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Abstract

Fractional di�erential equations play an important role in science and technology. Many prob-

lems can be cast using both fractional time and spatial derivatives. In order to accurately

simulate natural phenomena using this technology one needs �ne spatial and temporal dis-

cretizations. This leads to large-scale linear systems or matrix equations, especially when-

ever more than one space dimension is considered. The discretization of fractional di�erential

equations typically involves dense matrices with a Toeplitz structure. We combine the fast

evaluation of Toeplitz matrices and their circulant preconditioners with state-of-the-art linear

matrix equation solvers to e�ciently solve these problems, both in terms of CPU time and

memory requirements. Numerical experiments on typical di�erential problems with fractional

derivatives in both space and time showing the e�ectiveness of the approaches are reported.
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1 Introduction

The study of integrals and derivatives of arbitrary order, so-called fractional order, is an old topic in
mathematics going back to Euler and Leibniz (see [1] for historical notes). Despite its long history
in mathematics it was not until recently that this topic has gained mainstream interest outside the
mathematical community. This surging interest is mainly due to the inadequateness of traditional
models to describe many real world phenomena. The well-known anomalous di�usion process is one
typical such example [2]. Other applications of fractional calculus are viscoelasticity - for example
using the Kelvin-Voigt fractional derivative model [3, 4], electrical circuits [5, 6], electro-analytical
chemistry [7] or image processing [8].
With the increase of problems using fractional di�erential equations there is corresponding interest

in the development and study of accurate, fast, and reliable numerical methods that allow the
solution of these types of equations. There are various formulations for the fractional derivative
mainly divided into derivatives of Caputo or Riemann-Liouville type (see de�nitions in Section 2).
So far much of the numerical analysis focused on ways to discretize these equations using either
tailored �nite di�erence [9, 10] or �nite element [11, 12] methods. In this paper we focus on the
solution of the discretized equations when a �nite di�erence approximation is used. Of particular
importance is the preconditioning of the linear system, which can be understood as additionally
employing an approximation of the discretized operator. For some types of fractional di�erential
equations preconditioning has recently been considered (see [13, 14]). Another approach that has
recently been studied by Burrage et al. is to consider a matrix function approach to solve the
discretized system (see [15] for details). Our work here is motivated by some recent results in [16]
where the discretization via �nite di�erences is considered in a purely algebraic framework.
Our work di�ers from previous results in the sense that our aim is to derive fast and reliable

solvers for a variety of setups that are sequentially built upon each other. We therefore structure
the paper as follows. Section 2.1 is devoted to �rst establish both Caputo and Riemann-Liouville
de�nitions of a fractional derivative. In Section 3 we give four di�erent problems all of fractional
order. The �rst problem introduced reveals the basic matrix structure that is obtained when tailored
�nite di�erence methods are applied. The second problem given in Section 3.2 includes a fractional
derivative in both space and time. The resulting matrix structure is then not a simple structured
linear system but rather a (linear) matrix Sylvester equation. An even further structured equation
is obtained when we next consider a two-dimensional (in space) setup. The fourth problem combines
two-dimensional spatial derivatives of fractional order with a time-fractional derivative, which in
turn leads to a tensor structured equation. In Section 4 we turn to constructing fast solvers for the
previously obtained matrix equations. We therefore start by introducing circulant approximations
to the Toeplitz matrices, which are obtained as the discretization of an instance of a fractional
derivative. These circulant matrices are important as preconditioners for matrices of Toeplitz type
but can also be used with the tailored matrix equation solvers presented in Section 4.2 either of
direct or preconditioned form. Section 4.3 introduces some of the eigenvalue analysis needed to show
that our methods perform robustly within the given parameters. This is then followed by a tensor-
valued solver in Section 4.5. The numerical results given in Section 5 illustrate the competitiveness
of our approaches.
Throughout the manuscript the following notation will be used. matlab R© notation will be used

whenever possible; for a matrix U, vec(U) denotes the vector obtained by stacking all columns of
U one after the other; A⊗B denotes the Kronecker product of A and B.
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2 Fractional calculus and Grünwald formulae

2.1 The fractional derivative

In fractional calculus there are competing concepts for the de�nition of fractional derivatives. The
Caputo and the Riemann-Liouville fractional derivatives [9] are both used here and we use this
section to brie�y recall their de�nition.
Consider a function f(t) de�ned on an interval [a, b]. Assuming that f(t) is su�ciently often

continuously di�erentiable [9] the Caputo derivative of real order α with (n− 1 ≤ α < n) is de�ned
as

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)ds

(t− s)α−n+1 . (1)

Based on the discussion in [16] the Caputo derivative is frequently used for the derivative with
respect to time. We also de�ne the Riemann-Liouville derivative: assuming that f(t) is integrable
for t > a a left-sided fractional derivative of real order α with (n− 1 ≤ α < n) is de�ned as

RL
a Dα

t f(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(s)ds

(t− s)α−n+1 , a < t < b. (2)

Analogously, a right-side Riemann-Liouville fractional derivative is given by

RL
t Dα

b f(t) =
(−1)n

Γ(n− α)

(
d

dt

)n ∫ b

t

f(s)ds

(s− t)α−n+1 , a < t < b. (3)

If one is further interested in computing the symmetric Riesz derivative of order α one can simply
perform the half-sum of the left and right-side Riemann-Liouville derivatives, that is,

dαf(t)

d |t|α
=t D

α
Rf(t) =

1

2

(
RL
a Dα

t f(t) + RL
t Dα

b f(t)
)
. (4)

Here a connection to both the left-sided and the right-sided derivatives is made1. In the remainder
of this paper we want to illustrate that fractional di�erential equations using the formulations
together with certain discretization approaches lead to similar structures at the discrete level. Our
goal is to give guidelines and o�er numerical schemes for the e�cient and accurate evaluation of
problems of various form.

2.2 Numerical approximation

The discretization in the fractional derivatives introduced in Section 2.1 is based on a classical
concept in the discretization of FDEs using the formulae by Grünwald-Letnikow [17, 9] de�ned as

RL
a Dα

t f(t) = lim
M→∞

1

hα

M∑
k=0

gα,kf(x− kh) (5)

1In this work we are not debating, which of these derivatives is the most suitable for the description of a natural
phenomenon.
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for the right-side derivative and

RL
t Dα

b f(t) = lim
M→∞

1

hα

M∑
k=0

gα,kf(x+ kh) (6)

for the left-side derivative, which are of �rst order [10]. Note that h = 1
M so thatM becomes larger

as the mesh-parameter h is re�ned. The coe�cients gα,k are de�ned as

gα,k =
Γ(k − α)

Γ(−α)Γ(k + 1)
= (−1)k

(
α
k

)
. (7)

For the e�cient computation of the coe�cients gα,k one can use the following recurrence relation2

[9]

gα,0 = 1, gα,k =

(
1− α+ 1

k

)
gα,k−1. (8)

3 Some model problems and discretizations

In this section we want to introduce four model problems and their corresponding discretizations.
We emphasize that these are neither the only relevant formulations nor the only possible ways to
discretize each problem. Instead, the purpose of this presentation is to show that rather classical
well-studied discretization techniques lead to interesting model problem similarities that can be
exploited during the numerical solution of the resulting matrix equations.

3.1 Problem 1

We start with the simple fractional di�usion equation

du(x, t)

dt
− xD

β
Ru(x, t) = f(x, t) (9)

discretized in time by an implicit Euler scheme to give

un+1
i − uni

τ
=

1

hβx

i+1∑
k=0

gβ,ku
n+1
i−k+1 + fi (10)

using the abbreviation un+1
i := u(xi, tn+1), where n is the index in time.

For the problem (9) the implicit Euler and Crank-Nicholson discretizations are unconditionally
stable when a shifted Grünwald-Letnikov formula is used

RL
x Dβ

b u(x, t) =
1

hβx

nx∑
k=0

gβ,ku(x− (k − 1)hx, t) +O(hx);

one can obtain an approximation for the fractional derivative as

RL
x Dβ

b u(x, t) =
1

hβx

nx∑
k=0

gβ,ku(x− (k − 1)hx, t)

2 For a matlab implementation this can be e�ciently computed using y = cumprod([1, 1− ((α+ 1)./(1 : n))]) where
n is the number of coe�cients.
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where nx denotes the number of grid points in space (see [10] for details).
From now on we assume that a shifted version of the Grünwald-Letnikov formula is used whenever

we approximate the Riemann-Liouville derivatives. It is clear that all our techniques apply to the
unshifted case as well. Equipped with these tools we can write the right-hand side of (10) as

h−βx
[
gβ,i+1 gβ,i . . . . . . gβ,1 gβ,0

]


un+1
0

un+1
1

un+1
2
...

un+1
i

un+1
i+1


and collecting this for all components i into one single matrix system we get

h−βx



gβ,1 gβ,0 0
gβ,2 gβ,1 gβ,0
gβ,3 gβ,2 gβ,1 gβ,0
...

. . . gβ,2 gβ,1
. . .

...
. . .

. . .
. . .

. . . gβ,0 0
...

. . .
. . .

. . . gβ,2 gβ,1 gβ,0
gβ,nx gβ,nx−1 . . . . . . gβ,2 gβ,1


︸ ︷︷ ︸

Tnxβ



un+1
0

un+1
1

un+1
2
...

un+1
n−1
un+1
n


.

Following [16] we approximate the spatial derivative of order 1 ≤ β ≤ 2 using the symmetric
Riesz derivative taken as the weighted sum of the left- and right-sided Riemann-Liouville fractional
derivative. Hence, we obtain the di�erentiation matrix

Lnxβ =
1

2

(
Tnx
β + (Tnx

β )T
)
.

Using this notation it is easy to see that the implicit Euler method for solving (10) requires the
solution of the matrix system (

Inx − τLnxβ
)

un+1 = un + τ f (11)

at every time-step. We discuss the e�cient solution of this system in Section 4.

3.2 Problem 2

The second problem we consider includes an additional time-fractional derivative, which leads to
the following equation

C
0 D

α
t u(x, t)− xD

β
Ru(x, t) = f(x, t). (12)

together with a zero initial condition. We again approximate the Riesz derivative as the weighted
sum of the left- and right-sided Riemann-Liouville fractional derivatives used before. The Caputo
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time-fractional derivative C
0 D

α
t u(x, t) is then approximated using the Grünwald-Letnikov approxi-

mation in Section 2.2. We �rst discretize in time to get

Tnt+1
α


u(x, t0)
u(x, t1)
u(x, t2)

...
u(x, tnt)

− Int+1


xD

β
Ru(x, t0)

xD
β
Ru(x, t1)

xD
β
Ru(x, t2)

...

xD
β
Ru(x, tnt)

 = Int+1


f(x, t0)
f(x, t1)
f(x, t2)

...
f(x, tnt)

 , (13)

where

Tnt+1
α :=



gα,0
gα,1 gα,0
gα,2 gα,1 gα,0
. . .

. . .
. . .

. . .
. . .

. . .
. . . gα,1 gα,0

gα,nt . . . . . . gα,2 gα,1 gα,0


=

 gα,0 0
... Tnt

α

gα,nt



Here, Tnt+1
α represents the discrete Caputo derivative. We now want to incorporate the initial

condition as we know u(x, t0) = u0 and hence eliminate the �rst row from (13) and incorporate the
initial condition into the right-hand side to get

Tnt
α


u(x, t1)
u(x, t2)

...
u(x, tnt)

− Int


xD

β
Ru(x, t1)

xD
β
Ru(x, t2)

...

xD
β
Ru(x, tnt)

 =


f(x, t1)
f(x, t2)

...
f(x, tnt)

−


gα,1
gα,2
...

gα,nt

u(x, t0). (14)

If we now discretize in space and recall the zero initial condition, the �rst line in (14), namely

gα,0u(x, t1)− xD
β
Ru(x, t1) = f(x, t1)

becomes

gα,0

nx∑
i=1

u1i ei − Lnxβ


u10
u11
...
u1nx

 =

nx∑
i=1

f1i ei − gα,2
nx∑
i=1

u0i ei (15)

gα,0I
nx


u11
u12
...
u1nx


︸ ︷︷ ︸

u0

−Lnxβ


u10
u11
...
u1nx

 = Inxf1 − gα,2Inxu0, (16)

where Lnxβ = 1
2

(
Tnx
β + (Tnx

β )T
)
is the discrete version of the symmetric Riesz derivative as intro-

duced in Problem 1. This space-time discretization leads to the following algebraic linear system
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in Kronecker form (
(Tnt

α ⊗ Inx)− (Int ⊗ Lnxβ )
)

u = f̃ (17)

where, using matlab notation, u = [u1; u2; . . . ,unt ], and each ui is a vector of dimension nx
associated with the point i in time. Similarly, we de�ne f̃ = [f1; f2; . . . , fnt ]. Introducing the matrices
U = [u1,u2, . . . ,unt ] and F = [f1, . . . , fnt ], we can rewrite (17) as

U(Tnt
α )T − Lnxβ U = F, (18)

which shows that U is the solution to a Sylvester matrix equation (see, e.g., [18]), with Tnt
α lower

triangular and Lnxβ a dense symmetric matrix. In Section 4 we shall exploit this key connection to
e�ciently determine a numerical approximation to U and thus to u, by working with (18) instead
of the much larger problem in (17).

3.3 Problem 3

The next problem is a two-dimensional version of the �rst problem given by

du(x, y, t)

dt
− xD

β1

R u(x, y, t)− yD
β2

R u(x, y, t) = f(x, y, t), (19)

with Dirichlet boundary conditions and a zero initial condition. Using again the shifted Grünwald
�nite di�erence for the spatial derivatives, gives in the x-direction

xD
β1

R u(x, y, t) =
1

Γ(−β1)
lim

nx→∞

1

hβ1
x

nx∑
k=0

Γ(k − β1)

Γ(k + 1)
u(x− (k − 1)hx, y, t)

and then in the y-direction

yD
β2

R u(x, y, t) =
1

Γ(−β2)
lim

ny→∞

1

hβ2
y

ny∑
k=0

Γ(k − β2)

Γ(k + 1)
u(x, y − (k − 1)hy, t).

With the previously de�ned weights and employing an implicit Euler method in time, we obtain
the following equation

1

τ

(
un+1 − un

)
=
(
Iny ⊗ Lnxβ1

+ L
ny
β2
⊗ Inx

)
︸ ︷︷ ︸

L
nxny
β1,β2

un+1 + f . (20)

To proceed with the time stepping, one now has to solve the large linear system of equations(
Inxny − τLnxnyβ1,β2

)
un+1 = un + τ f . (21)

at each time step tn. Due to the structure of L
nxny
β1,β2

we have

Inxny − τLnxnyβ1,β2
= Iny ⊗

(
1

2
Inx − τLnxβ1

)
+

(
1

2
Iny − τLnyβ2

)
⊗ Inx ,

8



which has a now familiar Kronecker structure. Proceeding as for Problem 2, the linear system
(Inxny − τL

nxny
β1,β2

)un+1 = f̂ , with f̂ = un + τ f is equivalent to the following Sylvester matrix
equation, (

1

2
Inx − τLnxβ1

)
U + U

(
1

2
Iny − τLnyβ2

)
= F̂, (22)

in the sense that un+1 can be obtained from the solution of (22) as un+1 = vec(U); here F̂ is such
that f̂ = vec(F). Note that Lnxβ1

and L
ny
β2

are both symmetric, and are in general di�erent.
Once again, we postpone the discussion of how to solve this matrix equation e�ciently at each

time step, so as to obtain an approximation to un+1, to Section 4.

3.4 Problem 4

Using the above introduced methodology, in this section we discuss the case when a fractional
derivative is used also in time. We assume again that the Caputo time-derivative is employed, so
that the FDE is de�ned by

C
0 D

α
t u(x, y, t)− xD

β1

R u(x, y, t)− yD
β2

R u(x, y, t) = f(x, y, t), (23)

with a Dirichlet boundary condition and zero initial condition. Following the same steps as in our
preceding derivation, we �rst discretize in time

Tnt+1
α


u(x, y, t0)
u(x, y, t1)
u(x, y, t2)

...
u(x, y, tnt)

− Int+1


xD

β1

R u(x, y, t0) + yD
β2

R u(x, y, t0)

xD
β1

R u(x, y, t1) + yD
β2

R u(x, y, t1)

xD
β1

R u(x, y, t2) + yD
β2

R u(x, y, t2)
...

xD
β1

R u(x, y, tnt) + yD
β2

R u(x, y, tnt)

 = Int+1


f(x, y, t0)
f(x, y, t1)
f(x, y, t2)

...
f(x, y, tnt)

 .
(24)

Analogously to Section 3.2 we incorporate boundary and initial conditions. We then eliminate the
�rst row in (24) and consider the �rst row of the remaining equation,

gα,0u(x, y, t1)− xD
β1

R u(x, y, t1)− yD
β2

R u(x, y, t1) = f(x, y, t1)

giving for the left-hand side

gα,0I
nxnyu1 −

(
1

hβ1
Iny ⊗ Lnxβ1

+ L
ny
β2
⊗ 1

hβ2
Inx
)

︸ ︷︷ ︸
Lβ1,β2

u1.

Proceeding in this manner for all time-steps we ob the a space-time discretization written as the
following algebraic linear system(

Tnt
α ⊗ Inxny − Int ⊗ L

nxny
β1,β2

)
u = f̃ . (25)

The space-time coe�cient matrix now has a double tensor structure, making the numerical solution
of the associated equation at each time step much more complex than in the previous cases. An
e�ective solution strategy resorts to recently developed algorithms that use approximate tensor
computations; see Section 4.5.
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4 Matrix equations solvers

This section is devoted to the introduction of the methodology that allows us to e�ciently solve
the problems presented in Sections 3.1 to 3.4. We saw that the discretization of all problems led
to a system that contained a special structure within the matrix, the so-called Toeplitz matrices
discussed in the next section. We there recall e�cient ways to work with Toeplitz matrices and
in particular focus on techniques for fast multiplications and introduce approximations to Toeplitz
matrices that can be used as preconditioners.
We then proceed by introducing methods that are well-suited for the numerical solution of large

scale linear matrix equations, and in particular of Sylvester equations, as they occur in Problem 2
and 3, and less explicitly in Problem 4. We shall mainly report on the recently developed KPIK
method [19], which seemed to provide a fully satisfactory performance on the problems tested; the
code is used as a stand alone solver. We additionally use this method as a preconditioner within a
low-rank Krylov subspace solver.
Lastly, we discuss the tensor-structured problem and introduce a suitable solver based on recently

developed tensor techniques [20, 21].
As a general remark for all solvers we are going to survey, we mention that they are all related

to Krylov subspaces. Given a matrix A and a vector r0, the Krylov subspace of size l is de�ned as

Kl(A, r0) = span
{
r0,Ar0, . . . ,Al−1r0

}
.

As l increases, the space dimension grows, and the spaces are nested, namelyKl(A, r0) ⊆ Kl+1(A, r0).
In the following we shall also consider wide forms of generalizations of this original de�nition, from
the use of matrices in place of r0, to the use of sequences of shifted and inverted matrices instead
of A.

4.1 Computations with Toeplitz matrices

We brie�y discuss the properties of Toeplitz matrices and possible solvers. As Ng points out in
[22] many direct solution strategies exist for the solution of Toeplitz systems that can e�ciently
solve these systems often recursively. We mention here [23, 24, 25, 26] among others. One is
nevertheless interested in �nding iterative solvers for the Toeplitz matrices as this further reduces
the complexity. Additionally, as we want to use the Toeplitz solver within a possible preconditioner
for the Sylvester equations we are not necessarily interested in computing the solution to full
accuracy. Let us consider a basic Toeplitz matrix of the form

T =



t0 t−1 . . . t2−n t1−n
t1 t0 t−1 t2−n
... t1 t0

. . .
...

tn−2
. . .

. . . t−1
tn−1 tn−2 . . . t1 t0

 .
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Circulant matrices, which take the generic form

C =



c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1
cn−1 cn−2 . . . c1 c0

 ,

are special Toeplitz matrices as each column of a circulant matrix is a circulant shift of its preceding
column.
It is well known that a circulant matrix C can be diagonalized using the Fourier matrix F3. In

more detail, the diagonalization of C is written as C = FHΛF where F is again the Fourier matrix
and Λ is a diagonal matrix containing the eigenvalues (see [27, 22]). In order to e�ciently compute
the matrix-vector multiplication with C the matrix-vector multiplication using F and Λ needs to be
available. The evaluation of F and FH times a vector can be done via the Fast Fourier Transform
(FFT, [28, 29]). The computation of the diagonal elements of Λ is done employing one more FFT.
Overall, this means that the matrix vector multiplication with C can be replaced by applications
of the FFT.
The n × n Toeplitz matrices mentioned above are not circulant but can be embedded into a

2n× 2n circulant matrix as follows [
T B
B T

] [
y
0

]
,

with

B =



0 tn−1 . . . t2 t1
t1−n 0 tn−1 t2
... t1−n 0

. . .
...

t−2
. . .

. . . tn−1
t−1 t−2 . . . t1−n 0

 .
This new structure allows one to exploit the FFT in matrix-vector multiplications with T.
There exists a variety of di�erent preconditioners for Toeplitz systems [22]. Here we focus on

a classical circulant preconditioner introduced by Strang in [30]. The idea is to approximate the
Toeplitz matrix T by a circulant C that can in turn be easily inverted by means of the FFT
machinery. The diagonals cj of this C are determined as

cj =

 tj , 0 ≤ j ≤ bn/2c
tj−n, bn/2c < j < n
cn+j 0 < −j < n

Here k := bn/2c is the largest integer less or equal than n/2. Note that other circulant approxima-
tions are possible but will not be discussed here [22].
The computational strategy described above can be used to solve the linear system in (11)

associated with Problem 1, namely(
Inx − τLnxβ

)
un+1 = un + f .

3In matlab this matrix can be computed via F=fft(eye(n))
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In [31] it was shown that the coe�cient matrix Inx − τLnxβ is a strictly diagonally dominant M-
matrix. This allows us to use a symmetric Krylov subspace solver such as the Conjugate Gradient
method (cg) [32], which requires matrix-vector products with the coe�cient matrix; for more
details on iterative Krylov subspace solvers we refer the reader to [33, 34, 35]. The coe�cient
matrix has Toeplitz structure, therefore the circulant approximation C ≈ Inx − τLnxβ can be used
as a preconditioner for cg. For the fast convergence of cg it is su�cient that the eigenvalues of the
preconditioned matrix form a small number of tiny clusters, which is known to be the case for the
Strang circulant preconditioner, since it gives a single eigenvalue cluster around 1 [13].

4.2 Numerical solution of the Sylvester equation

The numerical solution of linear matrix equations of the form

AU + UB = C (26)

arises in a large variety of applications; we refer the reader to [36] for a detailed description. Note
that in general, A and B are allowed to have di�erent dimensions, so that the right-hand side C and
the unknown solution U are rectangular matrices. A unique solution for C 6= 0 is ensured if A and
−B have disjoint spectra. Robust numerical procedures for solving (26) when A and B have modest
dimensions - up to a few hundreds - have been widely tested, and the Bartels-Stewart algorithm
has emerged as the method of choice [37]. The method relies on a full Schur decomposition of the
two matrices, and then on a backward substitution of the transformed problem.
We mention here another method that can be used when either A or B is small and already in

triangular form, the way the equation (18) is in Problem 2, when nt is small. Let U = [u1, . . . , unB ],
where nB is the size of B, and C = [c1, . . . , cnB ]. Explicit inspection shows that if B is upper
triangular, then the �rst column of U can be obtained by solving the shifted system (A+B11I)u1 =
c1. All subsequent columns of U may be obtained with a backward substitution as

(A+BiiI)ui = ci −
i−1∑
k=1

ukBki, i = 2, ..., nB

Each of these systems may be solved by cg equipped with a circulant preconditioner, as for Prob-
lem 1. This strategy is appealing when nB , the size of B, is small.
Generically, however, we consider the case where the coe�cient matrices A and B are both

extremely large, typically dense, making full spectral decompositions and backward solves pro-
hibitively expensive both in terms of computational and memory requirements. On the other hand,
C usually has much lower rank than the problem dimension, which makes low-rank approximation
procedures more appealing. Note that the matrix C in our case re�ects the right-hand side of the
FDE and as this often has a certain smoothness, we perform a truncation via a truncated singular
value decomposition to obtain a low-rank representation C. For example, instead of solving (18)
we replace the right-hand side F by a low-rank approximation F̃ ≈ F with F̃ = W̃1W̃

T
2 and the

matrices W̃1,W̃2 only have a small number of columns and are computed via a truncated SVD of
F. Based on the low-rank nature of the right-hand side of the Sylvester equations e�cient methods
seek an approximation Ũ ≈ U as the product of low-rank matrices, Ũ = VYWT , for some matrix
Y, and V, W having much fewer columns than rows. These low-rank approximations are of special
interest, since in general U is dense, and thus hard or impossible to store when A and B are truly
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large, as in our cases. Among these approaches are Krylov subspace projection and ADI meth-
ods, the latter being a particular Krylov subspace method [36]. We consider the following general
projection methods for (26): given two approximation spaces Range(V) and Range(W), an ap-
proximation Ũ = VỸWT is determined by requiring that the residual matrix R := AŨ+ ŨB−C
satis�es4

VTRW = 0.

Assuming that both V and W have orthogonal columns, and using Ũ = VYWT , the condition
above gives the reduced matrix equation

(VTAV)Y + Y(WTBW)−VTCW = 0;

for VTAV and WTBW of small size, this equation can be e�ciently solved by the Bartels-Stewart
method, giving the solution Ỹ. Di�erent choices of Range(V) and Range(W) lead to di�erent
approximate solutions. The quality of such an approximation depends on whether certain spectral
properties of the coe�cient matrices A and B are well represented in the two approximation spaces.
Among the most successful choices are Rational Krylov subspaces: assuming C can be written
as C = C1C

T
2 , Rational Krylov subspaces generate the two spaces Range(V) = Range([C1, (A −

σ1I)−1C1, (A−σ2I)−1C1, . . .]) and Range(W) = Range([C2, (B
T−η1I)−1C2, (B

T−η2I)−1C2, . . .]),
for speci�cally selected shifts σi, ηi, i = 1, 2, . . .. Note that a shift σ of multiplicity k can be used,
as long as terms with powers (A− σI)−j , j = 1, . . . , k are included in the basis. In our numerical
experience we found the choice σi, ηi ∈ {0,∞} particularly e�ective: for Range(V) this choice
corresponds to an approximation space generated by powers of A and A−1 and it was �rst proposed
under the name of Extended Krylov subspace [38]. In [19] it was shown for B = AT that such a
space can be generated progressively as

EK(A,C1) = Range([C1,A
−1C1,AC1,A

−2C1,A
2C1,A

−3C1, . . .])

and expanded until the approximate solution Ũ is su�ciently good. Note that in a standard
implementation that sequentially generates EK(A,C1), two �blocks� of new vectors are added at
each iteration, one block multiplied by A, and one �multiplied� by A−1. The block size depends on
the number of columns in C1, although as the iteration proceeds this number could decrease, in case
rank de�ciency occurs. The implementation of the resulting projection method with EK(A,C1) as
approximation space was called KPIK in [19] for the Lyapunov matrix equation, that is (26) with
B = AT and C1 = C2.
The procedure in [19] can be easily adapted to the case of general B, so that also the space

EK(BT ,C2) is constructed [36]. For consistency we shall also call KPIK our implementation for
the Sylvester equation.
The e�ectiveness of the procedure can be measured in terms of both the dimension of the ap-

proximation space needed to achieve the required accuracy, as well as computational time. The two
devices are tightly related. Indeed, the generation of EK(A,C1) requires solving systems with A,
whose cost is problem dependent. Therefore, the larger the space, the higher this cost is, increasing
the overall computational time. The space dimension determines the rate of convergence of the
approximate solution Ũ towards U; how the accuracy improves as the space dimension increases
was recently analyzed in [39] for KPIK applied to the Lyapunov equation, and in [40] as a particular
case of Rational Krylov space methods applied to the Sylvester equation; see Section 4.3.
4It can be shown that this requirement corresponds to an orthogonality (Galerkin) condition of the residual vector
for the equation in Kronecker form, with respect to the space spanned by Range(W ⊗V) [36].
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From a computational standpoint, our application problem is particularly demanding because the
iterative generation of the extended space requires solving systems with A and B, whose size can
be very large; see the numerical experiments. To alleviate this computation, in our implementation
the inner systems with A and B are solved inexactly, that is by means of a preconditioned iterative
method, with a su�ciently high accuracy so as to roughly maintain the KPIK rate of convergence
expected with the exact (to machine precision) application of A−1 and B−1. In our numerical
experiments we shall call iKPIK the inexact version of the method.
Finally, we observe that our stopping criterion for the whole procedure is based on the residual

norm. In accordance with other low-rank approximation methods, the Frobenius norm of the
residual matrix, namely ‖R‖2 =

∑
i,j R2

ij , can be computed without explicitly storing the whole
residual matrix R. Indeed, using C1 = Vγγγ1 and C2 = Wγγγ2, we have

R = [AV, V]

[
0 Y
Y −γγγ1γγγT2

]
[AW, W]T = Q1ρρρ1

[
0 Y
Y −γγγ1γγγT2

]
ρρρT2 QT

2 ,

where the two skinny QR factorizations [AV, V] = Q1ρρρ1 and [AW, W] = Q2ρρρ2 can be updated
as the space expands5. Therefore,

‖R‖ =

∥∥∥∥ρρρ1 [ 0 Y
Y −γγγ1γγγT2

]
ρρρT2

∥∥∥∥ ,
whose storage and computational costs do not depend on the problem size, but only on the approx-
imation space dimensions.

4.3 Considerations on the convergence of the iterative solvers

The performance of the iterative methods discussed so far depends, in the symmetric case, on the
distribution of the eigenvalues of the coe�cient matrices, and in the nonsymmetric case, on more
complex spectral information such as the �eld of values. We start with providing a simple but
helpful bound on the spectrum of the matrix obtained after discretizing the fractional derivatives.

Lemma 1 For 1 < β < 2, the spectrum of the matrix Lβ := 1
2 (Tβ + TT

β ) is contained in the open

interval (−2h−ββ, 0).

Proof 1 From [13], for 1 < β < 2, we recall the following useful properties of gβ,k :

gβ,0 = 1, gβ,1 = −β < 0, gβ,2 > gβ,3 > · · · > 0,

∞∑
k=0

gβ,k = 0,

n∑
k=0

gβ,n < 0, ∀n ≥ 1.

We can now adapt the proof in [13] to get an estimate of the eigenvalues of Lβ = 1
2 (Tβ + TT

β ).

5The residual norm computation could be made even cheaper in the exact case, since then the skinny QR factor-
ization would not have to be done explicitly [36]
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Recall the structure of Tβ :

Tβ = h−β



gβ,1 gβ,0 0
gβ,2 gβ,1 gβ,0
gβ,3 gβ,2 gβ,1 gβ,0
...

. . . gβ,2 gβ,1
. . .

...
. . .

. . .
. . .

. . . gβ,0 0
...

. . .
. . .

. . . gβ,2 gβ,1 gβ,0
gβ,n gβ,n−1 . . . . . . gβ,2 gβ,1


.

Hence, the Gershgorin circles of Lβ are all centered at h−βgβ,1 = −βh−β . Moreover, the largest
radius is obtained in row

⌊
n
2 + 1

⌋
and thus is at most (depending on n being odd or even) rmax =

h−β
bn2 +1c∑
k=0,k 6=1

gβ,k < −h−βgβ,1 = h−ββ. This now implies σ(Lβ) ⊂ (−2h−ββ, 0).

The result shows that as the spatial mesh is re�ned, the eigenvalues of Lβ cluster towards zero,
so that, for instance, the eigenvalues of the two symmetric coe�cient matrices in (22) both cluster
around one half as h → 0. This clustering property is crucial to assess the performance of the
Extended Krylov subspace method described in the previous section, which we use both in Problem
2 and Problem 3 as a solver. Assume that C = c1c

T
2 . In [40] for A and B symmetric, it was shown

that the residual Frobenius norm is bounded as

‖R‖F
‖c1‖ ‖c2‖

≤ 4 max{γmA,A,B, γmB,B,A}+ ξ(γmA,A,B + γmB,B,A),

where γmA,A,B and γmB,B,A are quantities associated with the approximation spaces in A and
in B of dimension mA and mB, respectively, and ξ is an explicit constant independent of the
approximation space dimensions. For A = B, which in our Problem 3 is obtained for instance
whenever β1 = β2, it holds (see [39])

γmA,A,B = γmB,B,A =

(
κ1/4 − 1

κ1/4 + 1

)2mA

, κ = λmax(A)/λmin(A),

where κ is the condition number of A. In the notation of Problem 3, the rate of convergence of the
Extended Krylov subspace method when β1 = β2 is thus driven by κ1/4, where κ is the condition
number of 1

2I−Lβ . In light of Lemma 1, we thus expect a very fast convergence rate of the method
as the mesh is re�ned, and this is fully con�rmed in our experiments, also for β1 6= β2.
Finally, if one were to consider the (symmetric) Kronecker formulation of the Sylvester equation

in (18), that is

(I1 ⊗A + B⊗ I2)vec(U) = vec(C),

(see Section 4.4) the following estimate for the eigenvalues of the coe�cient matrix would hold:

σ(I1 ⊗A + B⊗ I2) ⊂
(

1, 1 +
2β1τ

hβ1
+

2β2τ

hβ2

)
.

The assertion follows from the fact that the eigenvalues ν of I1 ⊗ A + B ⊗ I2 are given by the
eigenvalues of A and B via νi,j = λi(A) + µj(B).
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4.4 Preconditioned Low-rank Krylov methods

We already introduced the cg method as a suitable method to approximate the solution to Problem
1. In general, given the linear system Ax = b, methods such as cg [32], minres [41] or gmres
[42] approximate the solution x within the Krylov subspace Kl(A, r0). To speed up convergence,
a preconditioner is usually applied [34, 43, 44, 45]. In this section we describe the use of certain
preconditioned Krylov subspace solvers for the structured problems described in earlier sections,
and in particular for the equation of Problem 4. We focus on the solution of the Sylvester equation
(26) in Kronecker form,

(A⊗ I1) + (I2 ⊗B)︸ ︷︷ ︸
A

x = c, x = vec(X), c = vec(C).

A major di�culty that arises when using this formulation is that all computed vectors in a Krylov
subspace iteration are full. Therefore, only very few of them can be kept in memory. This short-
coming is particularly severe for a method like gmres, which requires storing the whole basis of
the approximation space.
One remedy is to approximate the generated vectors p by low-rank approximations p ≈ vec(UVT )

with p = vec(P) and P ≈ UVT. All of the before mentioned Krylov solvers proceed by apply-
ing the matrix to a vector during the iteration. We now illustrate that the process of performing
Avec(UVT ) can be performed by maintaining the low-rank nature of the vector vec(UVT ). If
truncation can be strongly enforced without a�ecting the accuracy, this strategy is able to take full
advantage of a low rank right-hand side C. Consider then one instance of a matrix-vector product
Av where v = vec(UVT ) has low rank:

Av = (A⊗ I1 + I2 ⊗B)vec(UVT ) = vec
(
I1UVTAT + BUVT I2

)
. (27)

Using the inverse of the vec operator, it is easily seen that we can write the last equation as

[I1U BU] [AV I2V]
T ≈ ŨṼT (28)

where we compute Ũ, Ṽ to be low-rank representations of the matrices on the left. This can easily be
realized in practice employing a truncated singular value decomposition such as svds within matlab
. Alternatively, one can also use a QR factorisation; see, e.g., [46, 47]. Although this strategy seems
to be e�ective in practice, it should be kept in mind that if truncation is performed with a tolerance
that is signi�cantly above machine precision, the resulting method looses its standard exact precision
arithmetic properties, such as orthogonality among the generated vectors.
We consider the strategy above in Problem 2 as a possible alternative to iKPIK), and we use

the �truncated� version of BiCG as a solver [47]. As a preconditioner, we propose the use of a �xed
number of iKPIK steps where the Toeplitz systems within iKPIK are solved using a circulant
preconditioned Krylov solver. Of course, we typically consider iKPIK as a standalone solver but
if this method is used as a preconditioner it is in general not necessary to compute an accurate
solution. Naturally, other methods that approximately solve the Sylvester equation can be used as
a preconditioner. One such candidate is the alternating direction implicit (ADI) method [48]. This
method also computes low-rank solutions to Sylvester equations but needs to be equipped with a
set of parameters that are not always easy to obtain. This might not be necessary when the ADI
method is used as a preconditioner but is not investigated further in this paper.
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4.5 Tensor-valued equation solver

The e�cient solution of tensor-valued equations has recently seen much progress regarding the de-
velopment of e�ective methods and their corresponding analysis [49, 50, 21]. General introductions
to this very active �eld of research can be found in [51, 52] and in the literature mentioned there.
Although a variety of solvers for tensor valued equations exists we do not aim at providing a survey

of the available methods, but we rather focus on the dmrg (Density Matrix Renormalization Group)
method as presented in [21], which is part of the the tensor train (TT) toolbox [20, 21, 53]. The
guiding principle is that in the equationAAAx = f , the tensor-structured matrixAAA and the right-hand
side are approximated by a simpler (low tensor rank) matrix AAATT and a vector f̃TT , respectively.
The linear system problem is then formulated as a minimization problem, i.e.,

min
∥∥∥f̃TT −AAATTxTT∥∥∥ . (29)

In our context, the tensor AAA presented in Section 3.4 is given by

AAA = Tnt
α ⊗ Inx ⊗ Iny − Int ⊗

(
1

hβ1
Iny ⊗ Lnxβ1

+ L
ny
β2
⊗ 1

hβ2
Inx
)

= (Tnt
α ⊗ Inx ⊗ Iny )−

(
Int ⊗ 1

hβ1
Iny ⊗ Lnxβ1

)
−
(

Int ⊗ L
ny
β2
⊗ 1

hβ2
Inx
)
.

One of the most used decompositions is the canonical decomposition of a tensor AAA ([52]) given by

AAA(i1, i2, i3) =

r∑
α=1

U1(i1, α)U2(i2, α)U3(i3, α)

with AAA(i1, i2, i3) the entry (i1, i2, i3) of the tensor AAA, canonical factors Ui, i = 1, 2, 3 and canonical
rank r. While this is already a signi�cant reduction compared to the original tensor, employing this
decomposition can be numerically ine�cient. Instead, we use the recently introduced tensor train
(TT) format: AAA is approximated by

AAA ≈AAATT (i1, i2, i3) = G1(i1)G2(i2)G3(i3),

where Gk(ik) is an rk−1 × rk matrix for each �xed ik. Note that we �nd a tensor AAATT of low
tensor-rank that approximates the full TT decomposition of the tensor AAA.
In order to solve this tensor valued equation we now employ the dmrg algorithm with the TT

decomposition as introduced by Oseledets in [21]. Before brie�y describing the method we note that
these techniques have been developed before in quantum systems simulation using di�erent termi-
nology; there the TT format is known as the matrix product state (MPS) (see [51] for references).
As pointed out earlier the dmrg method transforms the problem of solving the linear system into a
least squares problem (29), where all full tensors are replaced by their TT approximations of lower
tensor rank, i.e., f̃TT is the (TT) tensor approximation of f̃ . The dmrg method can be understood
as a modi�ed alternating least squares method. While a standard alternating least squares algo-
rithm �xes all but one core and then optimizes the functional the TT dmrg method �xes all but
two cores Gk,Gk+1 to compute a solution. The algorithm then moves to the next pair of cores and
so on. For more details we refer to Oseledets [21].
Additionally, one can use a TT version of well-known Krylov methods such as gmres ([42])

adapted to the TT framework (see [54]) but we have not employed this method here.
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5 Numerical results

In this section we report on our numerical experience with the algorithms proposed in the previous
sections. All tests are performed on a Linux Ubuntu Compute Server using 4 Intel Xeon E7-8837
CPUs running at 2.67 GHz each equipped with 256 GB of RAM using matlab R© 2012.
We illustrate the e�ectiveness of our proposed methods by testing the convergence for all four

problems presented earlier. Our goal is to obtain robustness with respect to the discretization
parameter in both the temporal and the spatial dimensions. Additionally, we are testing all problems
for a variety of di�erent orders of di�erentiation to illustrate that the methods are suitable for
reasonable parameter choices.

Figure 1: Problem 1. Comparison of numerical solutions when using two di�erent values for β with
zero initial condition and zero Dirichlet boundary condition. (510 and 10 space and time
points, resp.)

5.1 Problem 1

We start by giving examples for the �rst problem. The setup here is using a zero-initial condition
and a Dirichlet boundary condition u(0, t) = 0.1 and u(1, t) = 0. The result for two di�erent values
of β is shown in Figure 1 and is simply given to illustrate that the parameter β has a signi�cant
in�uence on the solution u. Table 1 shows the result for a variety of discretizations with two values
of β. For this problem the forcing term was given by

f = 80 sin(20x) cos(10x)

with zero Dirichlet condition. It can be seen that the Strang preconditioner [30] performs excep-
tionally well with only 2 or 4 iteration numbers and no dependence on the mesh size. A tolerance
of 10−6 for the relative residual was used for the stopping criterion.
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DoF β = 1.3 β = 1.7
avg. its (time) avg. its (time)

32768 2(1.01) 4(1.56)
65536 2(1.56) 4(2.35)
131072 2(3.54) 4(5.02)
262144 2(19.7) 4(33.98)
524288 2(21.0) 4(33.35)
1048576 2(101.6) 4(167.6)

Table 1: Problem 1. Average PCG iteration numbers for 10 time steps and two values of β, as the
mesh is re�ned; in parenthesis is the total CPU time (in secs).
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Figure 2: Problem 2. Number of ikpik iterations to reach a tolerance of 10−4. Number of space
unknowns: 26 to 212. Convergence tolerance for the inner gmres method: 10−10.

5.2 Problem 2

The next and more challenging setup is given when studying the solution of the space-time fractional
derivative formulation described earlier in Section 3.2. Here the forcing term was de�ned by f =
8 sin(10x), while zero Dirichlet condition on the left boundary and u = 0.01 on the right side of the
spatial interval were used. Figure 2 reports the iteration numbers of ikpik as the space interval
is re�ned; a tight tolerance of 10−10 for the inner solver that applies the inverse within ikpik was
enforced. Thanks to the good performance of the circulant inner preconditioner, this tolerance was
achieved in very few inner iterations, without signi�cantly a�ecting the overall performance.
The outer tolerance was set to 10−4. Table 2 summarizes the results for ikpik. The performance

of the low-rank preconditioned bicg method is also reported for comparison, as described at the
end of Section 4.4. The preconditioner within bicg employs 8 (�xed) iterations of ikpik (fewer if
an inner residual norm of 10−6 is achieved earlier).
Here we discretized both the temporal and the spatial domain using the same number of elements.

When stating the degrees of freedom for each dimension one has to note that implicitly this method
is solving a linear system of tensor form that has the dimensionality ntnx × ntnx so for the largest
example shown in Table 2 this leads to roughly 70 million unknowns.
Both methods are quite robust with respect to the number of unknowns and also with respect

to varying the fractional derivative. ikpik greatly outperforms bicg in the number of matrix-
vector products and applications of the preconditioner. This is due to the rank-increase within an
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Bicg iKPIK

nt nx β = 1.3 β = 1.7 β = 1.3 β = 1.7
it(CPUtime) it(CPUtime) it(CPUtime) it(CPUtime)
#A/#P #A/#P #A/#P #A/#P

512 512 2 (13.37) 2 (14.11) 15 (1.28) 16 (1.27)
1954/1154 1524/876 220/160 217/153

1024 1024 2 (22.28) 2 (19.57) 18 (2.45) 17 (2.23)
1995/1191 1544/892 262/190 230/162

2048 2048 2 (48.51) 2 (43.99) 22 (5.73) 18 (4.41)
2147/1275 1545/893 339/251 250/178

4096 4096 2 (162.80) 2 (113.5) 26 (22.99) 19 (16.84)
2336/1396 1547/887 401/297 272/196

8192 8192 2 (547.05) 2 (377.02) 30 (75.74) 18 (42.20)
2336/1396 1571/907 461/341 262/190

Table 2: Problem 2. Preconditioned low-rank bicg and ikpik, for a variety of meshes and two dif-
ferent values of β. Shown are the iteration numbers and the total CPU time, together with
the number of matrix-vector products (#A) and the number of preconditioner evaluations
(#P).

iteration of Bicg which then requires a much higher computational cost in the next iteration. We
additionally challenged ikpik on a larger problem where we have 32766 degrees of freedom in space
and the same number in the temporal domain. This would lead to an overall linear system size
327662 = 1,073,676,288, roughly a trillion unknowns that ikpik was able to solve in 16 iterations
and in 515 seconds for β = 1.7.

5.3 Problem 3

The third problem now includes a second spatial dimension together with a standard derivative
in time. The spatial domain is the unit square. The problem is characterized by a zero-Dirichlet
condition with a zero-initial condition. The time-dependent forcing term is given as

F = 100 sin(10x) cos(y) + sin(10t)xy

and the solution for this setup is illustrated in Figure 3, where we show the solution at two di�erent
time steps.
Table 3 shows the average ikpik iteration numbers alongside the total number of matrix vector-

products and preconditioner applications, as the two-dimensional spatial grid is re�ned, for di�erent
values of the fractional derivative in the two space directions6. The tolerance for iKPIK is set to
10−8, to illustrate that we can compute the solution very accurately, and the tolerance for the inner
iterative solver is chosen to be 10−8. The digits summarized in Table 3 give the average number of
ikpik iterations for 8 time-steps as well as the number of matrix-vector products and preconditioner

6We do not report our numerical experiments with bicg on this problem as they are once again inferior to those of
ikpik
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(a) First time-step

(b) Tenth time-step

Figure 3: Problem 3. First and tenth time-step solutions of the 2D fractional di�erential equation.
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(a) α = 0.3 (b) α = 0.7

Figure 4: Problem 4. Solution at time-step 2 (below) and time-step 20 (above), for two-di�erent
orders of the di�erentiation for the derivative in time.

application per time-step. Note that the largest problem given in Table 3 corresponds to 33, 554, 432
unknowns. A further increase in the matrix dimensions, which is no problem for our methodology,
would make it no longer possible to store the unknowns without being represented in low-rank
format.

ny nx β1 = 1.3, β2 = 1.9 β1 = 1.7, β2 = 1.9
aver.it/#A/#P aver.it/#A/#P

256 512 2.25/59.00/44.00 2.50/108.12/84.62
256 1024 2.25/59.00/44.00 3.00/135.37/104.37
256 4096 2.25/59.00/44.00 3.37/155.00/120.50

1024 8192 2.00/28.75/20.75 2.87/104.62/81.12
4096 8192 2.00/26.00/18.00 2.25/66.12/50.12

Table 3: Problem 3. Performance of iKPIK as the mesh is re�ned for two di�erent values of (β1, β2),
in terms of average iteration numbers, total number of matrix-vector products and number
of preconditioner evaluations.

5.4 Problem 4

In this section we brie�y illustrate how the tensorized problems can be solved. Our implementation
is based on the recently developed tensor-train format [20, 21, 53]. The forcing term is given by
f = 100 sin(10x) cos(y), while zero-Dirichlet conditions are imposed, together with a zero initial
condition. The approximations of the right-hand side f̃TT and the tensor ATT use the round

function within the TT-toolbox. The tolerance for this was set to 10−2. The dmrg method recalled
in Section 4.5 ([21]) was used, with a convergence tolerance set to 10−6. Figure 4 illustrates the
di�erent behaviour of the solution for two di�erent values of the temporal di�erentiation order.
We next illustrate that the performance of dmrg for our tensor equation is robust with respect to

changes in the system parameters such as the orders of di�erentiation and varying meshes. Table 4
shows the dmrg iteration numbers for 4 di�erent mesh sizes both in time and space and three

22



di�erent choices of di�erentiation orders. The iteration numbers are constant with the mesh size,
while they show a very slight increase from 6 or 7 to 11 with the di�erent discretization order. It is

β1 = 1.3, β2 = 1.5 β1 = 1.7, β2 = 1.9 β1 = 1.9, β2 = 1.1
α = 0.3 α = 0.7 α = 0.2

nt ny nx it it it

512 256 512 6 6 6
256 512 512 6 7 6
1024 512 2048 6 7 11
1024 1024 4096 6 7 11

Table 4: Problem 4. Performance of dmrg as the mesh is re�ned, for di�erent values of the
di�erentiation orders.

also possible to include a preconditioner within dmrg but we have not done so here. Additionally,
it would be desirable to investigate the use of a preconditioned Krylov TT solver that we can equip
with a preconditioner based on approximations of the Toeplitz matrices.

6 Conclusions

We pointed out in the introduction that FDE are a crucial tool in mathematical modelling in the
coming years. We have introduced four model problems that use the well-established Grünwald-
Letnikov scheme (and some of its descendants). These model problems were chosen such that
their main numerical features are to be found in many FDE problems. In particular, we derived
the discrete linear systems and matrix equations of Sylvester-type that represent the discretized
version of the space-, time- and space-time-fractional derivative. For all problems it was crucial to
notice the Toeplitz-structure of the discrete di�erentiation operator. While the �rst model problem
only required a circulant preconditioner in combination with the preconditioned cg method the
more involved problems needed further study. For realistic discretization levels it was no longer
possible to explicitly store the approximate solution vectors. We thus considered low-rank matrix
equations solvers and in particular focused on the successful kpik method in its inexact version
iKPIK. This method was then extremely e�ective when we again used the circulant preconditioned
Krylov solver to evaluate any linear systems with the inverse of a di�erentiation matrix. The last
and most challenging problem was then solved using recently developed tensor-methodology and
while still future research needs to be devoted to understanding these solvers better, the numerical
results are very promising.
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