of dynamical systems with no
parametric dependence, the Loewner-based data-driven framework [116, 102, 103] has been applied
with great success to construct reduced models using only transfer function samples. Recently,
this approach has been used to produce even locally optimal reduced models, see [23]. The data-
driven Loewner framework has been recently extended to the parameter dependent systems as well
[10, 93, 92] where the reduced parametric model is a rational function not only in the frequency s
but also in every parameter pk, k = 1, . . . , d. This allows choosing the order of approximation in
s and p independently. Even though the theoretical discussion extends to the multiple parameter
case directly, the numerical computation and construction of the reduced model might present
a challenge and the order of the reduced model might grow undesirably as d, the number of
parameters, grows.

6 Outlook

We close this review paper with a brief discussion of promising current research directions and
some open challenges. As already mentioned, recent development of the EIM and DEIM methods
has led to significant progress in model reduction for nonlinear systems using POD and the Re-
duced Basis Method. It remains an open question whether the rational interpolation approaches
and balanced truncation can be extended beyond bilinear- and quadratic-in-state systems and to
handle general nonlinear dependence in the state variable x(t). A balancing method for nonlin-
ear systems was proposed in [140], but a scalable algorithmic implementation remains an open
challenge. Even for the linear-in-state systems we consider in this paper, despite the existence of
effective sampling strategies discussed above, the optimal parameter selection strategies for the
composite system-theoretic error measures defined in (19) and (20) remains an open challenge
for the general parametric dependence. Further open challenges include parametric model reduc-
tion for systems with time-dependent and/or stochastic parameters. Extending parametric model
reduction methods to these broader classes of systems will require new approaches for defining
the reduced subspaces, as well as new methods for constructing and solving the reduced model.
Handling high-dimensional parameter spaces remains another challenging problem. While some
progress has been made in this area, in particular with greedy sampling approaches, further work
is needed to develop methods that exploit system structure to avoid the curse of dimensionality.
Promising recent efforts towards this goal use tensor techniques [125, 129]. The combination of
tensor calculus [86] and parametric model reduction techniques for time-dependent problems is
still in its infancy, but offers a promising research direction.
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tion via the Lanczos process, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14 (1995), pp. 639–649.

[63] L. Feng, Parameter independent model order reduction, Mathematics and Computers in
Simulation, 68 (2005), pp. 221–234.

[64] L. Feng and P. Benner, A robust algorithm for parametric model order reduction based on
implicit moment matching, Proceedings in Applied Mathematics and Mechanics, 7 (2008),
pp. 10215.01–10215.02.

[65] L. Feng, D. Koziol, E.B. Rudnyi, and J.G. Korvink, Parametric Model Reduction for
Fast Simulation of Cyclic Voltammograms, Sensor Letters, 4 (2006), pp. 165–173.

[66] L. Feng, E.B. Rudnyi, and J.G. Korvink, Preserving the film coefficient as a parame-
ter in the compact thermal model for fast electrothermal simulation, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24 (2005), pp. 1838–1847.

30



[67] G.M. Flagg, Interpolation Methods for Model Reduction of Bilinear Systems, PhD thesis,
Virginia Tech, Department of Mathematics, May 2012.

[68] R. Freund, Model reduction methods based on Krylov subspaces, Acta Numerica, 12 (2003),
pp. 267–319.

[69] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas, Nonlinear model reduc-
tion for uncertainty quantification in large-scale inverse problems, International Journal for
Numerical Methods in Engineering, 81 (2010), pp. 1581–1608.

[70] K. Gallivan, E.J. Grimme, and P. Van Dooren, Asymptotic waveform evaluation via
a Lanczos method, Applied Mathematics Letters, 7 (1994), pp. 75–80.

[71] K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction of MIMO sys-
tems via tangential interpolation, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 328–349.

[72] T.B. Gatski and M.N. Glauser, Proper orthogonal decomposition based turbulence mod-
eling, in Instability, Transition, and Turbulence, Springer, 1992, pp. 498–510.

[73] W. Gawronski and J. Juang, Model reduction for flexible structures, Control and dynamic
systems, 36 (1990), pp. 143–222.

[74] M. Grepl, Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic
Partial Differential Equations, PhD thesis, MIT, Cambridge, MA, June 2005.

[75] M. Grepl and A. Patera, A posteriori error bounds for reduced-basis approximations of
parametrized parabolic partial differential equations, ESAIM-Mathematical Modelling and
Numerical Analysis (M2AN), 39 (2005), pp. 157–181.

[76] M. Griebel, Sparse grids and related approximation schemes for higher dimensional prob-
lems, in Foundations of Computational Mathematics (FoCM05), Santander, L. Pardo,
A. Pinkus, E. Suli, and M.J. Todd, eds., Cambridge University Press, 2006, pp. 106–161.

[77] C. Gu, QLMOR: A projection-based nonlinear model order reduction approach using
quadratic-linear representation of nonlinear systems, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 30 (2011), pp. 1307–1320.

[78] S. Gugercin, A.C. Antoulas, and C.A. Beattie, H2 model reduction for large-scale
linear dynamical systems, SIAM Journal on Matrix Analysis and Applications, 30 (2008),
pp. 609–638.

[79] S. Gugercin, D.C. Sorensen, and A.C. Antoulas, A modified low-rank Smith method
for large-scale Lyapunov equations, Numerical Algorithms, 32 (2003), pp. 27–55.

[80] S. Gugercin, T. Stykel, and S. Wyatt, Model reduction of descriptor systems by
interpolatory projection methods, SIAM Journal on Scientific Computing, (2013, in press.).

[81] P.K. Gunupudi, R. Khazaka, and M.S. Nakhla, Analysis of transmission line cir-
cuits using multidimensional model reduction techniques, IEEE Transactions on Advanced
Packaging, 25 (2002), pp. 174–180.

[82] P.K. Gunupudi, R. Khazaka, M.S. Nakhla, T. Smy, and D. Celo, Passive parameter-
ized time-domain macromodels for high-speed transmission-line networks, IEEE Transactions
on Microwave Theory and Techniques, 51 (2003), pp. 2347–2354.

[83] B. Haasdonk, M. Dihlmann, and M. Ohlberger, A training set and multiple bases
generation approach for parameterized model reduction based on adaptive grids in parameter
space, Mathematical and Computer Modelling of Dynamical Systems, 17 (2011), pp. 423–
442.

31



[84] B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations
of parametrized linear evolution equations, ESAIM: Mathematical Modelling and Numerical
Analysis, 42 (2008), pp. 277–302.

[85] , Efficient reduced models and a posteriori error estimation for parametrized dynamical
systems by offline/online decomposition, Mathematical and Computer Modelling of Dynam-
ical Systems, 17 (2011), pp. 145–161.

[86] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, Berlin, 2012.

[87] Y. Halevi, D.S. Bernstein, and W.M. Haddad, On stable full-order and reduced-order
LQG controllers, Optimal Control Applications and Methods, 12 (1991), pp. 163–172.

[88] A. Har, J.T. Borggaard, and D. Pelletier, Local improvements to reduced-order
models using sensitivity analysis of the proper orthogonal decomposition, Journal of Fluid
Mechanics, 629 (2009), pp. 41–72.

[89] M. Heinkenschloss, D.C. Sorensen, and K. Sun, Balanced truncation model reduction
for a class of descriptor systems with application to the Oseen equations, SIAM Journal on
Scientific Computing, 30 (2008), pp. 1038–1063.

[90] H. Hotelling, Analysis of a complex of statistical variables with principal components,
Journal of Educational Psychology, 24 (1933), pp. 417–441,498–520.

[91] D.Y. Hu and L. Reichel, Krylov-subspace methods for the Sylvester equation, Linear
Algebra and its Applications, 172 (1992), pp. 283–313.

[92] A.C. Ionita and A.C Antoulas, Data-driven parametrized model reduction in the
Loewner framework. submitted, 2013.

[93] A.C. Ionita and A.C. Antoulas, Model order reduction of parametrized systems, in 17th

International Linear Algebra Society Conference, TU Braunschweig, Germany, August 2011.

[94] I.M. Jaimoukha and E.M. Kasenally, Krylov subspace methods for solving large Lya-
punov equations, SIAM Journal on Numerical Analysis, (1994), pp. 227–251.

[95] K. Jbilou, Low rank approximate solutions to large Sylvester matrix equations, Applied
Mathematics and Computation, 177 (2006), pp. 365–376.

[96] J.Garcke and M. Griebel, eds., Sparse Grids and Applications, vol. 88 of Lecture Notes
in Computational Science and Engineering, Springer-Verlag, Heidelberg/Berlin, 2013.

[97] T. Kim, Frequency-domain Karhunen-Loeve method and its application to linear dynamic
systems, AIAA Journal, 36 (1998), pp. 2117–2123.

[98] D.D. Kosambi, Statistics in function space, Journal of Indian Mathematical Society, 7
(1943), pp. 76–88.
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