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Abstract

Given the optimal interpolation points σ1, . . . ,σr, it is well-known how to obtain the H2-
optimal reduced order model of order r for a linear time-invariant system of order n� r.
Our approach to linear time-invariant systems depending on parameters p is to approxi-
mate their parametric dependence as a so-called metamodel, which in turn allows us to set
up the corresponding parametrized reduced order models. The construction of the meta-
model we suggest involves the coefficients of the characteristic polynomial together with
k-means clustering and radial basis function interpolation, and thus allows for an accurate
and efficient approximation of σ1(p), . . . ,σr(p). As the computation still includes large
system solves, this metamodel is not sufficient to construct a fast and truely parametric
reduced system. Setting up a medium size model without extra cost, we present a possible
answer to this. We illustrate the proposed method with several numerical examples.
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1 Introduction

We consider large-scale parameter-dependent single-input, single-output systems that are lin-
ear and time-invariant. For each value of the parameter we have a large system of ordinary
differential equations with inputs and outputs. Model order reduction can reduce the compu-
tational complexity of such linear time-invariant systems at the expense of some error in the
approximated response. In order to keep this error small, H2-optimal model order reduction
methods have been proposed in the literature, such as the Iterative Rational Krylov Algorithm
(IRKA). IRKA, as an iterative algorithm that does not require the solution of the original large
ordinary differential equation, is a practical and fast algorithm. It computes a reduced-order
locally H2-optimal system, iterating the poles, or eigenvalues, of the reduced system.

Assume now, our goal is to conduct an extensive parameter study or solve an optimization
problem where the system has to be evaluated for many realizations of our parameter. To
compute the reduced system anew by IRKA for each parameter value can produce prohibitive
costs, even though the solution itself is then accelerated by the obtained reduction. There
are several methods in the literature that deal with this issue, of which many are described
by Benner et al. (2013). These methods include e. g. matrix interpolation and interpolation of
the transfer function, see (Baur et al., 2011a). We address the problem by pre-computing few
“snapshots”, i. e. we evaluate a discrete sampling of parameter space, in order to approximate
H2-optimal model order reduction during an “online phase”. Our hope is to find almost H2-
optimal reduced-order systems by an approximation of the reduced order system poles. The
poles are an important characteristic of the reduced order model. When they are known, we
can create the reduced model via interpolation.

Reflected in a resulting H2-error of even lower order, an error in the mirror poles can be
observed to have moderate consequences. This is the main observation on which we base our
approach. Hence, we strive to find a good approximation for these mirror poles, which, as to
our knowledge, primarily distinguishes our proposition from previous works on the topic. Es-
pecially, the details seem to be novel: our approach takes characteristic traits and thus possible
discontinuities of the mirror poles into account in the formulation of the interpolant and reuses
the information obtained when snapshots are computed to speed up all further calculations. In
fact, we approximate the mirror poles based on standard radial basis function interpolation of
the corresponding characteristic polynomial, thus allowing for an accurate representation of
eigenvalue bifurcations. Furthermore, clustering is employed to treat remaining discontinu-
ities and a medium-size model incorporates results from the offline phase, otherwise wasted,
to speed up the online phase.

The following section introduces the basics of H2-optimal model order reduction of linear
time-invariant systems, while Sect. 3 focusses on parametric systems in particular. Sections 4
and 5 present details on our approximation of the mirror poles, including background on stan-
dard radial basis function interpolation with polynomial reproduction. Enhancements such
as clustering and reuse of offline computations are treated in Sects. 6 and 7, the complete
algorithm being recapitulated in Sect. 8. Finally, numerical results are presented in Sect. 9.
We conclude by a discussion of the proposed method and its shortcomings that need to be
addressed in future work.
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2 H2-Optimal Model Order Reduction

Let A ∈ Rn×n, B ∈ Rn, C ∈ C1×n. Throughout this paper we call a large-scale single-input
single-output dynamical-system

Σ :

{
ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t),
(1)

stable if A has eigenvalues only in the left half plane. Model order reduction methods try to
find a reduced stable dynamical system

Σ̂ :

{
ẋ(t) = Âx(t)+ B̂u(t),

ŷ(t) = Ĉx(t),

where Â ∈ Rr×r, B̂ ∈ Rr, Ĉ ∈ C1×r and Â has eigenvalues only in the left half plane. Here
r� n and the map from the input u ∈L2(R+) to the output y of the original system is desired
to be well approximated by the map from input to output ŷ of the reduced system. In the
frequency domain the input-output behaviour is characterized by the transfer function. The
original transfer function H and the transfer function Ĥ of the reduced system are given by

H(s) =C(sI−A)−1B, H(s) = Ĉ(sI− Â)−1B̂,

respectively. H and Ĥ are complex-valued rational functions defined on the complex plane
and, due to the stability assumption, analytic in the closed right half-plane.

2.1 Optimality

Looking at the maximal error given as the absolute difference between the true and the reduced
output we get (Gugercin et al., 2008)

sup
t>t0
|y(t)− ŷ(t)| ≤ ‖H− Ĥ‖H2‖u‖L2 ,

where the H2-norm is defined as

‖H− Ĥ‖2
H2

=
1

2π

∫
∞

−∞

|H(ιω)− Ĥ(ιω)|2dω. (2)

The reduced order model we want to find is, therefore, the one which minimizes the H2-
norm of the transfer function error for a given r.

First discovered by Meier and Luenberger (1967) and later developed for control theory (Gugercin
et al., 2008; Bunse-Gerstner et al., 2010; van Dooren et al., 2008), necessary conditions for
the reduced order transfer function to satisfy H2-optimality exist:

Theorem 2.1. Given a stable dynamical system of the form (1), a reduced order system of
order r minimizes (2) if it Hermite interpolates the original system at its mirror poles.
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The mirror poles of (1) are, therefore, the optimal interpolation points and are denoted by
σ1, . . . ,σr. Throughout this paper we assume that the reduced order size r is fixed. This means
we always have r many interpolation points. Given these interpolation points one can create a
reduced order model by a Petrov-Galerkin projection (Grimme, 1997), i. e. we can find V,W
with V TW = I such that

Â =V T AW, B̂ =V T B, Ĉ =CW. (3)

Lemma 2.1. Given σ1, . . . ,σr. Moreover,

(σiI−A)−1B ∈ im(V ),

(σiI−A)−TCT ∈ im(W ).

Then the reduced order model generated by Petrov-Galerkin projection with W and V Hermite
interpolates the original system at σ1, . . . ,σr.

2.2 IRKA

Since we do not know these interpolation points a priori we use the well-known algorithm IRKA
developed by Gugercin et al. (2008) to compute them. Upon convergence of IRKA a set of
interpolation points is found. The system created by Hermite interpolation of them is guaran-
teed to be a local minimizer to the H2-optimization problem and often turns out to even yield
the global optimum (though there is no theoretical backing for this so far). In the remainder
of the paper these optimal interpolation points σ1, . . .σr play an important role and will, for
parametric systems, be considered as functions of p. As a function of p they are the argmin
of a minimization problem which is dependent on p. For each individual problem this argmin
does not need to be unique, which means that it is not actually a function of p. Furthermore,
we will compute σ1, . . .σr through IRKA which can only guarantee local optimal solutions.
Furthermore the outcome is not unique. If we start the fixed point iteration with different
starting values, the local optimium to which IRKA converges does not need to be the same.
We use this algorithm in the creation of our parameteric model order reduction method. The
input is a given set of matrices A,B,C, and the output will be the optimal interpolation points
together with the projection matrices V,W given as in Lemma 2.1.

3 Parametric Systems

Having understood H2-optimal model order reduction for non-parametric systems, we now
consider parametric systems. These systems have the characteristic trait that all A,B and C
may be matrices depending on a parameter

Σ :

{
ẋ(t) = A(p)x(t)+B(p)u(t),

y(t) =C(p)x(t).

Here, as in the non-parametric case, A(p) ∈ Rn×n is assumed stable, B(p) ∈ Rn and C(p) ∈
C1×n. We assume that the parametric dependence is smooth and p ⊂ Ω ⊂ Rd , where Ω is
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a compact domain. Each realization of the parameter defines a system as described in (1).
Therefore, we know how to create a reduced order model that (locally) minimizes the H2-
error for a given parameter p∗. It is just as possible to compute σ1(p∗), . . . ,σr(p∗). We are,
however, interested in a reduced order model for all parameters. The goal is to design an
algorithm that can fast compute Â(p), B̂(p),Ĉ(p) for all parameters p such that each system is
close to the H2-optimal one. We denote the transfer function for the full system by

H(s, p) =C(p)(sI−A(p))−1B(p) (4)

and Ĥ accordingly for the reduced order system.
The first step is to create a metamodel for Σ(p) = [σ1(p), . . . ,σr(p)], the optimal interpola-

tion points ordered ascending by absolute value of the imaginary part and then ascending in
the value of the real part. If there are complex conjugate pairs they are ordered with the nega-
tive real part first. By metamodel we understand an approximation to a given smooth function,
solely from evaluations of this function at discrete sampling locations within its domain. In
particular, interpolatory methods based on radial functions are employed here.

3.1 Smoothness

The function Σ(p), if it is a function at all, is not necessarily smooth. To understand this in
more detail, we define Λ : Cr×r → Cr as the function that takes a matrix to its eigenvalues
ordered such that −Λ is ordered as described above. We can write Σ as

Σ(p) =−Λ(Â(p)), (5)

where Â(p) is the optimal reduced order system matrix depending on the parameter p. The
matrix Â is not unique for two reasons. The first reason is that a system (1) and its reduction are
only unique up to state-space transformations. This is why matrix interpolation for paramet-
ric model order reduction is a challenging problem (see Panzer et al. (2010); Amsallem and
Farhat (2008)). On the other hand, this does not affect Λ(Â(p)), since eigenvalues, or poles,
stay invariant under state-space transformations. The second problem is that, for a given pa-
rameter, the H2 optimal local minimizer is in general not unique. In other words, neither Â(p)
nor Λ(Â(p)) are uniquely defined and, therefore, Σ(p) is not a function. In practice one can
however assume that the global minimizer is unique almost everywhere. If there are several
global optima in an dense set, we can pick one and otherwise we can ignore the point set in
which multiple optima occur. (They are the point of jumps) And we can therefore define a
function with jumps. We deal with jumps by clustering. The employed clustering algorithm is
described in Sect. 6 and the criterion when to cluster is identified by computing the norm of the
interpolant. If the norm of the interpolant is too large we increase the number of clusters until
it no longer is. All further particulars of this heuristic are explained in Sect. 8 and discussed in
some more details for specific numerical experiments, see Sect. 9. The definition of the norm
and its meaning for radial basis function interpolation are discussed in Sect. 5.

Even if Â(p) were a perfectly well-behaved and smooth function, one last important issue
is that Σ(p) could still be non-differentiable, as eigenvalues might intersect (see Fig. 1). Fur-
thermore, splittings can occur if the eigenvalues go from real to imaginary pairs. In all the
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Figure 1: Eigenvalue Crossing: For a constructed matrix A(p) we plot the eigenvalues as a
function of p.

benchmark problems we consider, neither can such phenomena be observed, nor do difficul-
ties arise with jumps. We, however, discuss a synthetic model in detail, which is constructed
to exhibit the described issues. As a general solution strategy, we do not actually interpolate Σ

but the coefficients of degree 4 polynomials instead, with which we can partially avoid the
problem of crossing and splitting eigenvalues.

3.2 Offline-Online Decomposition

In the context of model order reduction methods for parametric systems one typically talks
about an offline and an online phase in the reduction procedure. In the offline phase, time and
computing resources are available and a reduced order system is created from the given large
scale system. The online phase is where time and computing resources are limited. This is the
phase in which we evaluate the reduced order model for different parameters. In our particular
problem, the offline phase comprises three steps: We set up a reduced model at finite sampling
locations in the domain, construct a metamodel for the optimal interpolation points from this
sampling, together with a medium size model whose details are explained in Sects. 4 and 7,
respectively. The online phase can be split into two parts, of which we are only interested in the
first: The creation of the reduced order model for a given parameter. It involves the prediction
of the optimal interpolation points by our metamodel and the projection of the medium model
onto them. The second online phase is then the simulation of the reduced order model for
that parameter. For linear systems this step depends mainly on the system size, and since
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we assume that the reduced order system size is given and fixed, the complexity of the entire
step is considered invariable by assumption. In view of a certain application, however, it is
in general necessary to evaluate all costs in order to see whether our proposed algorithm is a
good choice for the problem at hand.

4 Metamodel of Σ

The focus of this section is on creating a metamodel for the multivariate function Σ(p) =
−Λ(Â(p)). As discussed in Sect. 3 this function can behave in a non-smooth way. Many ef-
ficient approximation approaches, in particular interpolation with finitely or infinitely smooth
radial basis functions, assume the approximated relation f to be an element of a space of
smooth functions, though. Only if a smooth formulation is found, full advantage can be taken
of such approximation methods. Section 3 implies that Â(p) is determined and computable up
to similarity for a fixed parameter p∗ if we assume H2-optimization by IRKA to converge to a
unique minimum. An equivalence class of similar matrices possesses the same characteristic
polynomial and eigenvalues, so that Σ(p∗) is uniquely determined for each parameter by these
assumptions.

The coefficients of the characteristic polynomial seem to be sufficiently smooth. We could
however not find a numerical stable algorithm to compute roots of polynomials. We therefore
group 4 eigenvalues together to get several polynomials of degree 4. Using the closed form
representation creates a stable algorithm to compute the roots of the polynomial of degree 4.
In order to describe our method we introduce functions Q and ρ , where Q : Π4→ R4+1 takes
a polynomial to its coefficients, and ρ : C4 → Π4 is defined by ρ(x)(s) = ∏

4
i=1(s− xi). We

are, via standard methods, going to interpolate

f (p) = [ f1(p), . . . , fr/4(p)] ∈ Rr/4+r, where fi(p) = Q◦ρ(−[Σ4i−3(p), . . . ,Σ4i(p)]) ∈ R5.
(6)

Here, we assume for simplicity that r is a multiple of 4. Suppose there exists an attractive
local minimum to which IRKA converges locally. If this minimum is stable for perturbations
of p and if we can find a good enough starting point for IRKA, f (p) inherits the smoothness
of A(p). Hence, evaluating samples of f and interpolating between them is rather straightfor-
ward.

The metamodel σ̃ of Σ is such that

Σ̃ =−[ρ−1 ◦Q−1 ◦ f̃1, . . . ,ρ
−1 ◦Q−1 ◦ f̃r/4].

In order to evaluate ρ−1, we use the MATLAB R© built-in function roots. One can by tracing
the eigenspaces possibly check if the created model is reasonable since we do that somewhat
undesirable splitting of the eigenvalues into clusters of 4. This is not something that has been
implemented yet. Since the computed Σ, considered as a set, is closed under conjugation and
the real parts of its elements are positive, the range of f consists of real positive values only.
It is crucial to make sure that f̃ returns only positive values, too.

Details on how we set up a metamodel f̃ of

f : Ω→ Rr+1
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and ways to enforce positivity follow in Sect. 5. Interpolation by radial basis functions with
polynomial detrending is a natural choice if smooth, nonlinear, multivariate functions need to
be approximated. First, possibly scattered sampling locations p1, . . . , pN are selected. Scat-
tered samplings must be considered since IRKA is not guaranteed to converge, so that we can
only include converged results in the sampling and gaps may remain. For each sample point p j
we compute the H2-optimal reduced order model and its reduced order poles, or eigenvalues,
λ1(p j), . . . ,λr(p j). Now we can evaluate f (p j)∈Rr/4+r, as in (6). The resulting interpolation
data p1, . . . , pN , f (p1), . . . , f (pN) are then used to create the interpolant f̃ .

Yet, ρ(Â(p)) and thus f (p), being an optimization result, can still show discontinuities with
regard to the variable p, if IRKA, convergence given, returns from different local minima,
see Sects. 2.2 and 3.1. Since particularly local discontinuities can be observed for f (p) in
synthetic problems (details to be conveyed in Sect. 9.4), we apply a clustering approach in
order to partition the domain Ω into subdomains Ωk where f |Ωk is sufficiently smooth, see
Sect. 6. Given the interpolant f̃ on a (sub)domain Ω(k), we use a norm (details in Sect. 5) to
decide whether clustering is necessary. The clustering can also help to detect splittings that
occur between the groups of eigenvalues formed above.

5 Radial Basis Function Interpolation

In the following we give a brief introduction to the theory of reproducing kernels, positive
definite functions and radial basis functions in order to be able to discuss their application to
parametric model order reduction as described in the previous section.

Consider a domain Ω⊂Rd and a class of functions f : Ω→C that form a Hilbert space H
with inner product (·, ·). A reproducing kernel κ : Ω×Ω→ C is defined by the two rela-
tions (Aronszajn, 1950)

∀y ∈Ω : κ(·,y) ∈H

∀ f ∈H ,y ∈Ω : f (y) = ( f (·),κ(·,y)). (7)

If a reproducing kernel κ exists for a given space H on a domain Ω it is unique and thus
characterizes H . We, therefore, denote the inner product as (·, ·)κ and the norm by ‖·‖κ . The
Hilbert space H , on the other hand, is the closure of the set F of all linear combinations of
the kernel

F = span{κ(·,x) : x ∈Ω}
and is called the native space of its corresponding kernel (Schaback, 1999). For functions
f = ∑i ξiκ(·,xi) and g = ∑ j ζ jκ(·,x j), (7) implies that

( f ,g)
κ
=

(
∑

i
ξiκ(x,xi),∑

i
ζiκ(x,xi)

)
κ

= ∑
i, j

ξiζ j(κ(x,xi),κ(x,x j))κ = ∑
i, j

ξiζ jκ(x j,xi).

Let arbitrary ξi ∈ C, xi ∈ Rd define some function f ∈ F as above. From the corresponding
norm ‖ f‖2

κ = ( f , f )κ we get

∑
i, j

ξiξ jκ(x j,xi)≥ 0, (8)
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the inequality being strictly satisfied for nontrivial κ if all ξi 6= 0. A kernel κ for which (8)
holds, is called positive definite or, if it defines a norm, strictly positive definite.

Among the many specific kernels and their native Hilbert spaces studied in the literature,
we particularly consider those that arise from continuous, strictly positive definite functions φ

(Stewart, 1976), such as the so-called radial basis functions (Schaback, 1999; Fasshauer, 2007)

κ(x,y)≡ φ(‖x− y‖2).

Radial basis functions are a popular choice for interpolation, since they allow for scattered
sampling data and – depending on their smoothness – polynomial or spectral approximation
orders. The interpolation process for a function f ∈H , sketched in Sect. 4, can now be given
in more detail: Once f has been evaluated for each xi of a sampling X ⊂Ω, where |X | is finite,
the interpolant f̃ ∈ F is then chosen such that N = |X |, xi ∈ X , where all ξi ∈C are determined
by the interpolation condition

∀i = 1, . . . ,N : f̃ (xi) = ∑
j

ξ jκ(xi,x j)≡ f (xi), (9)

which constitutes a system of linear equations for ξ1, . . . ,ξN .
Notice that any additional inequality, such as the assertation f̃ (·) ≥ 0 from the previous

section, turns the solution of (9) into a constrained optimization problem. Since this is not
required by our numerical examples, it has not been implemented here.

For a given sampling and strictly positive definite kernel, radial basis function interpolation
is known to be optimal in the sense that the interpolant f̃ has minimal native norm ‖ · ‖κ

among all other interpolants of f from the native space. In addition, the interpolant f̃ is the
best approximation to f among all other approximants

s̃ = ∑
i

ξiκ(·,xi), xi ∈ X ,ξi ∈ C,

given the sampling X (Fasshauer, 2007, Chap. 18). Here, “best approximation” is again de-
fined with respect to the norm of the native space

∀s̃ : ‖ f − f̃‖κ ≤ ‖ f − s̃‖κ .

Often radial basis function interpolation is used with polynomial detrending. Then the ansatz
function is given by

f̃ (x) =
N

∑
i=1

ξ κ(x,xi)+
k

∑
j=1

α jr j(x),

where r1, . . . ,rk span the chosen polynomial space. The function is determined by f̃ (xi) ≡
f (xi) and ∑i r j(xi)ξi ≡ 0 for all j leading to a linear saddle point system. The latter condition
ensures that, if a polynomial is interpolated, the first term in the ansatz is the zero function.

Since we apply radial basis function interpolation to characteristic polynomials arising as
local minima of (2), detection of discontinuities is crucial. The native norm can be understood
as an indicator for smoothness. Such a notion of the norm is used to detect discontinuities and
find a partitioning into areas where the interpolated function is smooth. In the following we
present some arguments that illustrate how the norm is related to smoothness.
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An interesting way to relate an increasing norm ‖ f‖κ to decreasing smoothness of f is by
sampling inequalities (Rieger et al., 2010). Sampling inequalities bound a weaker norm by
the sum of a stronger norm added to a norm depending on the given sampling X . Theorems 1
and 3 of Rieger et al. (2010) bound derivatives of functions f ∈H in Lq,1 ≤ q ≤ ∞ by the
norm of H

‖Dα f‖Lq(Ω) ≤C1

(
hτ‖ f‖κ +h−|α|‖ f (X)‖`∞(R|X |)

)
, (10)

where C is a positive constant, α is a multi-index, h the so-called fill distance, and τ the
sampling order depending on α,q and κ . Here, the fill distance

h≡ sup
y∈Ω

max
x∈X
‖x− y‖2, (11)

given X and Ω, is a general way to assess the quality of a sampling. From (10) we see that
large derivatives lead to a large norm ‖ f‖κ .

There are further arguments that support the idea that nonsmoothness is reflected in an
increasing native norm ‖ · ‖κ . It is known that the native spaces of Matérn functions are
Sobolev spaces, the popular thin plate splines generate Beppo-Levi-spaces (Fasshauer, 2007,
Chap. 13). Thus the norm includes derivatives of or up to a certain degree. A characterization
of the native space of strictly positive definite functions in terms of Fourier transforms F f
and Fg of functions f ,g ∈H gives us additional evidence (Fasshauer, 2007, p. 107)

( f ,g)κ =

(
F f√
Fφ

,
Fg√
Fφ

)
L2(Rn)

.

If Fφ(ω) is smooth and vanishes at infinity, F f must vanish at infinity, too, decaying even
faster (Fasshauer, 2007, p. 110). This applies, for example, to the Fourier transform of the
popular Gaussian radial basis functions (Fasshauer, 2007, Chap. 4).

To summarize the above reasoning, we conclude that the norm of an interpolant in the native
space is a valid indicator that allows us to detect a variety of problems related to smoothness,
which is important in our application.

Numerical results are presented only for Gaussian radial basis function interpolation with
linear detrending. In other words the kernel is given by κ(x,y) = e−‖x−y‖/2σ2

and r1(x) = 1,
r2(x) = x. The function ModelRBF used in our algorithm, see Sect. 9, computes all ξi and αi
via a linear system. Except for σ which can be selected by leave-one-out cross-validation,
these are the only quantities used to determine the radial basis function interpolant.

6 Clustering Approach

The general idea of clustering is: Given a set of points S = {s1, . . . ,sN} in Rn we want to
partition them into k disjunct subsets Si (clusters) with S =

⋃k
i=1 Si. Visually this is often

easy for the human eye in R2 but, algorithmically, it poses a number of problems. A well-
known and popular algorithm is the so-called k-means algorithm which attempts to minimize
distortion.

1. Initial Step: Choose k arbitrary centers c(1)1 , . . . ,c(1)k ∈ S.
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2. Assignment Step: Each point gets assigned to a unique cluster such that

S(t)i = {s j : ‖s j− c(t)i ‖ ≤ ‖s j− c(t)i∗ ‖ for all i∗ = 1, . . . ,k}.

3. Update Step: Calculate the new centers c(t+1)
i = 1∣∣∣S(t)i

∣∣∣ ∑s j∈S(t)i
s j.

6.1 Spectral Clustering

If the smooth parts of the graph of f (p) are spatially well separated from one another, as in
all our test cases, this simple clustering algorithm is an adequate solution to the problem of
discontinuities described in the previous sections. There are, however, alternative clustering
approaches better fit to partition an evaluated sampling into its linked subsets, e. g. so-called
spectral clustering. The results obtained with both methods do not differ significantly for the
presented test problems, though.

One of the steps within spectral clustering is the k-means algorithm again. In that step any
other clustering algorithm can be employed as well. Here we give an overview of spectral
clustering:

1. Create A ∈ RN×N Ai j = exp(−‖si− s j‖2/2σ2) if i 6= j and Aii = 0.

2. With D a diagonal matrix whose diagonal entries are given by the sum of A’s rows, then
construct L = D−1/2AD−1/2.

3. Let x1, . . . ,xk be the k largest eigenvectors of L, orthogonal. X = [x1 . . .xk] ∈ RN×k.

4. Form Y such that Yi j = Xi j/(∑ j X2
i j)

1/2 (normalizing each of X’s rows).

5. Do k-means clustering on the set of points made up of the rows of Y .

6. Assign si to cluster j if row i was assigned to cluster j.

The first step involves Gaussian radial basis functions, where the scaling parameter σ2 can be
chosen automatically to get the “best” clustering results. An analysis of this algorithm and
more details are given by Ng et al. (2002).

6.2 Criteria for Clustering

The function Cluster-f used in the Algorithm RBF-IRKA in Sect. 8 performs the spectral
clustering. Its input is a set of points S = {s1, . . . ,sN} where si = (pi, f (pi)) ∈ Rd ×R5/4r

and its outputs are k subsets S1, . . . ,Sk together with the centers c1, . . . ,ck ∈ Rd , one for each
cluster. Here we pick just the part of the centers belonging to the parameter domain.
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7 Medium Size Model

The last step of the puzzle to derive a fast parametric model order reduction algorithm is the
creation of a model of intermediate size. This step is particularly important for very large scale
problems. The additional cost in the offline phase is negligible, but the amount of time that
can be saved in the online phase is significant. The basic idea is to create a medium size model
by projecting the large scale model onto a subspace via Galerkin projection. This method is
only efficient if the original system matrices are given in an affine form

A(p) =
M

∑
j=1

α j(p)A j, B(p) =
M

∑
j=1

β j(p)B j, C(p) =
M

∑
j=1

γ j(p)C j, (12)

where M is not too large. We then construct a matrix W ∈ Rn×m and a medium system

Am(p) =
M

∑
j=1

α j(p)W T A jW, Bm(p) =
M

∑
j=1

β j(p)W T B j, Cm(p) =
M

∑
j=1

γ j(p)C jW.

We use a Galerkin projection to guarantee stability in case A is dissipative. The chosen projec-
tion matrix W can be generated from the byproducts of our parametric metamodel construction
process. During that process we compute the optimal projection matrices (Petrov-Galerkin
projection as in (3))

V (p1),W (p1), . . . ,V (pN),W (pN)

for each sampled value of the interpolation parameter. W then originates from the matrix

V = [V (p1), . . . ,V (pN),W (p1), . . . ,W (pN)]

by taking the relevant left singular vectors of V , which are those whose singular values are not
close to zero. Such a choice guarantuees that the medium size model interpolates at pi,σk(pi)
for all i,k. We have that W TW = Im with m ≤ 2r×N. Not actually a good reduced order
model, this medium size model is just a good approximation to the original model in the
neighborhood of the interpolation points. However, this is all we need when we set up the
reduced order models.

Other methods can be used to generate a medium size model: the framework of two vari-
able rational interpolation by Antoulas et al. (2012) or projection-based methods as decribed
by Baur et al. (2011a). On the other hand, the easy and effective approach presented here
typically leads to stable systems and has error behaviour, in fact almost as good as the original
system, see Sect. 9. Moreover, we do not have to perform any extra work in comparison to
the other methods, which is why we prefer this method, and we get results that are as good
or better according to preliminary tests not presented in this paper. The reason for the good
performance might be found in the very specific purpose this medium model serves.

8 Algorithm

This section puts together all the points discussed so far. We can sum up our proposed para-
metric model order reduction in pseudo-code, see Algorithm 1.
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Algorithm 1 Offline phase

Require: p1, . . . , pN ∈ Rd , reduction order r (multiple of 4), A j,B j,C j, j = 1, . . . ,M
Ensure: metamodels f̃1, . . . , f̃k for each cluster and cluster centers c1, . . . ,ck ∈Rq, A j

m,B
j
m,C

j
m

1: Let Σ0 ∈ R be a random r-dimensional vector
2: for i← 1 : N do
3: [Σi,Vi,Wi]← IRKA(A(pi),B(pi),C(pi),Σi−1)
4: sort Σ

5: f (pi)← [poly(−[Σ1, . . . ,Σ4]), ...,poly(−[Σr−3, . . . ,Σr])]

6: [W,S, ]← svd([V1, . . .VN ,W1, . . . ,WN ]),0)
7: R← rank(S),
8: W ←W (:,1 : R)
9: Ai

m ←W T AiW , Bi
m ←W T Bi, Ci

m ←CiW
10: for i← 1 : N do
11: si ← [pi, f (pi)] ∈ Rq+5/4r

12: S← {s1, . . . ,sN}
13: k← 1
14: while k < kmax do
15: [I1, . . . , Ik,c1, . . . ,ck]← Cluster-f(S,k)
16: for i← 1 : k do
17: f̃i ←ModelRBF(p(Ii), f (p(Ii))
18: if maxi(‖ f̃i‖κ)< Nmax then
19: done
20: else
21: k← k+1

12



Comments

1. We typically pick the parameters p1, . . . , pN by latin hypercube sampling in the param-
eter domain. If q = 1 we use a regular grid, however. (There are many other sampling
techniques, which we did not investigate. This could be future work.)

2. The decision on the chosen reduction order r can be made by looking at a good reduc-
tion order for a particular parameter. In general, for a complex problem r can vary over
the parameter domain. Then it makes sense to decompose the parameter domain into
regions of different reduction orders and create a metamodel for the domains individu-
ally.

3. The matrices A j,B j,C j are as in (12).

4. The centers belong to parameter space, even though we cluster in the orthogonal direct
sum of parameter space and coefficient space.

5. We start IRKA first with a random vector Σ0, but for subsequent runs we use solutions
of a close-by parameter. In the setup we assume that parameters pi are ordered in such
a way that neighbors in the ordered sequence are also close in the parameter domain.
A parallelization of the algorithm could just start with a random starting vector for all
parameters.

6. We need to sort Σ since we heuristically separate the points into quadruples in order to
convert them to several distinct polynomials. They are sorted by the value of the real
part. But one needs to make sure that the set in one grouping is invariant under complex
conjugation.

The sub-functions used in this algorithm are IRKA as described in Sect. 2.2, Cluster-f
as described in Sect. 6.2 and a radial basis function approximation algorithm. We use Gaus-
sian radial basis functions with linear detrending in all our numerical experiments, but our
preliminary tests have shown that other choices give equivalently good results as expected.
Algorithm 1 returns the reduced order model, which in this case is given by the cluster cen-
ters c1, . . . ,ck, the metamodels f̃ j on each of the clusters, as well as the medium size matrices
Ai

m,B
i
m,C

i
m. With this information we can fast set up a reduced order state-space system for

any given parameter. And fast is important here. Two constants of the algorithm need to be
chosen beforehand, kmax and Nmax. We simply pick kmax to be a reasonable number depend-
ing on the total number of data points N such that the average sample size of a cluster can
still be expected to cover the corresponding cluster domain well in terms of the fill distance.
Since it turns out that k = 1 is sufficient in all tested real world examples we cannot report on
best choices from experience. The constant is still included to prevent an infinite while-loop,
though. The more important number by far is Nmax in practice. We choose it to be 50/h where
h is the fill distance as in equation (11). In the online phase we want to create the system
matrices of size r given parameter p∗. The first step is to determine to which of the k clusters
the chosen parameter belongs by finding the center c j which is closest to p∗. Once we know
its index j we can feed the radial basis function approximation f̃ j together with p∗ into the
algorithm. For details of the online phase see Algorithm 2.
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Algorithm 2 Online phase

Require: p∗, f̃ j , Ai
m,B

i
m,C

i
m

Ensure: Ar(p∗),Br(p∗),Cr(p∗)

1: f ← f̃ j(p∗)
2: Σ←−roots( f )
3: Am ← ∑ p∗i Ai

m, Bm ← ∑ p∗i Bi
m, Cm ← ∑ p∗i Ci

m
4: for i← 1 : r do
5: Vi ← (ΣiI−Am)

−1Bm
6: Wi ← (ΣiI−AT

m)
−1CT

m

7: [V, , ]← svd(real([V1, . . .VN ]), imag([V1, . . . ,VN ]))
8: [W, , ]← svd(real([W1, . . .WN ]), imag([W1, . . . ,WN ]))
9: V ← V (:,1 : r)

10: W ←W (:,1 : r)
11: Ar ←W T AmV , Br ←W T Bm, Cr ←CmV

When we refer to the algorithms RBF-IRKA and RBF-IRKAm in Sect. 9 we mean the
combination of the offline and the online algorithm described above, where RBF-IRKAm is
just as described, equalling RBF-IRKA except for the additional creation of a medium model.
When referring to RBF-IRKA, W in Algorithm 1 is simply assigned the identity.

9 Numerical Results

In order to show the accuracy and efficiency of our method we present four different paramet-
ric examples. The first example is a parametric benchmark problem describing a cantilever
beam. Its challenging feature is a transfer function that cannot easily be interpolated in the
frequency domain as it has many peaks. The second and third examples are represented by
one and the same large-scale system, modelled once with a single real parameter and once
again with three independent real parameters. Actual timings are shown for the example,
which confirm the efficiency of our proposed algorithm for a three-dimensional parameter do-
main. The fourth example has been artificially created and illustrates why clustering is needed
and what problems can appear at least theoretically, including a detailed discussion.

9.1 Parametric Beam Model

The parametric beam model is the finite element discretization of a 3D cantilever Timoshenko
beam (Panzer et al., 2009). Parametrized by the length ∈ [0.8m,1.2m] of the beam, the system
has a size given by n = 240. In Fig. 2 we can see the transfer function for different values of
the parameter.

In order to compare the H2-error between the full and the reduced order model it is helpful
to know the H2-norm of the system and how it varies with the parameter shown in Fig. 3.

In Fig. 4 (Fig. 5, respectively) we see the H2-error for reduced order systems of size r = 4
with N = 3 (N = 5, respectively) interpolation points. We compare the error for systems
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Figure 2: Bode plot of the parametric beam model for three different choices of the parame-
ter. The model is parametrized by the beam length. Transfer response peaks in the
frequency range move left along the x-axis, when the length increases

reduced via IRKA directly, another reduced system created by radial basis function interpola-
tion with subsequent projection on the interpolated poles (RBF-IRKA), and a third being the
projection of the approximated medium size system onto the computed interpolation points
(RBF-IRKAm). It turns out there is no need to cluster at all, partly due to the little num-
ber of samples N in this beam example. Since r = 4 we directly use all coefficients of the
characteristic polynomial as the function f .

Notice the interpolation points in Fig. 4 being those where the curves match. The optimal
reduced order model performs better than the one created by interpolation. However, the RBF-
IRKA and RBF-IRKAm are still comparably good and the difference between inclusion and
exclusion of the medium size model is not visible in the plot. A reduction of the system size
from 240 to 4 has been achieved with an H2-error of around 10−6 which corresponds to a

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0.4
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0.8

1
·10−3
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‖H
p
‖ H
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Figure 3: H2-norm of the Timoshenko beam system as a function of the parameter
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Figure 4: H2-error comparison be-
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three interpolation points
and reduced size r = 4.
IRKA behaves slightly
better, while there exists
no visible difference
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algorithms
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Figure 5: H2-error comparison be-
tween IRKA, RBF-IRKA
and RBF-IRKAm for five
interpolation points and
reduced size r = 4. All
three algorithms exhibit
errors of comparable
magnitudes

relative error of about 10−3. This is achieved by a parametric model and the optimal error
(IRKA error) is of the same magnitude in the case of five interpolation points (see Fig. 5).

Creating the reduced order model for each individual parameter directly via IRKA is not
an option in practice as it depends on the reduced size r and the number of IRKA iterations
#IRKAiter. Let T be the time it takes to solve one large system IRKA takes 2r×#IRKAiterT
to construct the model for one parameter. In the case of the RBF-IRKA algorithm it takes 2rT
and in the case of the RBF-IRKAm it only takes 2rt where t is the time for one medium size
system solve. The large system size of this Timoshenko beam is 240 compared to a medium
system size of 32 (40 respectively) for 3 (5 respectively) interpolation points. The average
number of IRKA iterations in this example is around 10. Actual timings are given for the
following example, which is large scale.

9.2 Anemometer

A hot-wire anemometer is a device which consists of a heater and temperature sensors on
each side. It is used to measure the fluid flow past the device. The underlying model is
a convection-diffusion partial differential equation. In this first example, we will study the
one-parameter model where the parameter is given by the fluid velocity. This model can be

16



101 102 103 104 105
−100

−80

−60

−40

−20

0

frequency

2
0
lo
g
1
0
(‖
H

p
(s
)‖
)

p=0.08
p=0.44
p=0.8

Figure 6: Bode plot for the 1D anemometer, the three curves representing different choices
for the parameter

found in the benchmark collection “MOR Wiki”1 and is explained in detail by Moosmann
et al. (2005); Baur et al. (2011b). The system size n of the anemomenter equals 29,008. One
single system solve is expensive and we, therefore, need to avoid them at least in the online
phase. Furthermore, the anemometer’s parametric dependency is affine, and only the system
matrix A depends on the parameter: A(p) = A0 + pAp, where Ap and A0 are given system
matrices. We show the transfer function, as for the beam example, considering different values
of the parameter, see Fig. 6. In order to illustrate the quality of the reduced order model we
compare for several parameters the H2-error between the reduced and full order model, where
the reduced order model is either created by IRKA directly or by RBF-IRKAm. Both reduced
order models are of size r = 4, where we take N = 5 interpolation points for RBF-IRKAm. The
corresponding H2-error is plotted in Fig. 7. Use of clustering is not necessary, as in the beam
example above partly due to the sample size of N which is small but sufficient. Furthermore
r = 4 such that we again compute all coefficients of the characteristic polynomial. In order to
understand the relative H2-error we compute the H2-norm for some values of the parameter
to find that it grows from p = 0 to p = 1 with

‖H0‖H2 ≈ 0.014, ‖H1‖H2 ≈ 24.

In addition, Table 1 compares construction timings of reduced models, divided into offline
and online phase for r = 4,N = 5 as above and r = 8,N = 10. In these cases the H2-error
is of the same magnitude for IRKA and RBF-IRKAm. Trivially by definition, IRKA spends
its entire time in the online phase. RBF-IRKAm’s online phase timings comprise radial basis
function evaluation and set-up of the one-parameter reduced order system. It can be observed

1http://www.modelreduction.org

17



0 0.2 0.4 0.6 0.8 1
10−10

10−5

100

parameter

H
2
er
ro
r

IRKA
RBF-IRKAm

Figure 7: H2-error, comparison between IRKA and RBF-IRKAm, with
N = 5, r = 4

r = 4,N = 5 r = 8,N = 10
offline online offline online

IRKA 0s 61s 0s 421s
RBF-IRKAm 285s 0.04s 1,234s 0.2s

Table 1: Timings for the online and offline phase of the 1D anemometer example, IRKA com-
pared to RBF-IRKAm

from these results, that for r = 4 RBF-IRKAm is faster overall (considering both online and
offline phase), when we need to evaluate the system at five different parameter locations at
least. For r = 10 system evaluations for two parameter locations already compensate what
has been spent in the offline phase. In general, we see that the timings for the online phase,
the crucial phase, are relatively low and mostly yield a comparable error of the same order of
magnitude as IRKA.

9.3 Anemometer 3D

In order to show that the proposed algorithm is feasible for problems in which the parameter
does not lie in a one-dimensional interval but in a multidimensional space, we present results
for a three-dimensional version of the previously discussed anemomoter model. The three
parameters are given by p0 = c (specific heat), p1 = v (fluid velocity) and p2 = κ (thermal
conductivity). The affine structure is then given by

A(p) = A0 + p2A1 + p0 p1A2, E = E0 + p0E1.

Error bounds for radial basis function interpolation (Rieger et al., 2010, Sect. 4.3) depend
on the dimension of the parameter space in many ways. While the involved constant as well
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r = 4,N = 5 r = 8,N = 5 r = 8,N = 10 r = 12,N = 10
IRKA 3.19×10−5 3×10−8 3×10−8 1.3×10−8

RBF-IRKAm 3.21×10−5 1×10−6 2×10−8 1.6×10−8

Table 2: Average H2-error of the 3D anemometer example, IRKA compared to RBF-IRKAm

as the norm of the native space increase with dimensionality, the approximation order gets
worse. Therefore, larger errors are to be expected in higher dimension. On the other hand,
standard radial basis function interpolation scales comparably good and well-behaved or, in
other words, smooth functions in a high-dimensional parameter domain can still be approx-
imated and accurate results can be achieved. The modest increase to three dimensions does
not pose a problem in this test case. The average H2 error for different reduction orders r and
number of interpolation points N of the reduced model and the full model are shown in Ta-
ble 2. “Average” signifies we take the mean for ten randomly selected parameters p1, . . . , p10
in the domain, i. e.

1
10

10

∑
i=1
‖Ĥpi −Hpi‖H2 ,

where Ĥpi is computed via IRKA and RBF-IRKAm, respectively.

9.4 Synthetic Model

Finally, we include this synthetic model in our discussion because none of the presented prac-
tical problems exhibits the discontinuity issues described in Sect. 3.1. The synthetic model,
however, makes clustering necessary. It is also the only model we found in which direct in-
terpolation of σ1, . . . ,σr fails as it is represented by a system where eigenvalue splittings and
crossings occur. First we have a look at this system’s transfer function in Fig. 8 for a number
of different parameter values. Here we can observe that the transfer functions look rather dif-
ferent for different parameters. In fact, the system is constructed in order for the peaks to vary
in location and intensity over the parameter range, such that no parts of the different transfer
functions are equal. Not even their behaviour towards infinity is the same.

The next step is to consider how the eigenvalues behave as a function of the parameter.
This can be seen in Fig. 9, where the real parts of the four eigenvalues are plotted. For most
of the interval one can see three values, which means we have two real eigenvalues and one
complex conjugate pair of eigenvalues. Even in such a simple one-parameter example it is not
clear how to create a metamodel: Notice that some eigenvalues split. If we, however, compare
eigenvalues to normalized coefficients, i. e. to the function f , see the coloured dots in Fig. 10,
it becomes clear that the matter can be solved by a good clustering algorithm. For the human
eye, the parameter domain clustering in this picture is obvious.

As explained above in Sect. 6.2 we select the d+5/4r-dimensional set of the parameters to-
gether with the coefficients of the characteristic polynomial as clustering features. The result-
ing piecewise defined metamodel for the function f (p), with the parameter space partitioned
by clustering, is shown in Fig. 10, see the black lines. The clustering algorithm generates three
subsets and thus yields a metamodel f̃ (p) which involves jumps. One can see that around the
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Figure 8: Transfer functions for several parameter values, synthetic example. This parametric
system is designed to exhibit peaks varying in location and density

second jump, data points are missing due to the fact that IRKA does not converge for param-
eters in that region. We started with 30 samples of p to get 28 data points. Here we pick
kmax = 5 and Nmax = 100N = 3,000. The filling distance in this case is h = 1/(2N), meaning
Nmax = 50/h. Hence, we accept a certain clustering if within each cluster the native norm of
the radial basis function approximant is below 50/h. This bound has been determined empir-
ically to give adequate results. The reason we do include h here is that for smooth functions
one can expect the norm to grow anti-proportional to an exponent of h. We do not know this
exponent and, therefore, pick it to equal 1 which seems satisfactory in this case.

The algorithm including clustering compares favourably with direct IRKA for the synthetic
example. A medium size model has not been computed here, as this system, having a rather
small system size of 100, is constructed to show the difficulties that can occur when f (p) is
interpolated. The overall results for the synthetic problem are illustrated in Fig. 11. The error
for the RBF-IRKA algorithm is displayed in a collection of three curves which reflects the fact
three partitions obtained by clustering. The curve formed by the triangles does not converge
for some parameters but does create significantly better reduced order models when it does.
Along the parameter range a fine sampling is used to compute error curves, while a coarser
sampling is used to set up the metamodel. For each sample location the starting value for
IRKA is selected to be the result of IRKA at a nearby location. Hence, IRKA may converge
during evaluation even if it does not return during metamodel creation. Indeed, the parameter
region discussed above does only yield IRKA results in the evaluation phase.

10 Discussion

Regarding parametric linear time-invariant systems, we desire to decrease the computational
effort to apply H2-optimal model order reduction by IRKA for a large number of individual
realizations of the parameter. For that purpose, we discuss how radial basis function interpo-
lation can be applied to approximate the system reduced by IRKA, given a number of IRKA
runs for different parameter locations, a so-called sampling. The idea to relax H2-optimality

20



0 0.2 0.4 0.6 0.8 1

10−2

100

102

104

Figure 9: Real parts of the eigenval-
ues Σ(p) for r = 4 and several
p, including crossings and bi-
furcations. In most of the pa-
rameter domain, three different
values are visible

0 0.2 0.4 0.6 0.8 1
10−2

102

106

1010

Figure 10: Coefficients f (p) of the
corresponding characteristic
polynomial for r = 4 and sev-
eral p (colored dots) and the
interpolated coefficients f̃ (p)
(black line)

to gain a speed-up is based on our hope to achieve an interpolation that violates H2-optimality
only slightly in practical applications.

Previous publications have already shown that an interpolation of reduced matrices is viable
(Amsallem and Farhat, 2008; Panzer et al., 2010). In constrast to these methods, our main
suggestion is to use the offline phase sampling in order to approximate all eigenvalues, or
poles, of the reduced-order system matrix instead. Here the approximation is based on a radial
basis expansion of the coefficients of the corresponding polynomial. Our proposed algorithm
is, moreover, designed to deal with discontinuities by a clustering approach involving the so-
called native Hilbert space norm of the interpolant. In addition, we recommend to use the
results from the sampling phase to construct a model of intermediate size and further speed up
the set-up of our approximate reduced-order system.

We have extensively discussed the details of the approach, including basic assumptions
we make, as well as possible difficulties that might occur. Three simpler practical examples
and a more challenging synthetic problem are presented including numerical results and H2-
error comparisons. These first tests encourage our hope that the computation of approximate
solutions of a parametric linear time-invariant system can be accelerated without a significant
loss of accuracy in H2.

The three practical examples provided are characterized by a low-dimensional parameter
space, simple and smooth parameter dependencies and a lack of eigenvalue bifurcations of the
reduced system. Eigenvalue crossings and splittings have indeed been explored with a syn-
thetic problem. Examples including higher-dimensional parameter spaces as well as stronger
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and possibly local nonlinearities at different scales have been left for future work, though. It
is also not unlikely to encounter non-synthetic problems that exhibit eigenvalue bifurcations,
such as the Navier-Stokes equations with varying Reynold’s number. An examination of the
numerical performance, including error behaviour, of the presented method for such prob-
lems is much desirable. Further numerical investigations might focus on the case where the
interpolated reduced system is unstable and has to be stabilized. The approach itself might
also be further extended. As mentioned before, kernel approximation can incorporate finite-
dimensional Hilbert spaces of functions such as polynomials of a certain degree. Known
functional parametric dependencies of entries Ai j(p) of the system matrix can thus be consid-
ered and reproduced explicitely by radial basis function interpolation. Finally, known error
bounds of model order reduction and radial basis function interpolation might be combined
in order to be able to compare the theoretical possibilities of the approach versus competitive
methods.
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