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Abstract

To solve a stochastic linear evolution equation numerically, �nite dimensional approxima-

tions are commonly used. If one uses the well known Galerkin scheme one can end up with a

sequence of ordinary stochastic linear equations of high order. To reduce the high dimension

for practical computations we consider balanced truncation being a model order reduction

technique known from deterministic control theory. So, we generalize balanced truncation

for controlled linear systems with Levy noise, discuss properties of the reduced order model,

provide an error bound and give some examples.

1 Introduction

Model order reduction is of major importance for example in the �eld of control theory. A com-
monly used method is balanced truncation, which was �rst introduced by Moore [18] for linear
deterministic systems and where a good overview containing all results of this scheme is stated
in Antoulas [1]. Balanced truncation also works for deterministic bilinear equations (see Benner,
Damm [4] and Zhang and others [12]). Benner and Damm additionally pointed out the relation be-
tween balanced truncation for deterministic bilinear control systems and linear stochastic systems
with Wiener noise. So, in both cases the reachability and observability Gramians are solutions of
generalized Lyapunov equations. We resume with working on balanced truncation for stochastic
system and want to generalize the results known for the Wiener case. Thereby, the main idea is
to allow the states to have jumps. Furthermore, we want to ensure that the Gramians we de�ne
are still solutions of generalized Lyapunov equations. So, a convenient noise process is given by a
square integrable Levy process.
In Section 2 we provide the necessary background on semimartingales, square integrable Levy pro-
cesses and stochastic calculus in order to render this paper as self-contained as possible. Detailed
information regarding general Levy processes one can �nd in Bertoin [6] and Sato [23] and we refer
to Applebaum [2] and Kuo [16] for an extended version of stochastic integration theory. In Section
3 we focus on a linear controlled state equation driven by uncorrelated Levy processes, which is
asymptotically mean square stable and equipped with an output equation. We introduce the fun-
damental solution Φ of the state equation and point out the di�erences compared to fundamental
solutions of deterministic systems. Using Φ we introduce reachability and observability Gramians
the same way like Benner, Damm [4] and proof that the reachable and observable (average) states
and the corresponding energy are characterized by these Gramians. In Section 4 we describe the
procedure of balanced truncation for the linear system with Levy noise, which is similar to the
procedure known from the deterministic case (see Antoulas [1] and Obinata, Anderson [19]). We
discuss properties of the resulting reduced order model (ROM). We will show that it is mean
square stable, not balanced, the Hankel singular values (HV) of the ROM are not a subset of
the HVs of the original system and one can lose complete observability and reachability. Also we
discuss the open question of the preservation of mean square asymptotic stability. Finally, we
provide an error bound for balanced truncation of the Levy driven system assuming mean square
asymptotic stability of the ROM. This error bound has the same structure as the H2 error bound
of linear deterministic systems. In Section 5 we deal with a linear controlled stochastic evolution
equation with Levy noise (compare Da Prato and Zabczyk [8], Peszat and Zabczyk [20], Prévôt
and Röckner [21]). To solve such a problem numerically, �nite dimensional approximations are
commonly used. The scheme we state here is the well known Galerkin method (see Grecksch,
Kloeden [10]) leading to a sequence of ordinary stochastic di�erential equation of that kind we
considered in Section 4. For a particular case we apply balanced truncation on that Galerkin
solution and compute the error bounds and the exact errors of the approximation.
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2 Basics from Stochastics

Let all stochastic processes appearing in this section be de�ned on a �ltered probability space
(Ω,F , (Ft)t≥0,P)1. The set of all cadlag2 square integrable R-valued martingales with respect to
(Ft)t≥0 we denote byM2(R).

2.1 Semimartingales and Ito's formula

Below, we introduce the class of semimartingales.

De�nition 2.1. (i) An (Ft)t≥0-adapted cadlag process X with values in R is called semimartin-
gale if it has the representation X = X0 +M +A. Thereby, X0 is an F0-measurable random
variable, M ∈M2(R) and A is a cadlag process of bounded variation.3

(ii) An Rd-valued process ~X is called semimartingale if all components are real-valued semi-
martingales.

The following is based on Proposition 17.2 in [17].

Proposition 2.2. Let M,N ∈ M2(R), then there exists a unique predictable4 process 〈M,N〉 of
bounded variation such that MN − 〈M,N〉 is a martingale with respect to (Ft)t≥0.

Next, we consider a decomposition of square integrable martingales (see Theorem 4.18 in [14]).

Theorem 2.3. A process M ∈M2(R) has the following representation:

M(t) = M0 +M c(t) +Md(t), t ≥ 0,

where M c(0) = Md(0) = 0, M0 is F0-measurable random variable, M c is a continuous process in
M2(R) and Md ∈M2(R).

We need the quadratic covariation [Z1, Z2] of two real-valued semimartingales Z1 and Z2, which
can be introduced by

[Z1, Z2]t := Z1(t)Z2(t)− Z1(0)Z2(0)−
∫ t

0

Z1(s−)dZ2(s)−
∫ t

0

Z2(s−)dZ1(s) (1)

for t ≥ 0. By the linearity of the integrals in (1) we obtain the property

[Z1, Z2]t =
1

2
([Z1 + Z2, Z1 + Z2]t − [Z1, Z1]t − [Z2, Z2]t) , t ≥ 0.

From Theorem 4.52 in [14] we know that [Z1, Z2] is also given by

[Z1, Z2]t = 〈M c
1 ,M

c
2 〉t +

∑
0≤s≤t

∆Z1(s)∆Z2(s) (2)

for t ≥ 0, where M c
1 and M c

2 are the continuous martingale parts of Z1 and Z2. Furthermore, we
set ∆Z(s) := Z(s) − Z(s−) with Z(s−) := limt↑s Z(t) for a real-valued semimartingale Z. If we
rearrange equation (1), we obtain the Ito product formula

Z1(t)Z2(t) = Z1(0)Z2(0) +

∫ t

0

Z1(s−)dZ2(s) +

∫ t

0

Z2(s−)dZ1(s) + [Z1, Z2]t (3)

for t ≥ 0, which we use for the following corollaries:

1(Ft)t≥0 shall be right continuous and complete.
2Cadlag means that P-almost all paths are right continuous and the left limits exist.
3This means that P-almost all paths are of bounded variation.
4The process 〈M,N〉 is measurable with respect to P, which we characterize below De�nition 2.10.
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Corollary 2.4. Let Y and Z be two Rd-valued semimartingales, then

Y T (t)Z(t) = Y T (0)Z(0) +

∫ t

0

ZT (s−)dY (s) +

∫ t

0

Y T (s−)dZ(s) +

d∑
i=1

[Yi, Zi]t

for all t ≥ 0.

Proof. We have

Y T (t)Z(t) =

d∑
i=1

Yi(t)Zi(t) =

d∑
i=1

(
Yi(0)Zi(0) +

∫ t

0

Zi(s−)dYi(s) +

∫ t

0

Yi(s−)dZi(s) + [Yi, Zi]t

)

= Y T (0)Z(0) +

∫ t

0

ZT (s−)dY (s) +

∫ t

0

Y T (s−)dZ(s) +

d∑
i=1

[Yi, Zi]t

by applying the product formula in (3).

Corollary 2.5. Let Y be an Rd-valued and Z be an Rn-valued semimartingale, then

Y (t)ZT (t) = Y (0)ZT (0) +

∫ t

0

dY (s)ZT (s−) +

∫ t

0

Y (s−)dZT (s) + ([Yi, Zj ]t) i=1,...,d
j=1,...,n

for all t ≥ 0.

Proof. We consider the stochastic di�erential of the ijth component of the matrix-valued process
Y (t)ZT (t), t ≥ 0, and obtain the following via the product formula in (3):

eTi Y (t)ZT (t)ej = eTi Y (0)ZT (0)ej +

∫ t

0

ZT (s−)ejd(eTi Y (s)) +

∫ t

0

eTi Y (s−)d(ZT (s)ej)

+ [eTi Y, Z
T ej ]t

= eTi Y (0)ZT (0)ej + eTi

∫ t

0

d(Y (s))ZT (s−)ej + eTi

∫ t

0

Y (s−)d(ZT (s))ej + [Yi, Zj ]t

for all t ≥ 0, i ∈ {1, . . . , d} and j ∈ {1, . . . , n}, where ei is the ith unit vector in Rd or in Rn,
respectively. Hence, in compact form we have

Y (t)ZT (t) = Y (0)ZT (0) +

∫ t

0

dY (s)ZT (s−) +

∫ t

0

Y (s−)dZT (s) + ([Yi, Zj ]t) i=1,...,d
j=1,...,n

for all t ≥ 0.

2.2 Levy processes

De�nition 2.6. Let L = (L (t))t≥0 be a cadlag stochastic process with values in R having inde-
pendent and homogenous increments. If furthermore L (0) = 0 P-almost surely holds and L is
continuous in probability, then L is called (real-valued) Levy process.

Below, we focus on Levy processes L being square integrable. The following theorem is proven
analogously to the Theorem 4.44 in [20].

Theorem 2.7. We set m̃ = E [L(1)]. For square integrable Levy processes L and t, s ≥ 0 it holds

E [L(t)] = tE [L(1)] and

Cov(L(s), L(t)) = E [(L(t)− m̃t)(L(s)− m̃s)] = min{t, s} Var(L(1)).
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Proposition 2.8. Let L be a square integrable Levy process adapted to a �ltration (Ft)t≥0, such
that the increments L(t+ h)− L(t) are independent of Ft (t, h ≥ 0), then L is a martingale with
respect to (Ft)t≥0 if and only if L has mean zero.

Proof. First, we assume that L has mean zero, then the conditional expactation E {L(t)|Fs} ful�lls

E {L(t)|Fs} = E {L(t)− L(s) + L(s)|Fs} = E {L(t)− L(s)|Fs}+ L(s)

= E [L(t)− L(s)] + L(s) = L(s)

for 0 ≤ s < t. If we know that L is a martingale it easily follows that it has a constant mean
function, since

E [L(t)] = E [E {L(t)|Fs}] = E [L(s)]

for 0 ≤ s < t. But by Theorem 2.7 we know that the mean function is linear. Thus, E [L(t)] = 0
for all t ≥ 0.

We set M(t) := L(t) − tE[L(1)], t ≥ 0, where L is square integrable. By Proposition 2.8 M is a
square integrable martingale with respect to (Ft)t≥0 and a Levy process as well. So, we have the
following representation for square intergrable Levy processes L:

L(t) = M(t) + E[L(1)]t, t ≥ 0.

The compensator 〈M,M〉 of M is deterministic and continuous and given by

〈M,M〉t = E
[
M2(t)

]
= E

[
M2(1)

]
t,

because M2(t)− E
[
M2(1)

]
t, t ≥ 0, is a martingale with respect to (Ft)t≥0.

2.3 Stochastic integration

We assume that M ∈ M2(R). The de�nition of an integral with respect to M is similar to
that with respect to a Wiener process W . This makes things comfortable. A de�nition for an
integral based on W can for example be found in Applebaum [2], Arnold [3] and Kloeden, Platen
[15]. Furthermore, Applebaum [2] gives a de�nition of an integral with respect to the so called
"martingale-valued measures", which is a generalization of the integral introduced here. The
de�nition of the integral with respect to M we take from Chapter 6.5 in the book of Kuo [16].

Fist of all, we characterize the class of simple processes.

De�nition 2.9. A process Ψ = (Ψ(t))t∈[0,T ] is called simple if it has the following representation:

Ψ(s) =

m∑
i=0

χ(ti,ti+1](s)Ψi, s ∈ [0, T ], (4)

for 0 = t0 < t1 < . . . < tm+1 = T . Here, the random variables Ψi are Fti-measurable and bounded,
i ∈ {0, 1, . . . ,m}.

For simple processes Ψ we de�ne

IMT (Ψ) :=

∫ T

0

Ψ(s)dM(s) :=

m∑
i=0

Ψi (M(ti+1)−M(ti))

and for 0 ≤ t0 ≤ t ≤ T we set

IMt0,t(Ψ) :=

∫ t

t0

Ψ(s)dM(s) :=

∫ T

0

χ[t0,t](s)Ψ(s)dM(s).
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De�nition 2.10. Let (F (t))t∈[0,T ] be adapted to the �ltration (Ft)t∈[0,T ] with left continuous

trajectories. We de�ne PT as the smallest sub σ-algebra of B([0, T ])⊗F with respect to which all
mappings F : [0, T ]× Ω→ R are measurable. PT we call predictable σ-algebra.

Remark. PT is generated as follows:

PT = σ ({(s, t]×A : 0 ≤ s ≤ t ≤ T,A ∈ Fs} ∪ {{0} ×A : A ∈ F0}) . (5)

In De�nition 2.10 we can replace the time interval [0, T ] by R+. Then the predictable σ-algebra
is denoted by P. PT - or P-measurable processes we call predictable.

We want to extend the set of all integrable processes with respect to M . Therefor, we introduce
L2
T as the space of all predictable mappings Ψ on [0, T ]× Ω with ‖Ψ‖T <∞, where

‖Ψ‖2T := E
∫ T

0

|Ψ(s)|2 d 〈M,M〉s (6)

and 〈M,M〉 is the compensator of M introduced in Proposition 2.2.

By Chapter 6.5 in Kuo [16] we can choose a sequence (Ψn)n∈N ⊂ L2
T of simple processes, such

that

‖Ψn −Ψ‖T → 0

for Ψ ∈ L2
T and n→∞. Hence, we obtain that

(
IMT (Ψn)

)
n∈N is a Cauchy sequence in L2 (Ω,F ,P).

Therefore, we can de�ne ∫ T

0

Ψ(s)dM(s) := L2 − lim
n→∞

∫ T

0

Ψn(s)dM(s)

and for 0 ≤ t0 ≤ t ≤ T we set∫ t

t0

Ψ(s)dM(s) := L2 − lim
n→∞

∫ t

t0

Ψn(s)dM(s).

Here, "L2 − limn→∞" denotes the limit in L2 (Ω,F ,P).

By Theorem 6.5.8 in Kuo [16] the integral with respect to M has the following properties:

Theorem 2.11. If Ψ ∈ L2
T for T > 0, then

(i) the integral with respect to M has mean zero:

E

[∫ T

0

Ψ(s)dM(s)

]
= 0,

(ii) the second moment of IMT (Ψ) is given by

E

∣∣∣∣∣
∫ T

0

Ψ(s)dM(s)

∣∣∣∣∣
2

= E
∫ T

0

|Ψ(s)|2 d 〈M,M〉s

(iii) and the process (∫ t

0

Ψ(s)dM(s)

)
t∈[0,T ]

is a martingale with respect to (Ft)t∈[0,T ].
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2.4 Levy type integrals

Below, we want to determine the mean of the quadratic covariation of the following processes:

Z̃1(t) = Z̃1(0) +

∫ t

0

A1(s)ds+

q∑
i=1

∫ t

0

Bi1(s)dM i(s), t ≥ 0,

Z̃2(t) = Z̃2(0) +

∫ t

0

A2(s)ds+

q∑
i=1

∫ t

0

Bi2(s)dM i(s), t ≥ 0,

where the processes M i (i = 1, . . . , q) are uncorrelated scalar square integrable Levy processes
with mean zero. In addition, the processes Bi1, B

i
2 are integrable with respect toM i (i = 1, . . . , q),

which by Section 2.3 means that they are predictable with

E
∫ t

0

∣∣Bi(s)∣∣2 ds <∞, t ≥ 0,

considering (6) with 〈M,M〉t = E
[
M2(1)

]
t. Furthermore, A1, A2 are P-almost surely Lebesgue

integrable and (Ft)t≥0-adapted.

We set b1(t) :=
∑q
i=1

∫ t
0
Bi1(s)dM i(s) and b2(t) :=

∑q
i=1

∫ t
0
Bi2(s)dM i(s) and obtain[

Z̃1, Z̃2

]
t

= [b1, b2]t

for t ≥ 0 considering equation (2) because Z̃i has the same jumps and the same martingale part
as bi (i = 1, 2). We know that

[b1, b2]t =
1

2
([b1 + b2, b1 + b2]t − [b1, b1]t − [b2, b2]t) (7)

for t ≥ 0. Using the de�nition in (1) yields

[b1, b1]t = (b1(t))
2 − 2

∫ t

0

b1(s−)db1(s) = (b1(t))
2 − 2

q∑
i=1

∫ t

0

b1(s−)Bi1(s)dM i(s).

This provides

E [b1, b1]t = E
[
(b1(t))

2
]
.

Since M i and M j are uncorrelated processes for i 6= j, we have

E
[
(b1(t))

2
]

=

q∑
i=1

E

[(∫ t

0

Bi1(s)dM i(s)

)2
]

=

q∑
i=1

∫ t

0

E
[(
Bi1(s)

)2]
ds · ci

applying Theorem 2.11 (ii), where ci := E
[(
M i(1)

)2]
. Hence,

E [b1, b1]t =

q∑
i=1

∫ t

0

E
[(
Bi1(s)

)2]
ds · ci.
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Analogously, we can show that

E [b2, b2]t =

q∑
i=1

∫ t

0

E
[(
Bi2(s)

)2]
ds · ci and

E [b1 + b2, b1 + b2]t =

q∑
i=1

∫ t

0

E
[(
Bi1 +Bi2(s)

)2]
ds · ci

holds for t ≥ 0. Considering equation (7), we obtain

E
[
Z̃1, Z̃2

]
t

= E [b1, b2]t =

q∑
i=1

∫ t

0

E
[
Bi1B

i
2(s)

]
ds · ci. (8)

At the end of this section we want to refer to Section 4.4.3 in Applebaum [2]. There one can �nd
some remarks regarding the quadratic covariation of the Levy type integrals de�ned in that book.

3 Linear Control with Levy Noise

Before describing balanced truncation for the stochastic case, we de�ne observability and reacha-
bility. Therefor, we introduce observability and reachability Gramians for our Levy driven system
like Benner, Damm [4] do (Section 2.2). We additionally show that the sets of observable and
reachable states are characterized by these Gramians. This is analogous to deterministic systems,
where observability and reachability concepts are described in Sections 4.2.1 and 4.2.2 in Antoulas
[1].

3.1 Reachability concept

Let M1, . . . ,Mq be real-valued uncorrelated and square integrable Levy processes with mean zero
de�ned on a �ltered probability space (Ω,F , (Ft)t≥0,P).5 In addition we assumeMk (k = 1, . . . , q)
to be (Ft)t≥0-adapted and the increments Mk(t+h)−Mk(t) to be independent of Ft for t, h ≥ 0.
We consider the following equations:

dX(t) = [AX(t) +Bu(t)]dt+

q∑
k=1

ΨkX(t−)dMk(t), t ≥ 0, (9)

X(0) = x0 ∈ Rn,

where A, Ψk ∈ Rn×n and B ∈ Rn×m. With L2
T we denote the space of all adapted stochastic

processes v with values in Rm, which are square integrable with respect to P ⊗ dt. The norm in
L2
T we call energy norm. It is given by

‖v‖2L2
T

:= E
∫ T

0

vT (t)v(t)dt = E
∫ T

0

‖v(t)‖22 dt,

where we de�ne the processes v1 and v2 to be equal in L2
T if they coincide almost surely with

respect to P⊗ dt. For the case T =∞ we denote the space by L2. Further, we assume the control
u ∈ L2

T for every T > 0. We start with the de�nition of a solution of (9).

De�nition 3.1. An Rn-valued and (Ft)t≥0-adapted cadlag process (X(t))t≥0 is called solution of

5We assume that (Ft)t≥0 is right continuous and that F0 contains all P null sets.

7



(9) if

X(t) = x0 +

∫ t

0

[AX(s) +Bu(s)]ds+

q∑
k=1

∫ t

0

ΨkX(s−)dMk(s) (10)

P-almost surely holds for all t ≥ 0.

Below, the solution of (9) at time t ≥ 0 with initial condition x0 ∈ Rn and given control u is always
denoted by X(t, x0, u). For the homogeneous solution of (9) we brie�y write Yx0 := X(t, x0, 0).
Furthermore, by ‖·‖2 we denote the Euclidean norm. We assume the homogeneous solution to be
asymptotically mean square stable, which means that

E ‖Yy0(t)‖22 → 0

for t→∞ and y0 ∈ Rn. This concept of stability is also used in Benner, Damm [4] and is necessary
for de�ning (in�nite) Gramians, which are introduced later.

Proposition 3.2. Let Yy0 be the homogeneous solution of (9) with any initial value y0 ∈ Rn, then
E
[
Yy0(t)Y Ty0(t)

]
is the solution of the matrix integral equation

Y(t) = y0y
T
0 +

∫ t

0

Y(s)ds AT +A

∫ t

0

Y(s)ds+

q∑
k=1

Ψk

∫ t

0

Y(s)ds
(
Ψk
)T E

[
Mk(1)2

]
(11)

for t ≥ 0.

Proof. We determine the stochastic di�erential of the matrix-valued process Yy0Y
T
y0 via using the

Ito formula in Corollary 2.5. This yields

Yy0(t)Y Ty0(t) = y0y
T
0 +

∫ t

0

Yy0(s−)dY Ty0(s) +

∫ t

0

dYy0(s)Y Ty0(s−) +
(
[eTi Yy0 , Y

T
y0ej ]t

)
i,j=1,...,n

,

where ei is the ith unit vector. Hence,∫ t

0

Yy0(s−)dY Ty0(s) =

∫ t

0

Yy0(s−)Y Ty0(s)AT ds+

q∑
k=1

∫ t

0

Yy0(s−)Y Ty0(s−)(Ψk)T dMk(s) and

∫ t

0

dYy0(s)Y Ty0(s−) =

∫ t

0

AYy0(s)Y Ty0(s−)ds+

q∑
k=1

∫ t

0

ΨkYy0(s−)Y Ty0(s−)dMk(s)

by inserting the stochastic di�erential of Yy0 . Thus, by taking the expactation, we obtain

E
[
Yy0(t)Y Ty0(t)

]
= y0y

T
0 +

∫ t

0

E
[
Yy0(s−)Y Ty0(s)

]
AT ds+

∫ t

0

AE
[
Yy0(s)Y Ty0(s−)

]
ds

+
(
E[eTi Yy0 , Y

T
y0ej ]t

)
i,j=1,...,n

applying Theorem 2.11 (i). Considering equation (8), we have

E[eTi Yy0 , Y
T
y0ej ]t = eTi

q∑
k=1

∫ t

0

E
[
ΨkYy0(s)Y Ty0(s)

(
Ψk
)T ]

ds · ckej ,

where ck := E
[
Mk(1)2

]
. In addition, we use the property that a cadlag process has at most

countably many jumps on a �nite time interval (see Theorem 2.7.1 in Applebaum [2]), such that

8



we can replace the left limit by the function value itself. Thus,

E
[
Yy0(t)Y Ty0(t)

]
= y0y

T
0 +

∫ t

0

E
[
Yy0(s)Y Ty0(s)

]
ds AT +A

∫ t

0

E
[
Yy0(s)Y Ty0(s)

]
ds (12)

+

q∑
k=1

Ψk

∫ t

0

E
[
Yy0(s)Y Ty0(s)

]
ds
(
Ψk
)T · ck.

We introduce an additional concept of stability of the homogeneous system corresponding to
equation (9). We call Yy0 exponentially mean square stable if there exist c, β > 0 such that

E ‖Yy0(t)‖22 ≤ ‖y0‖
2
2 c e−βt

for t ≥ 0. This stability turns out to be equivalent to asymptotic mean square stability, which is
stated in the next theorem.

Theorem 3.3. The following are equivalent:

(i) The homogeneous equation of (9) is asymptotically mean square stable.

(ii) The homogeneous equation of (9) is exponentially mean square stable.

(iii) The eigenvalues of
(
In ⊗A+A⊗ In +

∑q
k=1 Ψk ⊗Ψk · E

[
Mk(1)2

])
have negative real parts.

Proof. Due to the similarity of the proofs we refer to Theorem 1.5.3 in Damm [9], where these
results are proven for the Wiener case.

As in the deterministic case, there exists a fundamental solution, which we de�ne by

Φ(t) := [Ye1(t), Ye2(t), . . . , Yen(t)]

for t ≥ 0, where ei is the ith unit vector (i = 1, . . . , n). Thus, Φ ful�lls the following integral
equation:

Φ(t) = In +

∫ t

0

AΦ(s)ds+

q∑
k=1

∫ t

0

ΨkΦ(s−)dMk(s).

The columns of Φ represent a minimal generating set such that we have Yy0(t) = Φ(t)y0. With
B = [b1, b2, . . . , bm] one can see that

Φ(t)B = [Φ(t)b1,Φ(t)b2, . . . ,Φ(t)bm] = [Yb1(t), Yb2(t) . . . , Ybm(t)] .

Hence, we have

Φ(t)BBTΦT (t) = Yb1(t)Y Tb1 (t) + Yb2(t)Y Tb2 (t) + . . .+ Ybm(t)Y Tbm(t),

such that

E
[
Φ(t)BBTΦT (t)

]
= BBT +

∫ t

0

E
[
Φ(s)BBTΦT (s)

]
ds AT +A

∫ t

0

E
[
Φ(s)BBTΦT (s)

]
ds (13)

+

q∑
k=1

Ψk

∫ t

0

E
[
Φ(s)BBTΦT (s)

]
ds (Ψk)T E

[
Mk(1)2

]
holds for every t ≥ 0. Due to the assumption that the homogeneous solution Yy0 is asymptotically
mean square stable for an arbitrary initial value y0, yielding E

[
Y Ty0(t)Yy0(t)

]
→ 0 for t → ∞, we

9



obtain

0 = BBT +

∫ ∞
0

E
[
Φ(s)BBTΦT (s)

]
ds AT +A

∫ ∞
0

E
[
Φ(s)BBTΦT (s)

]
ds

+

q∑
k=1

Ψk

∫ ∞
0

E
[
Φ(s)BBTΦT (s)

]
ds (Ψk)T E

[
Mk(1)2

]
by taking the limit t→∞ in equation (13). Therefore, we can conclude that P :=

∫∞
0

E
[
Φ(s)BBTΦT (s)

]
ds,

which exists by the asymptotic mean square stability assumption, is the solution of a generalized
Lyapunov equation

AP + PAT +

q∑
k=1

ΨkP
(
Ψk
)T E

[
Mk(1)2

]
= −BBT .

P is the reachability Gramian of system (9), where this de�nition of the Gramian is also used
in Benner, Damm [4] for stochastic systems driven by Wiener noise. Note that in this case
E
[
Mk(1)2

]
= 1.

Remark. The solution of the matrix equation

0 = BBT +AP + PAT +

q∑
k=1

ΨkP (Ψk)T · E
[
Mk(1)2

]
(14)

is unique if and only if the solution of

− vec(BBT ) =

(
In ⊗A+A⊗ In +

q∑
k=1

Ψk ⊗Ψk · E
[
Mk(1)2

])
vec(P )

is unique. By the assumption of mean square asymptotic stability the eigenvalues of
I⊗A+A⊗I+

∑q
k=1 Ψk⊗Ψk ·E

[
Mk(1)2

]
are non zero, hence the matrix equation (14) is uniquely

solvable.

More general, we consider stochastic processes (Φ(t, τ))t≥τ with starting time τ ≥ 0 and inital
condition Φ(τ, τ) = In satisfying

Φ(t, τ) = In +

∫ t

τ

AΦ(s, τ)ds+

q∑
k=1

∫ t

τ

ΨkΦ(s−, τ)dMk(s) (15)

for t ≥ τ ≥ 0. Of course, we have Φ(t, 0) = Φ(t). Analogous to equation (13), we can show that

E
[
Φ(t, τ)BBTΦT (t, τ)

]
= BBT +

∫ t

τ

E
[
Φ(s, τ)BBTΦT (s, τ)

]
ds AT (16)

+A

∫ t

τ

E
[
Φ(s, τ)BBTΦT (s, τ)

]
ds

+

q∑
k=1

Ψk

∫ t

τ

E
[
Φ(s, τ)BBTΦT (s, τ)

]
ds (Ψk)T E

[
Mk(1)2

]
.

This yields that E
[
Φ(t, τ)BBTΦT (t, τ)

]
is the solution of the di�erential equation

Ẏ(t) = AY(t) + Y(t)AT +

q∑
k=1

ΨkY(t)(Ψk)T E
[
Mk(1)2

]
(17)

for t ≥ τ with initial condition Y(τ) = BBT .
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Remark. For t ≥ τ ≥ 0 we have Φ(t, τ) = Φ(t)Φ−1(τ), since Φ(t)Φ−1(τ) ful�lls equation (15).
Compared to the deterministic case (Ψk = 0) we do not have the semigroup property for the
fundamental solution. So, it is not true that Φ(t, τ) = Φ(t − τ) P-almost surely holds, because
the trajectories of the noise processes on [0, t − τ ] and [τ, t] are di�erent in general. We can
however conclude that E

[
Φ(t, τ)BBTΦT (t, τ)

]
= E

[
Φ(t− τ)BBTΦT (t− τ)

]
, since both terms

solve equation (17) as can be seen employing (13).

Now, we give the solution representation of the system (9) via using the stochastic variation of
constants method. For the Wiener case that result is stated in Theorem 1.4.1 in Damm [9].

Proposition 3.4. (Φ(t)z(t))t≥0 is a solution of equation (9), where z is given by

dz(t) = Φ−1(t)Bu(t)dt, z(0) = x0.

Proof. We want to determine the stochastic di�erential of Φ(t)z(t), t ≥ 0, where its ith component
is given by eTi Φ(t)z(t). Applying the Ito product formula from Corollary 2.4 yields

eTi Φ(t)z(t) = eTi x0 +

∫ t

0

eTi Φ(s−)d(z(s)) +

∫ t

0

zT (s)d(ΦT (s)ei).

Above, the quadratic covariation terms are zero, since z is a continuous semimartingale with a
martingale part of zero (see equation (2)). Applying that s 7→ Φ(ω, s) and s 7→ Φ(ω, s−) coincide
ds-almost everywhere for P-almost all �xed ω ∈ Ω, we have

eTi Φ(t)z(t) = eTi x0 +

∫ t

0

eTi Φ(s)Φ−1(s)Bu(s)ds+

∫ t

0

zT (s)ΦT (s)AT eids

+

q∑
k=1

∫ t

0

zT (s)ΦT (s−)(Ψk)T eidMk(s)

= eTi x0 + eTi

∫ t

0

Bu(s)ds+ eTi

∫ t

0

AΦ(s)z(s)ds+ eTi

q∑
k=1

∫ t

0

ΨkΦ(s−)z(s)dMk(s).

This yields

Φ(t)z(t) = x0 +

∫ t

0

AΦ(s)z(s)ds+

q∑
k=1

∫ t

0

ΨkΦ(s−)z(s)dMk(s) +

∫ t

0

Bu(s)ds.

Below, we set Pt :=
∫ t
0
E
[
Φ(s)BBTΦT (s)

]
ds and call Pt �nite reachability Gramian at time

t ≥ 0. By X(T, 0, u) we denote the solution of the inhomogeneous system (9) at time T with
initial condition 0 for a given input u. With Proposition 3.4 we already know that

X(T, 0, u) =

∫ T

0

Φ(T )Φ−1(t)Bu(t)dt =

∫ T

0

Φ(T, t)Bu(t)dt.

Now, we have the goal to steer the average state of the system (9) from zero to any given x ∈ Rn
via the control u with minimal energy. First of all we need the following de�nition, which is
motivated by the remarks above Theorem 2.3 in [4].

De�nition 3.5. An average state x ∈ Rn is called reachable (from zero) if there is a time T > 0
and a control function u ∈ L2

T , such that we have

E [X(T, 0, u)] = x.

11



We say that the stochastic system is completely reachable if every average vector x ∈ Rn is
reachable. Next, we characterize the set of all reachable average states. First of all, we need the
following proposition, where we de�ne P :=

∫∞
0

E
[
Φ(s)BBTΦT (s)

]
ds.

Proposition 3.6. The �nite reachability Gramians Pt, t > 0, have the same image as the in�nite
reachability Gramian P , i.e.,

imPt = imP

for all t > 0.

Proof. Since P and Pt are positive semide�nite and symmetric by de�nition it is su�cient to show
that the kernels are equal. First, we assume v ∈ kerP . Thus,

0 ≤ vTPtv ≤ vTPv = 0

since t 7→ vTPtv is increasing such that v ∈ kerPt follows. On the other hand, if v ∈ kerPt we
have

0 = vTPtv =

∫ t

0

vTE
[
Φ(s)BBTΦT (s)

]
vds.

Hence, we can conclude that vTE
[
Φ(s)BBTΦT (s)

]
v = 0 for almost all s ∈ [0, t]. Addionally, we

know that t 7→ E
[
Φ(t)BBTΦT (t)

]
is the solution of the linear matrix di�erential equation

Ẏ(t) = AY(t) + Y(t)AT +

q∑
k=1

ΨkY(t)(Ψk)T E
[
Mk(1)2

]
with initial condition Y(0) = BBT for t ≥ 0. The vectorized form vec(Y) satis�es

vec(Ẏ(t)) =

(
In ⊗A+A⊗ In +

q∑
k=1

Ψk ⊗Ψk · E
[
Mk(1)2

])
vec(Y(t)), vec(Y(0)) = vec(BBT ).

Thus, the entries of E
[
Φ(t)BBTΦT (t)

]
are analytic functions. This implies that the function

f(t) := vTE
[
Φ(t)BBTΦT (t)

]
v is analytic, such that f ≡ 0 on [0,∞). Thus,

0 =

∫ ∞
0

vTE
[
Φ(s)BBTΦT (s)

]
vds = vTPv.

Proposition 3.7. An average state x ∈ Rn is reachable (from zero) if and only if x ∈ imP , where
P :=

∫∞
0

E
[
Φ(s)BBTΦT (s)

]
ds.

Proof. Provided x ∈ imP we will show that this average state can be reached with the following
input function:

[0, T ] 3 t 7→ u(t, ω) = BTΦT (T, t, ω)P#
T x (18)

for all ω ∈ Ω where P#
T denotes the Moore-Penrose pseudoinverse of PT . Thus,

E [X(T, 0, u)] = E

[∫ T

0

Φ(T, t)BBTΦT (T, t)P#
T xdt

]

12



by inserting the function u. Considering the remarks above Proposition 3.4 we have

E
[
Φ(t− τ)BBTΦT (t− τ)

]
= E

[
Φ(t, τ)BBTΦT (t, τ)

]
.

Using this fact we obtain

E [X(T, 0, u)] = E

[∫ T

0

Φ(T − t)BBTΦT (T − t)P#
T xdt

]
.

We substitute s = T − t and since x ∈ imPT by Proposition 3.6 we get

E [X(T, 0, u)] = E

[∫ T

0

Φ(s)BBTΦT (s)ds

]
P#
T x = PTP

#
T x = x.

The energy of the input function u(t) = BTΦT (T, t)P#
T x is

‖u‖2L2
T

= E

[∫ T

0

xTP#
T Φ(T − t)BBTΦT (T − t)P#

T xdt

]

= xTP#
T E

[∫ T

0

Φ(T − t)BBTΦT (T − t)dt

]
P#
T x = xTP#

T PTP
#
T x = xTP#

T x.

On the other hand, if x ∈ Rn is reachable, then there exists an input function u and a time t > 0
such that

x = E [X(t, 0, u)] = E
[∫ t

0

Φ(t, s)Bu(s)ds

]
by de�nition. We assume that v ∈ kerP . Hence,

|〈x, v〉2| =
∣∣∣∣E [∫ t

0

〈Φ(t, s)Bu(s), v〉2 ds
]∣∣∣∣ =

∣∣∣∣E [∫ t

0

〈
u(s), BTΦT (t, s)v

〉
2
ds

]∣∣∣∣ .
Employing the Cauchy-Schwarz inequality, we obtain

|〈x, v〉2| ≤ E
[∫ t

0

‖u(s)‖2
∥∥BTΦT (t, s)v

∥∥
2
ds

]
.

By the Hölder inequality, we have

|〈x, v〉2| ≤ ‖u‖L2
t

(
E
[∫ t

0

∥∥BTΦT (t, s)v
∥∥2
2
ds

]) 1
2

= ‖u‖L2
t

(
vTE

[∫ t

0

Φ(t, s)BBTΦT (t, s)ds

]
v

) 1
2

= ‖u‖L2
t

(
vTPtv

) 1
2 .

Since t 7→ vTPtv is increasing, we obtain

|〈x, v〉2| ≤ ‖u‖L2
t

(
vTPv

) 1
2 = 0.

Thus, 〈x, v〉2 = 0, such that we can conclude that x ∈ imP due to imP = (kerP )
⊥
.

Proposition 3.8. The input function given by (18) is the one with the minimal energy to reach

x ∈ Rn at any time T > 0. This minimal energy is given by xTP#
T x.
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Proof. Let ũ(t), t ∈ [0, T ], be an additional function we can reach with the average state x at time
T , then

x = E

[∫ T

0

Φ(T, t)B (u(t) + (ũ(t)− u(t))) dt

]

holds per de�nition of ũ. Thus, the residual vanishes

E

[∫ T

0

Φ(T, t)B (ũ(t)− u(t)) dt

]
= 0

such that

E

[∫ T

0

u(t)T (ũ(t)− u(t)) dt

]
= 0

follows. Hence, we have

‖ũ‖2L2
T

= ‖u+ (ũ− u)‖2L2
T

= ‖u‖2L2
T

+ ‖ũ− u‖2L2
T
≥ ‖u‖2L2

T
.

From the proof of Proposition 3.7 we know that the energy of u is given by xTP#
T x.

So, by Proposition 3.8, the minimal energy that is needed to steer the system to x is given by
infT>0 x

TP#
T x. By de�nition of PT we know that it is increasing in time such that the pseudoin-

verse P#
T is decreasing. Hence, it is clear that the minimal energy is given by xTP#x, where P#

is the pseudoinverse of P :=
∫∞
0

E
[
Φ(s)BBTΦT (s)

]
ds. The same result is obtained by Benner

and Damm [4] in Theorem 2.3 for stochastic di�erential equations driven by Wiener processes.
This is also true for the deterministic case (see Section 4.3.1 in Antoulas [1]).

3.2 Observability concept

Below, we introduce the concept of observability for the output equation

Y(t) = CX(t) (19)

corresponding to the stochastic linear system (9), where C ∈ Rp×n. Therefore, we need the
following Proposition.

Proposition 3.9. Let Q̂ be a symmetric positive semide�nite matrix and Ya := X(·, a, 0), Yb :=
X(·, b, 0) the homogeneous solutions to (9) with initial conditions a, b ∈ Rn, then

E
[
Ya(t)T Q̂Yb(t)

]
= aT Q̂b+ E

[∫ t

0

Y Ta (s)Q̂AYb(s)ds

]
+ E

[∫ t

0

Y Ta (s)AT Q̂Yb(s)ds

]
+ E

[∫ t

0

Ya(s)T
q∑

k=1

(Ψk)T Q̂ΨkE
[
Mk(1)2

]
Yb(s)ds

]
. (20)

Proof. By applying the Ito product formula from Corollary 2.4, we have

Y Ta (t)Q̂Yb(t) = aT Q̂b+

∫ t

0

Y Ta (s−)d(Q̂Yb(s)) +

∫ t

0

Y Tb (s−)Q̂d(Ya(s)) +

n∑
i=1

[eTi Ya(t), eTi Q̂Yb(t)]t,
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where ei is the ith unit vector (i = 1, . . . , n). We get∫ t

0

Y Ta (s−)d(Q̂Yb(s)) =

∫ t

0

Y Ta (s−)Q̂AYb(s)ds+

q∑
k=1

∫ t

0

Y Ta (s−)Q̂ΨkYb(s−)dMk(s)

and ∫ t

0

Y Tb (s−)Q̂d(Ya(s)) =

∫ t

0

Yb(s−)T Q̂AYa(s)ds+

q∑
k=1

∫ t

0

Yb(s−)T Q̂ΨkYa(s−)dMk(s).

By equation (8) the mean of the quadratic covariations is given by

E[eTi Ya(t), eTi Q̂Yb(t)]t =

q∑
k=1

E
∫ t

0

eTi ΨkYa(s)eTi Q̂ΨkYb(s)ds E
[
Mk(1)2

]
.

With Theorem 2.11 (i) we obtain

E
[
Ya(t)T Q̂Yb(t)

]
= aT Q̂b+ E

[∫ t

0

Y Ta (s)Q̂AYb(s)ds

]
+ E

[∫ t

0

Y Ta (s)AT Q̂Yb(s)ds

]
+

q∑
k=1

E
[∫ t

0

Ya(s)T (Ψk)T Q̂ΨkYb(s)ds

]
E
[
Mk(1)2

]
using that the trajectories of Ya and Yb only have jumps on Lebesgue zero sets.

If we set a = ei and b = ej in Proposition 3.9, we obtain

E
[
eTi Φ(t)T Q̂Φ(t)ej

]
= eTi Q̂ej + E

[∫ t

0

eTi ΦT (s)Q̂AΦ(s)ejds

]
+ E

[∫ t

0

eTi ΦT (s)AT Q̂Φ(s)ejds

]
+ E

[∫ t

0

eTi Φ(s)T
q∑

k=1

(Ψk)T Q̂ΨkE
[
Mk(1)2

]
Φ(s)ejds

]
.

This yields

E
[
Φ(t)T Q̂Φ(t)

]
= Q̂+ E

[∫ t

0

ΦT (s)Q̂AΦ(s)ds

]
+ E

[∫ t

0

ΦT (s)AT Q̂Φ(s)ds

]
+ E

[∫ t

0

Φ(s)T
q∑

k=1

(Ψk)T Q̂ΨkE
[
Mk(1)2

]
Φ(s)ds

]
.

Let Q be the solution of the generalized Lyapunov equation

ATQ+QA+

q∑
k=1

(Ψk)TQΨk E
[
Mk(1)2

]
= −CTC. (21)

Then,

E
[
Φ(t)TQΦ(t)

]
= Q− E

[∫ t

0

ΦT (s)CTCΦ(s)ds

]
and by taking the limit t→∞, we have

Q = E
[∫ ∞

0

ΦT (s)CTCΦ(s)ds

]
(22)
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due to the asymptotic mean square stability of the homogenous equation, which provides the
existence of the integral in equation (22) as well.

Remark. The matrix equation (21) is uniquely solvable, since

L :=

(
AT ⊗ In + In ⊗AT +

q∑
k=1

(Ψk)T ⊗ (Ψk)T · E
[
Mk(1)2

])

has non zero eigenvalues and hence the solution of L · vec(Q) = − vec(CTC) is unique.

Next, we assume that the system (9) is uncontrolled, that means u ≡ 0. By using our knowledge
concerning the homogeneous system, X(t, x0, 0) is given by Φ(t)x0, where here x0 ∈ Rn denotes
the initial value of the system. So, we obtain Y(t) = CΦ(t)x0.
We observe Y on a time interval [0,∞). The problem is to �nd x0 from the observations we have.
The energy produced by the initial value x0 is

‖Y‖2L2 := E
∫ ∞
0

YT (t)Y(t)dt = xT0 E
∫ ∞
0

ΦT (t)CTCΦ(t)dt x0 = xT0Qx0, (23)

where we set Q := E
∫∞
0

ΦT (s)CTCΦ(s)ds. As in Benner, Damm [4], Q takes the part of the
observability Gramian of the stochastic system with output equation (19). We call a state x0
unobservable if it is in the kernel of Q. Otherwise it is said to be observable. We say that a system
is completely observable if the kernel of Q is trivial.

4 Balanced truncation for stochastic systems

For obtaining a reduced order model for a deterministic LTI system, balanced truncation is a
method of major importance. For the procedure of balanced truncation in the deterministic case,
see Antoulas [1], Benner et al. [5] and Obinata, Anderson [19]. In this section we want to generalize
this method for stochastic linear systems, which are in�uenced by Levy noise.

4.1 Procedure

We assume A, Ψk ∈ Rn×n (k = 1, . . . , q), B ∈ Rn×m and C ∈ Rp×n and consider the following
stochastic system:

dX(t) = [AX(t) +Bu(t)]dt+

q∑
k=1

ΨkX(t−)dMk(t), t ≥ 0, X(0) = x0, (24)

Y(t) = CX(t),

where the noise processes Mk (k = 1, . . . , q) are uncorrelated real-valued and square integrable
Levy processes with mean zero. We assume the homogenous solution Yy0 , which ful�lls

dY (t) = AY (t)dt+

q∑
k=1

ΨkY (t−)dMk(t), t ≥ 0, Y (0) = y0,

to be mean square asymptotically stable, which means that E ‖Yy0(t)‖22 → 0 for t → ∞ and
arbitrary initial condition y0 ∈ Rn. In addition, we require that the system (24) is completely
reachable and observable, which is equivalent to P and Q being positive de�nite.

Let T ∈ Rn×n be a regular matrix. If we transform the states in the following way

X̂(t) = TX(t),
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we obtain the following system:

dX̂(t) = [ÃX̂(t) + B̃u(t)]dt+

q∑
k=1

Ψ̃kX̂(t−)dMk(t), X̂(0) = Tx0, (25)

Y(t) = C̃X̂(t), t ≥ 0,

where Ã = TAT−1, Ψ̃k = TΨkT−1, B̃ = TB and C̃ = CT−1. For an arbitrary �xed input,
the transformated system (25) has always the same output as the system (24). The reachability
Gramian P :=

∫∞
0

E
[
Φ(s)BBTΦT (s)

]
ds of system (24) ful�lls

−BBT = AP + PAT +

q∑
k=1

ΨkP (Ψk)T · ck

where ck = E
[
Mk(1)2

]
. By multiplying T from the left and TT from the right hand side we obtain

−B̃B̃T = TAPTT + TPATTT +

q∑
k=1

TΨkP (Ψk)TTT · ck

= ÃTPTT + TPTT ÃT +

q∑
k=1

Ψ̃kTPTT (Ψ̃k)T · ck.

Hence, the reachability Gramian of the transformed system (25) is given by P̃ = TPTT . For
the observability Gramian of the transformed system it holds Q̃ = T−TQT−1, where Q :=∫∞
0

E
[
ΦT (s)CTCΦ(s)

]
ds is the observability Gramian of the original system. Hence,

−C̃T C̃ = ÃT Q̃+ Q̃Ã+

q∑
k=1

(Ψ̃k)T Q̃Ψ̃k · ck.

In addition, it is easy to verify that the generalized Hankel singular values σ1 ≥ . . . ≥ σn > 0 of
(24), which are the square roots of the eigenvalues of PQ, are equal to those of (25).

Like in the deterministic case (see [1] and [19]) we choose T such that Q̃ and P̃ are equal and
diagonal. A system with equal and diagonal Gramians we call balanced system. The corresponding
balancing T is given by

T = Σ
1
2KTU−1 and T−1 = UKΣ−

1
2 , (26)

where Σ = diag(σ1, . . . , σn), U comes from the Cholesky decompostion of P = UUT and K is an
orthogonal matrix corresponding to the EVD (SVD respectively) of UTQU = KΣ2KT . So, we
obtain

Q̃ = P̃ = Σ.

Our aim is to truncate the average states that are di�cult to observe and di�cult to reach, which
are those producing least observation energy and causing the most energy to reach, respectively.
By equation (23) we can say that the states which are di�cult to observe are contained in the
space spanned by the eigenvectors corresponding to the small eigenvalues of Q. Analogously, the
average states that are di�cult to reach are contained in the space spanned by the eigenvectors
corresponding to the small eigenvalues of P (or to the large eigenvalues of P−1, respectively)
considering the remarks below Proposition 3.8. In a balanced system the dominant reachable and
observable states are the same.
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We consider the following partitions:

T =

[
WT

TT2

]
, T−1 =

[
V T1

]
and X̂ =

(
X̃
X1

)
,

where WT ∈ Rr×n, V ∈ Rn×r and X̃ takes values in Rr (r < n). Hence, we have(
dX̃(t)
dX1(t)

)
=

([
WTAV WTAT1
TT2 AV TT2 AT1

](
X̃(t)
X1(t)

)
+

[
WTB
TT2 B

]
u(t)

)
dt (27)

+

q∑
k=1

[
WTΨkV WTΨkT1
TT2 ΨkV TT2 ΨkT1

](
X̃(t−)
X1(t−)

)
dMk(t)

and

Y(t) =
[
CV CT1

]( X̃(t)
X1(t)

)
.

By truncating the system and neglecting the X1 terms, the approximating reduced order model
is given by

dX̃(t) = [WTAV X̃(t) +WTBu(t)]dt+

q∑
k=1

WTΨkV X̃(t−)dMk(t), (28)

Ŷ(t) = CV X̃(t).

What we will show now is that the homogenous solution Ỹy0 of the reduced system (28), which
ful�lls

dY (t) = WTAV Y (t)dt+

q∑
k=1

WTΨkV Y (t−)dMk(t), Y (0) = y0,

is mean square stable in general and still asymptotically mean square stable under certain condi-
tions.

Theorem 4.1. Let Ỹy0 be the homogenous solution of the system (28) with initial condition
y0 ∈ Rr. Then,

E
∥∥∥Ỹy0(t)

∥∥∥2
2
≤ σ1
σr
‖y0‖22 , t ≥ 0. (29)

If furthermore

kerCV ∩ kerTT2 Ψ1V ∩ . . . ∩ kerTT2 ΨqV = {0} (30)

holds, then there exists a λr < 0 such that we have

E
∥∥∥Ỹy0(t)

∥∥∥2
2
≤ σ1
σr
‖y0‖22 e

λr
σ1
t, t ≥ 0.

Proof. In equation (27) we block-wise set[
Ã11 Ã12

Ã21 Ã22

]
:=

[
WTAV WTAT1
TT2 AV TT2 AT1

]
and

[
Ψ̃k

11 Ψ̃k
12

Ψ̃k
21 Ψ̃k

22

]
:=

[
WTΨkV WTΨkT1
TT2 ΨkV TT2 ΨkT1

]
.
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In the corresponding output equation we block-wise de�ne[
C̃1 C̃2

]
:=
[
CV CT1

]
.

We know[
ÃT11 ÃT21
ÃT12 ÃT22

] [
Σ1

Σ2

]
+

[
Σ1

Σ2

] [
Ã11 Ã12

Ã21 Ã22

]
+

q∑
k=1

[
(Ψ̃k

11)T (Ψ̃k
21)T

(Ψ̃k
12)T (Ψ̃k

22)T

] [
Σ1

Σ2

] [
Ψ̃k

11 Ψ̃k
12

Ψ̃k
21 Ψ̃k

22

]
· ck

= −
[
C̃T1 C̃1 C̃T1 C̃2

C̃T2 C̃1 C̃T2 C̃2

]
,

where Σ1 = diag (σ1, . . . , σr), Σ2 = diag (σr+1, . . . , σn) and ck = E[Mk(1)2]. Considering the left
upper block we obtain

ÃT11Σ1 + Σ1Ã11 +

q∑
k=1

(Ψ̃k
11)TΣ1Ψ̃k

11 · ck = −

(
q∑

k=1

(Ψ̃k
21)TΣ2Ψ̃k

21 · ck + C̃T1 C̃1

)
=: L.

Below, we operate with similar arguments like in the proof of Theorem 1.5.3 ((iv) ⇒ (ii)) in
Damm [9]. From equation (20) we can conclude that

E
[
Ỹy0(t)TΣ1Ỹy0(t)

]
= yT0 Σ1y0 + E

[∫ t

0

Ỹ Ty0(s)Σ1Ã11Ỹy0(s)ds

]
+ E

[∫ t

0

Ỹ Ty0(s)ÃT11Σ1Ỹy0(s)ds

]
+ E

[∫ t

0

Ỹy0(s)T
q∑

k=1

(Ψ̃k
11)TΣ1Ψ̃k

11ckỸy0(s)ds

]
.

Thus,

g(t) := E
[
Ỹy0(t)TΣ1Ỹy0(t)

]
= yT0 Σ1y0 + E

[∫ t

0

Ỹ Ty0(s)LỸy0(s)ds

]
.

We di�erentiate both sides of the equation. This yields

ġ(t) = E
[
Ỹ Ty0(t)LỸy0(t)

]
.

With property (30) we conclude that L is symmetric and negative de�nite, since from vTLv = 0
it follows that Ψ̃1

21v = 0, . . . , Ψ̃q
21v = 0 and C̃1v = 0, which means by assumption that v = 0.

Hence, we can choose an orthonormal basis of Rr consisting of eigenvectors (li)i=1,...,r of L. The
corresponding eigenvalues we denote by λ1 ≤ . . . ≤ λr < 0. For v ∈ Rr, there are constants
a1, . . . , ar such that x =

∑r
j=1 aj lj . So, we have

vTLv =

r∑
j=1

aj l
T
j

r∑
i=1

aiλili =

r∑
i=1

a2iλi ≤ λrvT v.

Hence,

ġ(t) ≤ λrE
[
Ỹ Ty0(t)Ỹy0(t)

]
.

On the other hand, we have σrv
T v ≤ vTΣ1v ≤ σ1vT v. Thus,

ġ(t) ≤ λr
σ1

E
[
Ỹ Ty0(t)Σ1Ỹy0(t)

]
=
λr
σ1
g(t).
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Due to the continuity of the function g, we can apply the Lemma of Gronwall. This provides

g(t) ≤ g(0) e
λr
σ1
t

for t ≥ 0. By inserting the function g, we obtain

E
[
Ỹy0(t)TΣ1Ỹy0(t)

]
≤ yT0 Σ1y0 e

λr
σ1
t .

Finally, we have

E
[
Ỹy0(t)T Ỹy0(t)

]
≤ σ1
σr
yT0 y0 e

λr
σ1
t, t ≥ 0. (31)

In general, L is negative semide�nite, such that λr = 0 in inequality (31). So, the mean square
stability (29) follows.

Remark. One persisting problem is to �nd an explicit structure of the Gramians of the reduced
model. As we will see in an example below, the reduced order model is not balanced, that means
the Gramians are neither diagonal nor equal. In addition, the Hankel singular values are di�erent
from those of the original system.
Also, it is not clear if the preservation of asymptotic mean square stability in is given in general.
In fact, it remains to show that

Ir ⊗A11 +A11 ⊗ Ir +

q∑
k=1

Ψk
11 ⊗Ψk

11 · E
[
Mk(1)2

]
is invertible, where A11 := WTAV and Ψk

11 := WTΨkV .

Example 4.2. We consider the case, where q = 1 and the noise process is a Wiener process W .
So, the system we focus on is

dX(t) = [AX(t) +Bu(t)]dt+ ΨX(t)dW (t) (32)

Y(t) = CX(t).

The following matrices provide a balanced and asymptotically mean square stable system:

A =
(−4.4353 3.9992 −0.3287

2.9337 −11.0285 −0.4319
−0.0591 −0.1303 −11.5362

)
, B =

(−3.4648 −1.9391 −3.6790
5.7925 4.1379 2.3036
−0.3258 1.1359 2.8972

)
,

Ψ =
(−1.4886 2.8510 −0.2429

0.4720 0.5803 3.1152
−1.6123 −0.8082 −0.0917

)
, C =

(−3.0588 0.4275 0.2630
−4.8686 1.2886 1.0769
−4.3349 0.6747 −0.1734

)
.

The Gramians are given by

P = Q = Σ =
(

8.4788 0 0
0 3.3232 0
0 0 1.4726

)
.

The reduced order model (r = 2) is asymptotically mean square stable and has the following
Gramians:

PR =
(

7.7470 −0.3562
−0.3562 2.5496

)
and QR =

(
7.7495 −0.2074
−0.2074 2.8980

)
.

The Hankel singular values of the reduced order model are 7.6633 and 2.7001.

At the end of this section we provide a short example that shows that the reduced order model need
not be completely observable and reachable even if the original system is completely observable
and reachable:
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Example 4.3. We consider the equations (32) with the matrices

(A,B,Ψ, C) =
((−0.25 1

1 −9
)
,
(

0√
7

)
,Ψ =

(
0 1
1 −3

)
, C = ( 0

√
7 )
)

and obtain a balanced and asymptotically mean square stable system being completely reachable and
observable. The Hankel singular values are 2 and 1. Truncating yields a system with coe�cients
(A11, B1,Ψ11, C1) = (−0.25, 0, 0, 0) having Gramians PR = QR = 0.

4.2 Error bound for balanced truncation

Let
(
A,Ψk, B,C

)
(k = 1, . . . , q) be a realization of system (24). Furthermore, we assume the inital

condition of the system to be zero. We introduce the following partitions:

TAT−1 =

[
A11 A12

A21 A22

]
, TΨkT−1 =

[
Ψk

11 Ψk
12

Ψk
21 Ψk

22

]
, TB =

[
B1

B2

]
and CT−1 =

[
C1 C2

]
, (33)

where T is the balancing transformation de�ned in (26) and
(
A11,Ψ

k
11, B1, C1

)
are the coe�cients

of the reduced order model. The output of the reduced (truncated) system is given by

Ŷ(t) = C1X̃(t) = C1

∫ t

0

Φ̃(t, s)B1u(s)ds,

where Φ̃ is the fundamental matrix of the truncated system. In addition, we assume that the
homogenous equation of the reduced system is still asymptotically mean square stable. The
asymptotic mean square stability of the reduced model we have for example if kerC1 ∩ ker Ψ1

21 ∩
. . . ∩ ker Ψq

21 = {0} as shown in Theorem 4.1. In addition, we know

Y(t) = CX(t) = C

∫ t

0

Φ(t, s)Bu(s)ds.

It is our goal to steer the average state via the control u and to truncate the average states that
are di�cult to reach for obtaining a reduced order model. Therefore, it is a meaningful criterion
to consider the worst case mean error of Ŷ(t) and Y(t). Below, we give a bound for that kind of
error:

E
∥∥∥Ŷ(t)− Y(t)

∥∥∥
2

= E
∥∥∥∥C ∫ t

0

Φ(t, s)Bu(s)ds− C1

∫ t

0

Φ̃(t, s)B1u(s)ds

∥∥∥∥
2

≤ E
∫ t

0

∥∥∥(CΦ(t, s)B − C1Φ̃(t, s)B1

)
u(s)

∥∥∥
2
ds

≤ E
∫ t

0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥
F
‖u(s)‖2 ds

and by Hölder inequality it holds

E
∥∥∥Ŷ(t)− Y(t)

∥∥∥
2
≤
(
E
∫ t

0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥2
F
ds

) 1
2
(
E
∫ t

0

‖u(s)‖22 ds
) 1

2

.
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Now,

E
∫ t

0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥2
F
ds

= E
∫ t

0

‖CΦ(t, s)B‖2F +
∥∥∥C1Φ̃(t, s)B1

∥∥∥2
F
− 2

〈
CΦ(t, s)B,C1Φ̃(t, s)B1

〉
F
ds

= E
∫ t

0

tr
(
CΦ(t, s)BBTΦT (t, s)CT

)
ds+ E

∫ t

0

tr
(
C1Φ̃(t, s)B1B

T
1 Φ̃T (t, s)CT1

)
ds

− 2E
∫ t

0

tr
(
CΦ(t, s)BBT1 Φ̃T (t, s)CT1

)
ds

= tr

(
C

∫ t

0

E
[
Φ(t, s)BBTΦT (t, s)

]
ds CT

)
+ tr

(
C1

∫ t

0

E
[
Φ̃(t, s)B1B

T
1 Φ̃T (t, s)

]
ds CT1

)
− 2 tr

(
C

∫ t

0

E
[
Φ(t, s)BBT1 Φ̃T (t, s)

]
ds CT1

)
. (34)

Due to the remarks we give above Proposition 3.4 we have

E
[
Φ(t, s)BBTΦT (t, s)

]
= E

[
Φ(t− s)BBTΦT (t− s)

]
and

E
[
Φ̃(t, s)B1B

T
1 Φ̃T (t, s)

]
= E

[
Φ̃(t− s)B1B

T
1 Φ̃T (t− s)

]
for 0 ≤ s ≤ t. Furthermore, we want to analyze the term in (34). Therefor, we need the following
Proposition:

Proposition 4.4. The Rn×r-valued function E
[
Φ(t)BBT1 Φ̃T (t)

]
, t ≥ 0, is the solution of the

following di�erential equation:

Ẏ(t) = Y(t)AT11 +AY(t) +

q∑
k=1

ΨkY(t)(Ψk
11)T E

[
Mk(1)2

]
, Y(0) = BBT1 . (35)

Proof. With B = [b1, . . . , bm] and B1 =
[
b̃1, . . . , b̃m

]
, we obtain

Φ(t)BBT1 Φ̃T (t) = Φ(t)b1b̃
T
1 Φ̃T (t) + . . .+ Φ(t)bmb̃

T
mΦ̃T (t) (36)

By applying the Ito product formula from Corollary 2.5, we have

Φ(t)blb̃
T
l Φ̃T (t) =blb̃

T
l +

∫ t

0

d(Φ(s)bl)b̃
T
l Φ̃T (s−) +

∫ t

0

Φ(s−)bld(b̃Tl Φ̃T (s)) +
([
eTi Φbl, e

T
j Φ̃b̃l

]
t

)
i=1,...,n
j=1,...,r

.

From (8) we know that

E
[
eTi Φbl, e

T
j Φ̃b̃l

]
t

=

q∑
k=1

E
[∫ t

0

eTi ΨkΦ(s)blb̃
T
1 Φ̃T (s)(Ψk

11)T ejds

]
E
[
Mk(1)2

]
.

With Theorem 2.11 (i) we obtain

E
[
Φ(t)blb̃

T
l Φ̃T (t)

]
= blb̃

T
l + E

[∫ t

0

Φ(s)blb̃
T
l Φ̃T (s)ds

]
AT11 +AE

[∫ t

0

Φ(s)blb̃
T
l Φ̃T (s)ds

]
+

q∑
k=1

ΨkE
[∫ t

0

Φ(s)blb̃
T
l Φ̃T (s)ds

]
(Ψk

11)TE
[
Mk(1)2

]
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using that the trajectories of Φ and Φ̃ only have jumps on Lebesgue zero sets. By equation (36),
we have

E
[
Φ(t)BBT1 Φ̃T (t)

]
= BBT1 + E

[∫ t

0

Φ(s)BBT1 Φ̃T (s)ds

]
AT11 (37)

+AE
[∫ t

0

Φ(s)BBT1 Φ̃T (s)ds

]
+

q∑
k=1

ΨkE
[∫ t

0

Φ(s)BBT1 Φ̃T (s)ds

]
(Ψk

11)TE
[
Mk(1)2

]
which provides the result.

By Proposition 4.4 we can conclude that the function E
[
Φ(t− τ)BBT1 Φ̃T (t− τ)

]
, t ≥ τ ≥ 0, is

the solution of the equation

Ẏ(t) = Y(t)AT11 +AY(t) +

q∑
k=1

ΨkY(t)(Ψk
11)T E

[
Mk(1)2

]
, Y(τ) = BBT1 , (38)

for all t ≥ τ ≥ 0. Analogous to Proposition 4.4 we can conclude that E
[
Φ(t, τ)BBT1 Φ̃T (t, τ)

]
is

also a solution of equation (38), which yields

E
[
Φ(t, τ)BBT1 Φ̃T (t, τ)

]
= E

[
Φ(t− τ)BBT1 Φ̃T (t− τ)

]
(39)

for all t ≥ τ ≥ 0. Using equation (39) we have

E
∫ t

0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥2
F
ds = tr

(
C

∫ t

0

E
[
Φ(t− s)BBTΦT (t− s)

]
ds CT

)
+ tr

(
C1

∫ t

0

E
[
Φ̃(t− s)B1B

T
1 Φ̃T (t− s)

]
ds CT1

)
− 2 tr

(
C

∫ t

0

E
[
Φ(t− s)BBT1 Φ̃T (t− s)

]
ds CT1

)
.

By substitution, we obtain

E
∫ t

0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥2
F
ds = tr

(
C

∫ t

0

E
[
Φ(s)BBTΦT (s)

]
ds CT

)
+ tr

(
C1

∫ t

0

E
[
Φ̃(s)B1B

T
1 Φ̃T (s)

]
ds CT1

)
− 2 tr

(
C

∫ t

0

E
[
Φ(s)BBT1 Φ̃T (s)

]
ds CT1

)
.

Provided the homogenous equation of the truncated system is still asymptotically mean square
stable it holds

E
∥∥∥Ŷ(t)− Y(t)

∥∥∥
2
≤
(
E
∫ ∞
0

∥∥∥CΦ(t, s)B − C1Φ̃(t, s)B1

∥∥∥2
F
ds

) 1
2
(
E
∫ t

0

‖u(s)‖22 ds
) 1

2

=
(
tr
(
CPCT

)
+ tr

(
C1PRC

T
1

)
− 2 tr

(
CPMC

T
1

)) 1
2 ‖u‖L2

t
,

where P = E
∫∞
0

Φ(τ)BBTΦT (τ)dτ is the reachability Gramian of the original system, PR =

E
∫∞
0

Φ̃(τ)B1B
T
1 Φ̃T (τ)dτ ∈ Rr×r the reachability Gramian of the approximating system and PM =
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E
∫∞
0

Φ(τ)BBT1 Φ̃T (τ)dτ ∈ Rn×r a matrix that ful�lls the following equation:

0 = BBT1 + PMA
T
11 +APM +

q∑
k=1

ΨkPM (Ψk
11)T E

[
Mk(1)2

]
, (40)

which we get by taking the limit t → ∞ on both sides of equation (37). We summarize these
results in the following theorem:

Theorem 4.5. Let
(
A,Ψk, B,C

)
be a realization of system (24). Suppose that the reduced order

model with the coe�cients
(
A11,Ψ

k
11, B1, C1

)
de�ned in (33) is asymptotically mean square stable,

then

sup
t∈[0,T ]

E
∥∥∥Ŷ(t)− Y(t)

∥∥∥
2
≤
(
tr
(
CPCT

)
+ tr

(
C1PRC

T
1

)
− 2 tr

(
CPMC

T
1

)) 1
2 ‖u‖L2

T
(41)

for every T > 0, where Y is the output of the original and Ŷ the output of the reduced system.
Here, P denotes the reachability Gramian of system (24), PR denotes the reachability Gramian of
reduced system and PM satis�es equation (40).

Remark. If u ∈ L2 we can replace ‖·‖L2
T
by ‖·‖L2 and [0, T ] by R+ in inequality (41).

We want to specify the error bound for a particular case.

Proposition 4.6. If the realization (A,Ψk, B,C) is balanced and Ψk
12 = Ψk

21 = 0 for k = 1, . . . , q,
then

tr
(
CPCT

)
+ tr

(
C1PRC

T
1

)
− 2 tr

(
CPMC

T
1

)
= tr((CT2 C2 + 2PM,2A

T
21)Σ2),

where PM,2 are the last n− r rows of PM and Σ2 = diag(σr+1, . . . , σn).

Proof. We have[
AT11 AT21
AT12 AT22

] [
Σ1

Σ2

]
+

[
Σ1

Σ2

] [
A11 A12

A21 A22

]
+

q∑
k=1

[
(Ψk

11)T 0
0 (Ψk

22)T

] [
Σ1

Σ2

] [
Ψk

11 0
0 Ψk

22

]
· ck

= −
[
CT1 C1 CT1 C2

CT2 C1 CT2 C2

]
,

where ck = E
[
Mk(1)2

]
. Hence,

AT11Σ1 + Σ1A11 +

q∑
k=1

(Ψk
11)TΣ1Ψk

11ck = −CT1 C1,

such that Σ1 is the observability Gramian of the reduced order model. In addition, it is also
easy to check that Σ1 represents the reachability Gramian of the reduced system. We de�ne

E :=
(
tr
(
CPCT

)
+ tr

(
C1PRC

T
1

)
− 2 tr

(
CPMC

T
1

)) 1
2 and obtain

E2 = tr

([
C1 C2

] [Σ1

Σ2

] [
CT1
CT2

])
+ tr

(
C1Σ1C

T
1

)
− 2 tr

([
C1 C2

] [PM,1

PM,2

]
CT1

)
= tr(C2Σ2C

T
2 + 2C1Σ1C

T
1 − 2C1PM,1C

T
1 − 2C2PM,2C

T
1 ).

It holds

−CT1 C2 = AT21Σ2 + Σ1A12.
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This yields

E2 = tr(C2Σ2C
T
2 + 2C1Σ1C

T
1 − 2C1PM,1C

T
1 ) + 2 tr(AT21Σ2PM,2 + Σ1A12PM,2).

We have

−B1B
T
1 = PM,1A

T
11 +A11PM,1 +A12PM,2 +

q∑
k=1

Ψk
11PM,1(Ψk

11)T ck.

Thus,

Σ1A12PM,2 = −Σ1(B1B
T
1 + PM,1A

T
11 +A11PM,1 +

q∑
k=1

Ψk
11PM,1(Ψk

11)T ck).

Since

tr(Σ1A12PM,2) = − tr(Σ1(B1B
T
1 + PM,1A

T
11 +A11PM,1 +

q∑
k=1

Ψk
11PM,1(Ψk

11)T ck))

= − tr(Σ1B1B
T
1 +AT11Σ1PM,1 + Σ1A11PM,1 +

q∑
k=1

(Ψk
11)TΣ1Ψk

11ckPM,1)

= − tr(BT1 Σ1B1) + tr(CT1 C1PM,1),

we have

E2 = tr(C2Σ2C
T
2 + 2C1Σ1C

T
1 − 2C1PM,1C

T
1 )− tr(2BT1 Σ1B1) + tr(2CT1 C1PM,1)

+ 2 tr(AT21Σ2PM,2)

= tr(C2Σ2C
T
2 ) + 2 tr(AT21Σ2PM,2) = tr((CT2 C2 + 2PM,2A

T
21)Σ2).

The error bound we obtained in Proposition 4.6 has the same structure as the H2 error bound in
the deterministic case, which can be found in Section 7.2.2 in Antoulas [1].

5 Applications

In order to demonstrate the use of the model reduction method introduced in Section 4 we apply
it in the context of the numerical solution of linear controlled evolution equations with Levy noise.
Therefor, we apply the Galerkin scheme on that evolution equation and end up with a sequence
of ordinary stochastic di�erential equations. Then, we use balanced truncation for reducing the
dimension of the Galerkin solution. Finally, we compute the error bounds and exact errors for the
example considered here.

5.1 Finite dimensional approximations for stochastic evolution equations

In this section we deal with an in�nite dimensional system, where the noise process is denoted by
M . We suppose thatM is a Levy process with values in a separable Hilbert space U . Additionally,
we assume that M is square integrable with zero mean. The most important properties regarding
this process and the de�nition of an integral with respect toM one can �nd in the book of Peszat,
Zabczyk [20].
Suppose A : D(A)→ H is a densely de�ned linear operator being self adjoint and negative de�nite
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such that we have an orthonormal basis (hk)k∈N of H consisting of eigenvectors of A:

Ahk = −λkhk,

where 0 ≤ λ1 ≤ λ2 ≤ . . . are the corresponding eigenvalues. Furthermore, the linear operator A
generates a contraction C0-semigroup (S(t))t≥0 de�ned by

S(t)x =

∞∑
k=1

e−λkt 〈x, hk〉hk

for x ∈ H being exponentially stable for the case 0 < λ1. By Q we denote the covariance operator
of M which is a symmetric and positive de�nite trace class operator that is characterized by

E 〈M(t), x〉U 〈M(s), y〉U = min{t, s} 〈Qx, y〉U

for x, y ∈ U and s, t ≥ 0. We can choose an orthonormal basis of U consisting of eigenvectors
(uk)k∈N of Q.6 The corresponding eigenvalues we denote by (µk)k∈N such that

Quk = µkuk.

We consider the following stochastic di�erential equation:

dX(t) = [AX(t) +Bu(t)] dt+ Ψ(X(t−))dM(t), X(0) = x0 ∈ H, (42)

Y (t) = CX(t), t ≥ 0.

We make the following assumptions:

• Ψ is a linear mapping on H with values in the set of all linear operators from U to H such
that Ψ(h)Q

1
2 is a Hilbert Schmidt operator for every h ∈ H. In addition,∥∥∥Ψ(h)Q

1
2

∥∥∥
LHS(U,H)

≤ M̃ ‖h‖H (43)

holds for M̃ > 0.

• The process u : R+ × Ω→ Rm is (Ft)t≥0-adapted with∫ T

0

E ‖u(s)‖22 ds <∞

for each T > 0.

• B is a linear and bounded operator on Rm with values in H and C ∈ L(H,Rp).

De�nition 5.1. A cadlag process (X(t))t≥0 with values in H is called mild solution of (42) if
P-almost surely

X(t) = S(t)x0 +

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)Ψ(X(s−))dM(s) (44)

holds for all t ≥ 0.

Remark. Since the operator A generates a contraction semigroup, the stochastic convolution in
equation (44) has a cadlag modi�cation (Theorem 9.24 in [20]), which enables us to construct
a cadlag mild solution of equation (42). This solution is unique for every �xed u considering
Theorem 9.29 in [20].

6By Theorem VI.21 in Reed, Simon [22] Q is a compact operator such that this property follows by the spectral
theorem.
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We will now approximate the mild solution of the in�nite dimensional equation (42). We use the
Galerkin method for a �nite dimensional approximation that one can for example �nd in Grecksch,
Kloeden [10]. There they dealt with strong solutions of stochastic evolution equations with scalar
Wiener noise.

We construct a sequence (Xn)n∈N of �nite dimensional cadlag processes with values in Hn =
span {h1, . . . , hn} given by

dXn(t) = [AnXn(t) +Bnu(t)] dt+ Ψn(Xn(t−))dMn(t), t ≥ 0, (45)

Xn(0) = x0,n,

where

• Mn(t) =
∑n
k=1 〈M(t), uk〉U uk, t ≥ 0, is a span {u1, . . . , un}-valued Levy process,

• Anx =
∑n
k=1 〈Ax, hk〉H hk ∈ Hn holds for all x ∈ D(A),

• Bnx =
∑n
k=1 〈Bx, hk〉H hk ∈ Hn holds for all x ∈ H,

• Ψn(x)y =
∑n
k=1 〈Ψ(x)y, hk〉H hk ∈ Hn holds for all y ∈ U and x ∈ H,

• x0,n =
∑n
k=1 〈x0, hk〉H hk ∈ Hn.

We know that An generates a C0-semigroup (Sn(t))t≥0 on Hn which is de�ned by Sn(t)x =∑n
k=1 〈S(t)x, hk〉H hk for all x ∈ H such that the mild solution of equation (45) is given by

Xn(t) = Sn(t)x0,n +

∫ t

0

Sn(t− s)Bnu(s)ds+

∫ t

0

Sn(t− s)Ψn(Xn(s−))dMn(s)

for t ≥ 0. Furthermore, we consider the p dimensional approximating output

Yn(t) = CXn(t), t ≥ 0.

With similar arguments like in the proof of Theorem 1 in Grecksch, Kloeden [10] one can show
the follwing theorem and hence

E ‖Yn(t)− Y (t)‖22 → 0

is true for n→∞ and t ≥ 0:

Theorem 5.2. It holds

E ‖Xn(t)−X(t)‖2H → 0

for n→∞ and t ≥ 0.

Remark. If U = Rq one has to replace Mn by M in equation (45) and Theorem 5.2 holds for
this case as well.

We now determine the components of Yn. They are given by

Y ln(t) = 〈Yn(t), el〉Rp = 〈CXn(t), el〉Rp =

n∑
k=1

〈Chk, el〉Rp 〈Xn(t), hk〉H

for l = 1, . . . , p, where el is the lth unit vector in Rp. We set

X (t) = (〈Xn(t), h1〉H , . . . , 〈Xn(t), hn〉H)
T
and C = (〈Chk, el〉Rp) l=1,...,p

k=1,...,n
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and obtain

Yn(t) = CX (t), t ≥ 0.

The components of X ful�ll the following:

〈Xn(t), hk〉H = 〈Sn(t)x0,n, hk〉H +

∫ t

0

〈Sn(t− s)Bnu(s), hk〉H ds

+

〈∫ t

0

Sn(t− s)Ψn(Xn(s−))dMn(s), hk

〉
H

.

Considering the representation Sn(t)x =
∑n
i=1 e−λit 〈x, hi〉H hi (x ∈ H) we have

〈Sn(t)x0,n, hk〉H = e−λkt 〈x0,n, hk〉H = e−λkt 〈x0, hk〉H ,

and

〈Sn(t− s)Bnu(s), hk〉H = e−λk(t−s) 〈Bnu(s), hk〉H = e−λk(t−s) 〈Bu(s), hk〉H

=
m∑
l=1

e−λk(t−s) 〈Bel, hk〉H 〈u(s), el〉Rm

for k = 1, . . . , n, where el is the lth unit vector in Rm. Furthermore,〈∫ t

0

Sn(t− s)Ψn(Xn(s−))dMn(s), hk

〉
H

=

n∑
j=1

∫ t

0

〈Sn(t− s)Ψn(Xn(s−))uj , hk〉H d 〈M(s), uj〉U

=

n∑
j=1

n∑
i=1

∫ t

0

〈Sn(t− s)Ψn(hi)uj , hk〉H 〈Xn(t−), hi〉H d 〈M(s), uj〉U

=

n∑
j=1

n∑
i=1

∫ t

0

e−λk(t−s) 〈Ψ(hi)uj , hk〉H 〈Xn(t−), hi〉H d 〈M(s), uj〉U .

Hence, in compact form X is given by

X (t) = eAt X0 +

∫ t

0

eA(t−s) Bu(s)ds+

n∑
j=1

∫ t

0

eA(t−s)N jX (s−)dM j(s), (46)

where

• A = diag(−λ1, . . . ,−λn), B = (〈Bei, hk〉H) k=1,...,n
i=1,...,m

, N j =
(
〈Ψ(hi)uj , hk〉H

)
k,i=1,...,n

,

• X0 = (〈x0, h1〉H , . . . , 〈x0, hn〉H)
T
and M j(s) = 〈M(s), uj〉U .

The processes M j are uncorrelated real-valued Levy processes with E
∣∣M j(t)

∣∣2 = tµj , t ≥ 0, and
zero mean. Below, we show that the solution of equation (46) ful�lls the strong solution equation
as well. Therefor, we set

f(t) := X0 +

∫ t

0

e−As Bu(s)ds+

n∑
j=1

∫ t

0

e−AsN jX (s−)dM j(s), t ≥ 0,
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and determine the stochastic di�erential of eAt f(t) via the Ito product formula in Corollary 2.4:

eTi X (t) = eTi eAt f(t) = eTi f(0) +

∫ t

0

d
(
eTi eAs

)
f(s−) +

∫ t

0

eTi eAs df(s)

= eTi

X0 +

∫ t

0

A eAs f(s)ds+

∫ t

0

Bu(s)ds+

n∑
j=1

∫ t

0

N jX (s−)dM j(s)

 ,

where ei is the ith unit vector of Rn and the quadratic covariation terms are zero, since t 7→ eTi eAt

is a continuous semimartingale with a martingale part of zero. Hence,

X (t) = X0 +

∫ t

0

AX (s) + Bu(s)ds+

n∑
j=1

∫ t

0

N jX (s−)dM j(s), t ≥ 0.

Example 5.3. We consider a bar of lenght π, which is heated on [0, π2 ]. The temperature of the
bar is described by the following stochastic partial di�erential equation:

∂X(t, ζ)

∂t
=

∂2

∂ζ2
X(t, ζ) + 1[0,π2 ](ζ)u(t) + aX(t−, ζ)

∂M(t)

∂t
(47)

X(t, 0) = 0 = X(t, π),

X(0, ζ) = x0(ζ)

for t ≥ 0 and ζ ∈ [0, π]. Thereby, we assumed that M is a scalar square integrable Levy process

with zero mean, H = L2([0, π]), U = R, m = 1, A = ∂2

∂ζ2 Furthermore, we set B = 1[0,π2 ](·) and

Ψ(x) = ax for x ∈ L2([0, π]). Additionally, we assume E
[
M(1)2

]
a2 < 2, which is equivalent to

the homogeneous solution ful�lls

E
∥∥Xh(t, ·)

∥∥2
H
≤ c e−αt ‖x0(·)‖2H (48)

for c, α > 0. This equivalence is a consequence of Theorem 3.1 in Ichikawa [13] and Theorem
5 in Haussmann [11]. For further information regarding the exponential mean square stability
condition (48) see Section 5 in Curtain [7].7 It is a well known fact that here the eigenvalues of
the second derivative are given by −λk = −k2 and the corresponding eigenvectors which represent

an orthonormal basis are hk =
√

2
π sin(k·). We are interested in the avarage temparature of the

bar on [π2 , π] such that the scalar output of the system is

Y (t) =
2

π

∫ π

π
2

X(t, ζ)dζ,

where Cx = 2
π

∫ π
π
2
x(ζ)dζ for x ∈ L2([0, π]). We approximate Y via

Yn(t) = CX (t),

CT = (Chk)k=1,...,n =
((

2
π

) 3
2 1
k

[
cos(kπ2 )− cos(kπ)

])
k=1,...,n

.

X is given by

X (t) = X0 +

∫ t

0

AX (s) + Bu(s)ds+

∫ t

0

NX (s−)dM(s), (49)

where

7Curtain, Ichikawa and Haussmann stated these conditions for exponential mean square stability for the Wiener
case, which can be easily generalized for the case of square integrable Levy process with mean zero.
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• A = diag
(
−1,−4, . . . ,−n2

)
,

• N = (〈Ψ(hi), hk〉H)
k,i=1,...,n

= (〈ahi, hk〉H)
k,i=1,...,n

= aIn,

• B = (〈B, hk〉H)
k=1,...,n

=
(〈

1[0,π2 ](·), hk
〉
H

)
k=1,...,n

=
((

2
π

) 1
2 1
k

[
1− cos(kπ2 )

])
k=1,...,n

.

Since we now choose x0 ≡ 0 for simplicity, we additionally have X0 = 0.

Next, we consider a more complex example with a two dimensional state variable:

Example 5.4. We determine the Galerkin solution of the following controlled stochastic partial
di�erential equation:

∂X(t, ζ)

∂t
= ∆X(t, ζ) + 1[π4 ,

3π
4 ]2(ζ)u(t) + e−|ζ1−

π
2 |−ζ2 X(t−, ζ)

∂M(t)

∂t
, t ≥ 0, ζ ∈ [0, π]2, (50)

∂X(t, ζ)

∂n
= 0, t ≥ 0, ζ ∈ ∂[0, π]2,

X(0, ζ) ≡ 0.

Again, M is a scalar square integrable Levy process with zero mean, H = L2([0, π]2), U = R,
m = 1, A is the Laplace operator, B = 1[π4 ,

3π
4 ]2(·) and Ψ(x) = e−|·−

π
2 |−· x for x ∈ L2([0, π]2).

The eigenvalues of the Laplacian on [0, π]2 are given by −λij = −(i2 + j2) and the corresponding
eigenvectors which represent an orthonormal basis are hij = 2

π cos(i·) cos(j·). For simplicity we
write −λk for the kth largest eigenvalue and the corresponding eigenvector we denote by hk. The
scalar output of the system is

Y (t) =
4

3π2

∫
[0,π]2\[π4 ,

3π
4 ]2

X(t, ζ)dζ,

where Cx = 4
3π2

∫
[0,π]2\[π4 ,

3π
4 ]2

x(ζ)dζ for x ∈ L2([0, π]2). The output of the Galerkin system is

Yn(t) = CX (t),

CT = (Chk)k=1,...,n. The Galerkin solutions X satis�es

X (t) =

∫ t

0

AX (s) + Bu(s)ds+

∫ t

0

NX (s−)dM(s), (51)

where A = diag (0,−1,−1,−2, . . .), N = (〈Ψ(hi), hk〉H)
k,i=1,...,n

, B = (〈B, hk〉H)
k=1,...,n

.

5.2 Error bounds of the examples

We consider the system from Example 5.3. Using Theorem 3.3 the uncontrolled equation (49) is
asymptotically mean square stable if and only if the Kronecker matrix

In ⊗A+A⊗ In +N ⊗N · E
[
M(1)2

]
= In ⊗A+ (A+ E

[
M(1)2

]
a2In)⊗ In

is Hurwitz. From Section 2.6 in Steeb [24] we can conclude that the largest eigenvalue of the
Kronecker matrix is −2 +E

[
M(1)2

]
a2. Thus, the homogeneous solution of system (49) is asymp-

totically mean square stable if and only if E
[
M(1)2

]
a2 < 2, which is ful�lled by (48).

We want to obtain a reduced order model via balanced truncation. We choose a = E
[
M(1)2

]
= 1

and additionally let n = 1000. It turns out that the system is neither completely observable nor
completely reachable since the Gramians do not have full rank. So, we need an alternative method
to determine the reduced order model. We use a method for non minimal systems that is known
from the deterministic case and which is for example described in Section 1.4.2 in Benner et al.
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[5]. In this algorithm we do not compute the full transformation matrix T . So, we obtain the
matrices of the reduced order model by

Ã = WT diag(−1, . . . ,−n2)V, Ñ = WT InV = Ir, B̃ = WTB, C̃ = CV.

Thereby,

WT = Σ
− 1

2
1 V T1 R and V = STU1Σ

− 1
2

1 ,

where V1 and U1 are from the SVD of SRT :

SRT =
[
U1 U2

] [Σ1

Σ2

] [
V T1
V T2

]
,

where Q = RTR and P = STS. Reducing the model yields the following error bounds:

Dimension of the reduced order model
(

tr
(
CPCT

)
+ tr

(
C̃PRC̃T

)
− 2 tr

(
CPM C̃T

)) 1
2

8 4.5514 · 10−6

4 2.3130 · 10−4

2 1.7691 · 10−3

1 0.0879

.

Below, we reduce the Galerkin solution of Example 5.4 with dimension n = 1000 and E
[
M(1)2

]
=

1. Here, the matrix A = diag (0,−1,−1,−2, . . .) is not stable, such that we need to stabilize
system (51) before using balanced truncation. Inserting the feedback control u(t) = −2eT1 X (t),
t ≥ 0, where e1 is the �rst unit vector in Rn, yields a asymptotically mean square stable system,
since the following su�cient condition holds (see Corollary 3.6.3 in [9] and Theorem 5 in [11]):
AS = A− 2BeT1 is stable and∥∥∥∥∫ ∞

0

eA
T
S tN TN eASt dt

∥∥∥∥ = 0.0658 < 1.

We repeat the procedure from above and obtain

Dimension of the reduced order model
(

tr
(
CPCT

)
+ tr

(
C̃PRC̃T

)
− 2 tr

(
CPM C̃T

)) 1
2

8 3.7545 · 10−6

4 6.4323 · 10−4

2 3.1416 · 10−3

1 0.0333

for the the stabilized system (51) meaning that we replaced A by AS .

5.3 Comparison between exact error and error bound

Since equations (49) and (51) do not have an explicit solution in general we need to discretize in
time for computing the exact error of the estimation given here. For simplicity, we assume that
n = 80 andM is a scalar Wiener process and use the Euler-Maruyama scheme8 for approximating
the original system:

Xk+1 = Xk + (AXk + Bu(tk))h+NXk∆Mk

8The theory regarding this method one can �nd in Kloeden, Platen [15].
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and the reduced order model:

X̃k+1 = X̃k +
(
ÃX̃k + B̃u(tk)

)
h+ Ñ X̃k∆Mk,

where we consider these equations on the time interval [0, π]. Furthermore, we choose X0 = 0,
h = π

10000 and tk = kh for k = 0, 1, . . . , 10000, ∆Mk = M(tk+1)−M(tk).

For system (49) we insert the normalized control functions u1(t) =
√
2
π M(t), u2(t) =

√
2
π cos(t),

u3(t) =
√

2
1−e−2π e−t, t ∈ [0, π] and obtain D := maxk=1,...,10000 E

∣∣∣CXk − C̃X̃k

∣∣∣ for di�erent

dimensions of the reduced order model (ROM) and di�erent inputs:

Dimension of the ROM D with u = u1 D with u = u2 D with u = u3 EB
8 9.0615 · 10−9 7.8832 · 10−8 1.3987 · 10−7 1.4813 · 10−6

4 3.8702 · 10−6 6.4204 · 10−6 1.1353 · 10−5 2.2706 · 10−4

2 6.8932 · 10−5 1.1195 · 10−4 1.9549 · 10−4 1.7671 · 10−3

1 0.0141 0.0243 0.0354 0.0879

,

where EB :=
(

tr
(
CPCT

)
+ tr

(
C̃PRC̃T

)
− 2 tr

(
CPM C̃T

)) 1
2

.

For system (51) we use the inputs ũi(t) = −2eT1 X (t) + ui(t), t ≥ 0, i = 1, 2, 3 and obtain

Dimension of the ROM D with u = ũ1 D with u = ũ2 D with u = ũ3 EB
8 5.6162 · 10−7 5.5374 · 10−7 6.5699 · 10−7 3.5376 · 10−6

4 4.7245 · 10−5 5.2722 · 10−5 6.8758 · 10−5 3.1487 · 10−4

2 5.1270 · 10−4 4.6627 · 10−4 6.2103 · 10−4 2.4164 · 10−3

1 3.7520 · 10−3 0.0118 9.9629 · 10−3 0.0327

.

6 Conclusion

We generalized balanced truncation for stochastic system with noise processes having jumps. In
particular, we focused on a linear controlled state equation driven by uncorrelated Levy processes
which is asymptotically mean square stable and equipped with an output equation. We showed
that the Gramians we de�ned are solutions of generalized Lyapunov equations and proofed that the
reachable and observable states and the corresponding energy are characterized by these Gramians.
We showed that the reduced order model (ROM) is mean square stable, not balanced, the Hankel
singular values (HV) of the ROM are not a subset of the HVs of the original system and one
can lose complete observability and reachability. Furthermore, we provided an error bound for
balanced truncation of the Levy driven system assuming mean square asymptotic stability of the
ROM. Finally, we demonstrated the use of balanced truncation for stochastic systems. We applied
it in the context of the numerical solution of linear controlled evolution equations with Levy noise
and computed the error bounds and exact errors for the example considered here.
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