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Computing the eigenvalues of
symmetric H 2-matrices by slicing the

spectrum

Peter Benner Steffen Börm Thomas Mach ∗

Knut Reimer †

March 18, 2014

Abstract

The computation of eigenvalues of large-scale matrices arising from finite element dis-
cretizations has gained significant interest in the last decade [18]. Here we present a new
algorithm based on slicing the spectrum that takes advantage of the rank structure of resol-
vent matrices in order to compute m eigenvalues of the generalized symmetric eigenvalue
problem in O(nm logα n) operations, where α > 0 is a small constant.

1 Introduction

The numerical solution of the generalized eigenproblem

(A−λB)x = 0, (1)

given A,B ∈ Rn×n and searching for λ ∈ C and x ∈ Cn \{0}, is one of the fundamental prob-
lems in the computational sciences and engineering. It arises in numerous applications ranging
from structural and vibrational analysis to problems in computational physics and chemistry
like electronic and band structure calculations, see, e.g., [18] and the reports therein. In par-
ticular, the investigation and design of new materials poses numerous new challenges for the
numerical solution of (1). These include the necessity to compute more than just the (few)
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smallest magnitude eigenvalue(s) — the target of many algorithms discussed in the litera-
ture. Often in these problems, a large number of interior eigenvalues are required. This poses
a significant challenge for most popular algorithms used to solve large-scale eigenproblems
based on the Arnoldi or Lanczos processes or the Jacobi-Davidson method. Therefore, we
will discuss here a different approach that has received little attention in the literature so far:
the slicing-the-spectrum approach discussed in [21].

Many of the application problems listed above lead to a symmetric eigenproblem in the
sense that A = AT and B = BT . Moreover, in applications arising from the discretization of
(elliptic) partial differential operators — which probably cover the majority of these applica-
tion problems — the matrix B is a mass matrix and thus positive definite, which we denote
by B > 0. In this situation, the eigenvalues λ and eigenvectors x are all real. Here, we will
assume these conditions and furthermore, we will focus on the computation of eigenvalues.
If necessary, eigenvectors corresponding to selected eigenvalues can be computed by inverse
iteration which we will not further discuss.

Slicing-the-spectrum allows to compute a selected number of the eigenvalues of a symmet-
ric matrix, or even all of them. It requires knowledge of the inertia of shifted versions of
the matrix, which can be computed by the LDLT factorization. As this is quite an expensive
computation for sparse matrices, the method has received little attention in the literature. For
data-sparse matrices which allow a low complexity computation of the LDLT factorization,
though, this method becomes attractive again. In [4], we have used this approach to show
that some, say m, eigenvalues of H`-matrices can be computed in O(mn logα(n)) complexity
(for a discussion of the involved constants we refer to [4]). H`-matrices are a class of simple
hierarchical (H -) matrices that are rank-structured in their off-diagonal parts. That is, the
off-diagonal parts of these matrices are represented in a hierarchical way by low-rank blocks
so that the total storage for the matrix is of linear-logarithmic complexity. Such matrices often
arise from the discretization of non-local operators arising in integral equations or as solution
operators of (elliptic) partial differential operators [9, 13, 15, 7, 14], and can therefore often be
used in the above application problems for the algebraic representation of the involved integral
and differential operators.

It was shown in [4] that the LDLT factorization for H`-matrices has bounded block ranks.
This allowed the efficient implementation of the slicing-the-spectrum approach for these spe-
cial H -matrices. Numerical experiments however illustrated that this does not hold for H -
matrices, casting doubt on the usefulness of this approach for more general rank-structured
matrices. In this paper, we investigate the slicing-the-spectrum approach for H 2-matrices.
This matrix format allows a further compression compared to H -matrices by considering
the low-rank structure of the whole off-diagonal part of a block-row rather than of individ-
ual blocks. We will see that an efficient LDLT factorization of H 2-matrices is possible and
thus, an efficient implementation of the slicing-the-spectrum approach is feasible. We will
furthermore extend this approach from the standard eigenvalue problem considered in [4] to
the symmetric-definite eigenproblem (1) with A,B symmetric and B > 0. Moreover, this ap-
proach is shown to be easily parallelizable which allows to gain further efficiency on current
computer architectures.

The paper is structured as follows: in Section 2, we introduce the necessary background on
H 2-matrices. We then discuss the efficient implementation of the LDLT factorization in the
H 2-format. The slicing-the-spectrum approach is then reviewed in Section 3. Furthermore,
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the application to H 2-matrices is discussed as well as the extension to the symmetric-definite
eigenproblem. Also, the parallelization concept is introduced. Numerical experiments illus-
trating the performance of the H 2-slicing-the-spectrum algorithm and its parallelization are
presented in Section 4.

2 H 2-Matrices and Their LDLT Factorization

2.1 H 2-matrices

Hierarchical matrices are based on hierarchically structured block partitions and low rank
representation of submatrices. The construction of the block partition for I ×J requires
hierarchical partitions of the index sets I and J .

Definition 1 (Cluster tree) Let I be a finite index set, and let T be a labeled tree. Denote
the label of each node t ∈T by t̂.

T is called a cluster tree for I if the following conditions hold:

• its root r = root(T ) is labeled by I , i.e., r̂ = I ,

• for all t ∈T with sons(t) 6= /0, we have t̂ =
⋃

t ′∈sons(t) t̂ ′,

• for all t ∈T and all t1, t2 ∈ sons(t), t1 6= t2, we have t̂1∩ t̂2 = /0.

A cluster tree for I is denoted by TI , its nodes are called clusters, and LI := {t ∈ TI :
sons(t) = /0} defines the set of its leaves.

Remark 2 (Leaf partition) The definition implies t̂ ⊆I for all t ∈TI .
We also have that the labels of the leaves of TI form a disjoint partition {t̂ : t ∈LI } of

the index set I [17, 8].

Remark 3 (Cardinalities) Let nI := #I denote the number of indices. In typical situations,
a cluster tree consists of O(nI /k) clusters, where k denotes the rank used to approximate
matrix blocks.

The sum of the cardinalities of the index sets corresponding to all clusters is typically in
O(nI log(nI )) [8], since each index appears in O(log(nI )) clusters.

Remarks 2 and 3 imply that algorithms with optimal (linear) complexity should have at
most constant complexity in all non-leaf clusters t ∈ TI \LI and linear complexity (with
respect to #t̂) in all leaf clusters t ∈LI .

With the help of the cluster tree we are able to define the block tree, which gives us an
hierarchically structured block partition of I ×J and ultimately a partition of matrices X ∈
RI×J into submatrices.

Definition 4 (Block tree) Let TI and TJ be cluster trees for index sets I and J , respec-
tively.

A labeled tree T is called a block tree for TI and TJ if the following conditions hold:
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• for all b ∈T , there are t ∈TI and s ∈TJ such that b = (t,s) and b̂ = t̂× ŝ,

• the root is r = root(T ) = (root(TI ), root(TJ )),

• for all b = (t,s) ∈T , sons(b) 6= /0, we have

sons(b) =


{t}× sons(s) if sons(t) = /0 6= sons(s),
sons(t)×{s} if sons(t) 6= /0 = sons(s),
sons(t)× sons(s) otherwise.

A block tree for TI and TJ is denoted by TI×J , its nodes are called blocks, and the set of
its leaves is denoted by LI×J := {b ∈TI×J : sons(b) = /0}.

For all blocks b = (t,s) ∈ TI×J , t is called the row cluster (or target cluster) and s is
called the column cluster (or source cluster).

Remark 5 (Leaf partition) The Definitions 1 and 4 imply that a block tree TI×J is a clus-
ter tree for I ×J and that therefore the set of the labels of its leaves {t̂× ŝ : b = (t,s) ∈
LI×J } is a disjoint partition of I ×J . We use this partition to split matrices into subma-
trices.

To determine which of these submatrices can be approximated by low-rank representations,
we split the set LI×J of leaf blocks into a set of admissible blocks and a remainder of
“sufficiently small” blocks.

Definition 6 (Admissible blocks) Let L +
I×J ⊆LI×J and let L −

I×J :=LI×J \L +
I×J .

If (t,s) ∈L −
I×J implies t ∈LI and s ∈LJ , we call L +

I×J a set of admissible blocks
and LI×J the corresponding set of inadmissible blocks.

Typically we choose the set L +
I×J of admissible leaves in a way that ensures that for each

b = (t,s) ∈L +
I×J , the corresponding submatrix X|t̂×ŝ can be approximated by low rank. In

practice a minimal block tree is constructed based on an admissibility condition that predicts
whether a given block b = (t,s) can be approximated. If this is the case, the block is chosen as
an admissible leaf of TI×J . Otherwise we either check the sons of b given by Definition 4
or, if there are no sons, declare the block an inadmissible leaf.

In the context of elliptic partial differential equations, we usually employ an admissibility
criterion of the form

max{diam(t),diam(s)} ≤ dist(t,s),

where diam(t) and dist(t,s) denote the diameter and distance of clusters in a suitable way.

Remark 7 (Sparse block tree) If there is a constant csp ∈ N such that

#{s ∈TJ : (t,s) ∈TI×J } ≤ csp for all t ∈TI ,

#{t ∈TI : (t,s) ∈TI×J } ≤ csp for all s ∈TJ

hold, we call the block tree TI×J csp-sparse.
In this case, Remark 3 implies that the number of blocks #TI×J is in O(nI + nJ ), so

algorithms of optimal complexity should require only a constant number of operations per
block.
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H 2-matrices use a three term representation VtS(t,s)W T
s for all admissible blocks. The

matrix Vt depends only on the row cluster t and Ws only on the column cluster s. The advantage
of this representation is that only the k× k matrix S(t,s)is stored for every admissible block
(t,s).

Storing the matrices Vt and Ws directly would lead to linear complexity in each cluster. Thus
we would get log-linear complexity for the whole families of matrices (Vt)t∈TI

and (Ws)s∈TJ

(see Remark 3). In [16] the more efficient nested representation of this families is introduced.

Definition 8 (Cluster basis) Let k ∈ N, and let (Vt)t∈TI
be a family of matrices satisfying

Vt ∈ Rt̂×k for all t ∈TI .
This family is called a (nested) cluster basis if for each t ∈ TI there is a matrix Et ∈ Rk×k

such that

Vt|t̂ ′×k =Vt ′Et ′ for all t ∈TI , t ′ ∈ sons(t). (2)

The matrices Et are called transfer matrices, and k is called the rank of the cluster basis.

Due to (2), we only have to store the t̂×k matrices Vt for leaf clusters t ∈LI and the k×k
transfer matrices Et for all clusters t ∈TI .

Remark 9 (Storage) According to Remark 2, the “leaf matrices” (Vt)t∈LI
require nI k units

of storage. The transfer matrices (Et)t∈TI
require k2#TI units of storage. With the standard

assumption #TI . nI /k, we can conclude that a cluster basis can be represented in O(nI k)
units of storage [16, 10, 8].

Definition 10 (H 2-matrix) Let TI and TJ be cluster trees for index sets I and J , let
TI×J be a matching block tree, and let (Vt)t∈TI

and (Ws)s∈TJ
be nested cluster bases.

If for each admissible block b = (t,s) ∈L +
I×J there is a matrix Sb ∈ Rk×k such that

G|t̂×ŝ =VtSbW T
s , (3)

G ∈ RI×J is called an H 2-matrix for TI×J , (Vt)t∈TI
and (Ws)s∈TJ

. The matrices Sb

are called coupling matrices, the cluster bases (Vt)t∈TI
and (Ws)s∈TJ

are called row and
column cluster bases.

Remark 11 (Storage) An H 2-matrix is represented by its nested cluster bases, its k× k
coupling matrices (Sb)b∈L +

I×J
and its nearfield matrices (G|t̂×ŝ)b∈L −I×J

. We have already

seen in Remark 9 that the nested representations of the cluster bases require O(nI k) and
O(nJ k) units of storage, respectively. The coupling matrices require O(k2) units of stor-
age per block, leading to total requirements of O(nI k) for a sparse block tree TI×J . For
(t,s) = b ∈L −

I×J both t and s are leaf clusters and so #t̂ and #ŝ are small, usually bounded
by k, and we can conclude that the nearfield matrices require O(nI k) units of storage if
TI×J is sparse. In total an H 2-matrix representation requires only O((nI +nJ )k) units
of storage [10, 8].
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Approximating an arbitrary matrix X ∈ RI×J by an H 2-matrix becomes a relatively
simple task if we apply orthogonal projections. These projections are readily available if the
cluster bases are orthogonal:

Definition 12 (Orthogonal cluster basis) We call a cluster basis (Vt)t∈TI
orthogonal if

V T
t Vt = I for all t ∈TI .

If (Vt)t∈TI
and (Ws)s∈TJ

are orthogonal cluster bases, the optimal coupling matrices (with
respect both to the Frobenius norm and the spectral norm) are given by

Sb :=V T
t G|t̂×ŝWs for all b = (t,s) ∈L +

I×J . (4)

This property can be used to compute the best approximation of the product of H 2-matrices
in O(nk2) operations [5] as long as both cluster bases are known in advance. Unfortunately
the suitable cluster bases for the results of arithmetic operations are typically not known. Thus
we have to construct adaptive cluster bases during the computations.

2.2 Algebraic operations

We want to compute the eigenvalues of a matrix A ∈ RI×I corresponding to a Galerkin
discretization of an elliptic partial differential equation via a slicing method. This method
relies on a sufficiently accurate approximation of the LDLT factorization of shifted matrices.

In order to construct an approximation of this factorization, we employ an algorithm based
on low-rank updates [11]. We obtain the following block equation for the LDLT factorization
of a submatrix A|t̂×t̂ for non-leaf clusters t with sons(t) = {t1, t2}:(

A11 A12
A21 A22

)
= At̂×t̂ = Lt̂×t̂Dt̂×t̂L

T
t̂×t̂

=

(
L11
L21 L22

)(
D11

D22

)(
L11 LT

21
L22

)
=

(
L11D11LT

11 L11D11LT
21

L21D11LT
11 L21D11LT

21 +L22D22LT
22

)
.

We can solve A11 = L11D11LT
11 by recursion to get L11 and D11. If the recursion reaches

a leaf block, the block is a sufficient small matrix in standard representation and the LDLT

factorization can be computed by standard algorithms.
In the second step we can obtain L21 by solving the triangular system A21 = L11D11LT

21. This
requires forward substitution for A21 = L11Y and solving the diagonal system Y = D11LT

21.
The same block equation approach as above reduces the forward substitution to matrix-matrix
multiplications of the form C←C+αAB.

Finally we can solve A22−L21D11LT
21 = L22D22LT

22 to get L22 and D22. This means a matrix-
matrix multiplication of the form C←C+αAB and a recursion as in step one.

The block equation approach for the matrix-matrix multiplication C← C +αAB leads to
recursive calls Ci j ←Ci j +αAikBk j. The basis case of the recursion is if A or B is a leaf. Ad-
missible leaves have low rank because of their three term representation. Inadmissible leaves
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have low rank because they are small. In both cases we can compute a low rank representation
XY T of the product AB in linear complexity.

Altogether the arithmetic is reduced to the task of applying low-rank updates C|t̂×r̂ +XY T

to a submatrix of an H 2-matrix, where X ∈ Rt̂×k and Y ∈ Rŝ×k.

2.3 H 2-matrix Representation of C+XY T

We first consider a global low-rank update C← C +XY T and start by examining the H 2-
matrix representation of the new matrix C + XY T . For each admissible leaf b = (t,s) ∈
L +

I×J , we obtain the following simple three term representation:

(C+XY T )|t̂×ŝ =VtSbW T
s +X|t̂×kY

T
|ŝ×k

=
(
Vt X|t̂×k

)(Sb
Ik

)(
Ws Y|ŝ×k

)T
.

This leads to the new cluster bases

Ṽt =
(
Vt X|t̂×k

)
and W̃s =

(
Ws Y|ŝ×k

)
.

These are nested with transfer matrices

Ẽt =

(
Et

Ik

)
and F̃s =

(
Fs

Ik

)
.

The new nested cluster bases Ṽ and W̃ together with coupling matrices

S̃b =

(
Sb

Ik

)
for each b ∈LI×J give us an exact H 2-matrix representation of C+XY T .

The drawback of this representation is the doubled rank. We solve this problem by applying
the recompression algorithm described in [6, 8]: we construct adaptive orthogonal cluster
bases and then approximate the original matrix in the space defined by these bases (cf. (4)).

To compute the adaptive row cluster basis (Qt)t∈TI
from the original one (Ṽt)t∈TI

, it is
important to decide which parts of the original cluster basis are important for the representation
of the H 2-matrix. We make this decision with the help of suitable weight matrices.

2.4 Weight Matrices

We want to recompress an H 2-matrix C with cluster bases (Vt)t∈TI
and (Ws)s∈TJ

, coupling
matrices (Sb)b∈L +

I×J
and nearfield matrices (C|b̂)b∈L −I×J

.

We consider only the construction of a row basis, since a column basis can be obtained by
applying the same algorithm to the transposed matrix CT .

The cluster basis Vt is directly used for the representation of all admissible blocks (t,s) ∈
L +

I×J . We collect the corresponding column clusters in the set

row(t) = {s ∈TJ |(t,s) ∈L +
I×J }.
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Because of the nested structure it, Vt influences also blocks (t∗,s) ∈ L +
I×J connected to

predecessors t∗ of t. We denote the set of predecessors by

pred(t) :=

{
{t} if t = root(TI ),

{t}∪pred(t+) for t+ ∈TI , t ∈ sons(t+).

For the construction of the new cluster basis (Qt)t∈TI
, we have to consider the set

row∗(t) =
⋃

t∗∈pred(t)

row(t∗).

Let row(t) = {s1, ...,sσ} and row∗(t) = {s1, ...,sρ} with σ = #row(t) and ρ = #row∗(t). The
part of C which is described (directly or indirectly) by Vt is

Ct :=
(
C|t̂×ŝ1

· · · C|t̂×ŝρ

)
.

Using the approach of (4) we search for an orthogonal matrix Qt with lower rank than Vt such
that

QtQT
t Ct ≈Ct .

We want to reach this goal via singular value decomposition.
Computing the SVD of Ct directly would be too expensive, but we can introduce weight ma-

trices to significantly reduce the number of operations: if for a matrix Zt there is an orthogonal
matrix Pt with

Ct =VtZT
t PT

t ,

we call Zt a weight matrix for C and t. For the construction of the cluster basis, we are only
interested in the left singular vectors and the singular values of Ct . Due to the orthogonality
of Pt , these quantities can be obtained by computing only the SVD of VtZT

t instead of working
with Ct .

We construct the weight matrices by a top-down recursion: for the root of TI , the weight
matrix can be computed directly. For a cluster t ∈TI \{root(TI )}, we assume that a weight
matrix Zt+ for its father t+ ∈ TI has already been computed and denote the corresponding
orthogonal matrix by Pt+ . Since the cluster basis (Vt)t∈TI

is nested, we have

Ct =
(
C|t̂×ŝ1

. . . C|t̂×ŝσ
Ct+|t̂×J

)
=
(
C|t̂×ŝ1

. . . C|t̂×ŝσ
(Vt+ZT

t+PT
t+)|t̂×J

)
=
(
C|t̂×ŝ1

. . . C|t̂×ŝσ
Vt+|t̂×kZT

t+PT
t+
)

=
(
VtS(t,s1)W

T
s1

. . . VtS(t,sσ )W
T
sσ

VtEtZT
t+PT

t+
)
=VtBt (5)

with the matrix
Bt :=

(
S(t,s1)W

T
s1

. . . S(t,sσ )W
T
sσ

EtZT
t+PT

t+
)
.

This allows us to obtain the following factorized representation of Ct :

Ct =VtBt =Vt
(
S(t,s1)W

T
s1
· · · S(t,sσ )W

T
sσ

EtZT
t+PT

t+
)
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=Vt
(
S(t,s1) · · · S(t,sσ ) EtZT

t+
)


Ws1
. . .

Wsσ

Pt+


T

=Vt Z̃T
t P̃T

t . (6)

We assume that the cluster basis W is orthogonal. Then P̃t is orthogonal and Z̃t is a weight
matrix, but the number of rows of Z̃t typically exceeds the number of columns. Thus we
compute a thin QR decomposition Z̃t = P̂tZt and get

Ct =Vt Z̃T
t P̃T

t =VtZT
t P̂T

t P̃T
t =VtZT

t PT
t .

Pt is orthogonal, and so Zt is a small k× k weight matrix.
Altogether we can compute the weight matrices by an top down algorithm which only as-

sembles Z̃t and computes its QR decomposition. Only k× k weight matrices Zt are stored
and the number of considered blocks σ is bounded by the constant csp. Thus the storage re-
quirement for one cluster t ∈ TI is in O(k2) and the computational time is in O(k3). The
storage requirement for all weight matrices is in O(k2#TI ) and the computational time for
the whole algorithm is in O(k3#TI ) [6, 8]. Using the standard assumption #TI . nI /k,
we conclude that O(nI k) units of storage and O(nI k2) operations are sufficient to set up all
weight matrices.

Using these matrices we can compute the adaptive cluster basis by a bottom up algorithm
presented in the next subsection.

2.5 Adaptive Cluster Basis

We get with help of the weight matrices

‖QtQT
t Ct −Ct‖= ‖QtQT

t VtZT
t PT

t −VtZT
t PT

t ‖
= ‖QtQT

t VtZT
t −VtZT

t ‖
(7)

for both the spectral and the Frobenius norm. Thus we only have to compute the SVD of VtZT
t

instead of Ct . The direct approach would have linear complexity in each cluster and we would
end up with log-linear complexity due to Remark 3. We also would not obtain a nested cluster
basis.

In order to avoid both problems, we take advantage of the nested structure of (Vt)t∈TI
and

(Qt)t∈TI
. We arrange the computation of the adaptive cluster basis (Qt)t∈TI

in a bottom-up
algorithm that also computes the basis change matrices Rt := QT

t Vt for all t ∈ TI that can be
used to compute the new coupling matrices efficiently.

In leaf clusters we compute the SVD of VtZT
t directly and use the left singular vectors

corresponding to the k largest singular values to construct the orthogonal matrix Qt . The
computational time for each leaf is O(k2#t̂) and for all leaves together it is in O(nI k2) (see
Remark 2).
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The cluster basis in a non-leaf cluster is given by the nested representation

Vt =

(
Vt1Et1
Vt2Et2

)
.

We assume that the matrices Qt1 and Qt2 for the sons have already been computed, and the
nested structure of (Qt)t∈TI

implies that anything that cannot be represented by these matrices
also cannot be represented by Qt , so applying a projection to the range of the son matrices does
not change the quality of the approximation. If we let

Ut :=
(

Qt1
Qt2

)
,

the orthogonal projection is given by UtUT
t and applying it to Vt yields

UtUT
t Vt =Ut

(
QT

t1
QT

t2

)(
Vt1Et1
Vt2Et2

)
=Ut

(
Rt1Et1
Rt2Et2

)
=UtV̂t

with a (2k)×k matrix V̂t =UT
t Vt . We compute its SVD and again use the left singular vectors

corresponding to the k largest singular values to form an orthogonal matrix Q̂t ∈ R(2k)×k. The
new cluster basis is defined by Qt :=UtQ̂t . We deduce with Pythagoras’ identity

‖QtQT
t VtZT

t −VtZT
t ‖2

= ‖UtQ̂tQ̂T
t UT

t VtZT
t −UtUT

t VtZT
t ‖2

+‖UtUT
t VtZT

t −VtZT
t ‖2

= ‖Q̂tQ̂T
t V̂tZT

t −V̂tZT
t ‖2 +‖UtUT

t VtZT
t −VtZT

t ‖2. (8)

Thus the error for the cluster t can be bounded by the error of the projection of the son clusters
and the error of the truncated SVD of V̂tZT

t . We will investigate the error in subsection 2.6.
The basis change matrix Rt is computed in O(k3) operations via

Rt = QT
t Vt = Q̂T

t UT
t Vt = Q̂T

t V̂t .

The transfer matrices of Qt can be constructed by splitting Q̂t into its lower and upper half,
i.e., by using

Qt =UtQ̂t =

(
Qt1

Qt2

)(
Ft1
Ft2

)
.

We can see that leaf clusters t ∈ LI require O(k2#t̂) operations while non-leaf clusters
t ∈ TI \LI require O(k3). The total computational time of the algorithm therefore is in
O(k2nI +k3#TI ) due to Remark 2. By the standard assumption #TI . nI /k, we conclude
that not more than O(nI k2) operations are required to construct the new cluster basis [6, 8].

2.6 Error Control

As we have seen in the previous subsections we are able to recompress an H 2-matrix in linear
complexity and (8) suggests that the resulting error can be controlled by the accuracy of the
truncated SVD.
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Let b = (t,s) ∈L +
I×J . Multiplying the matrices in (8) by PT

t from the right, using Ct =

VtBt =VtZT
t PT

t , and restricting to t̂× ŝ, we obtain

‖QtQT
t C|t̂×ŝ−C|t̂×ŝ‖2

= ‖QtQT
t VtBt|k×ŝ−VtBt|k×ŝ‖2

= ‖Q̂tQ̂T
t V̂tBt|k×ŝ−V̂tBt|k×ŝ‖2

+‖UtUT
t VtBt|k×ŝ−VtBt|k×ŝ‖2. (9)

Due to the nested structure of Vt and the definition of Ut , we have

‖UtUT
t VtBt|k×ŝ−VtBt|k×ŝ‖2

= ‖Qt1QT
t1Vt1Et1Bt|k×ŝ−Vt1Et1Bt|k×ŝ‖2

+‖Qt2QT
t2Vt2Et2Bt|k×ŝ−Vt2Et2Bt|k×ŝ‖2

= ‖Qt1QT
t1Vt1Bt1|k×ŝ−Vt1Bt1|k×ŝ‖2

+‖Qt2QT
t2Vt2Bt2|k×ŝ−Vt2Bt2|k×ŝ‖2.

By simple induction we get

‖QtQT
t C|t̂×ŝ−C|t̂×ŝ‖2

= ∑
r∈sons∗(t)

‖Q̂rQ̂T
r V̂rBr|k×ŝ−V̂rBr|k×ŝ‖2 (10)

with the set of descendants given by

sons∗(t) :=

{
{t} if t ∈LI

{t}∪
⋃

t ′∈sons(t) sons∗(t ′) otherwise

and extending the notation to Q̂t = Qt and V̂t =Vt for leaf clusters t ∈LI .
Equation (10) provides us with an explicit error representation. We get an efficiently com-

putable error bound by extending Br|k×ŝ to the larger matrix Br and using Br = ZT
t PT

t to reduce
to the weight matrix:

‖QtQT
t C|t̂×ŝ−C|t̂×ŝ‖2

= ∑
r∈sons∗(t)

‖Q̂rQ̂T
r V̂rBr|k×ŝ−V̂rBr|k×ŝ‖2

≤ ∑
r∈sons∗(t)

‖Q̂rQ̂T
r V̂rBr−V̂rBr‖2

= ∑
r∈sons∗(t)

‖Q̂rQ̂T
r V̂rZT

r −V̂rZT
r ‖2.

This is an error bound that we can control directly via the truncation criterion of the SVD used
to compute Q̂r. Unfortunately it does not give us direct error control for individual blocks,
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which is crucial for efficient and reliable algebraic operations. If we could bound each term in
(10) by

‖Q̂rQ̂T
r V̂rBr|k×ŝ−V̂rBr|k×ŝ‖2

≤ ε2

3
‖C|t̂×ŝ‖2

(
1
3

)level(r)−level(t)

,

we would get

‖QtQT
t C|t̂×ŝ−C|t̂×ŝ‖2

≤ ε2

3
‖C|t̂×ŝ‖2

∑
r∈sons∗(t)

(
1
3

)level(r)−level(t)

=
ε2

3
‖C|t̂×ŝ‖2

pI

∑
`=level(t)

(
1
3

)`−level(t)

#{r ∈ sons∗(t) : level(r) = `}

≤ ε2

3
‖C|t̂×ŝ‖2

pI

∑
`=level(t)

(
2
3

)`−level(t)

< ε
2‖C|t̂×ŝ‖2 (11)

by the geometric summation formula.
We cannot simply set the tolerance in each cluster r ∈ sons∗(t) to

ω
2
r,b :=

ε2

3
‖C|t̂×ŝ‖2

(
1
3

)level(r)−level(t)

because it depends not only on r, but also on b. The solution is to put the factor ωr,b into the
weight matrix [6]. The condition

‖Q̂rQ̂T
r V̂rBr|k×ŝ−V̂rBr|k×ŝ‖2 ≤ ω

2
r,b

is equivalent to
‖Q̂rQ̂T

r V̂rω
−1
r,b Br|k×ŝ−V̂rω

−1
r,b Br|k×ŝ‖2 ≤ 1.

Since ωr′,b = ωr,b/3 holds for all r ∈ sons∗(t) and r′ ∈ sons(r), we can include the factors in
the algorithm for constructing the weight matrices in (6) and get

Z̃T
t,ω =

(
ω
−1
r,(t,s1)

S(t,s1) · · · ω
−1
r,(t,sσ )

S(t,sσ ) 3EtZT
t+

)
. (12)

The resulting weight matrices Zt,ω satisfy

(ZT
t,ω PT

t )|k×ŝ = ω
−1
r,b Br|k×ŝ,

therefore we get the error bound in (11) if we replace Zt by Zt,ω and ensure that the rank k
used in the truncation is large enough to capture all singular values larger than one.

Now we have found an recompression algorithm with linear complexity O(nI k2) allowing
us to control the relative error in each admissible block both in the spectral and the Frobenius
norm. The next subsection shows that we can generalize our approach to local updates without
losing the optimal complexity.
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2.7 Algorithmic Challenges of Local Updates

Local updates C|t̂0×ŝ0
←C|t̂0×ŝ0

+XY T of submatrices defined by a block b0 =(t0,s0)∈TI×J

pose a number of additional challenges in comparison with the global update discussed above.
In order to obtain linear complexity with respect to the size of the local block, the top-down
procedure of computing the weight matrices and the update of coupling matrices need to be
investigated more closely. The first one requires the weight matrix of the father and so of all
predecessors. The second task has to update all coupling matrices even if they are not in the
subblock of the update.

We go through four parts of the local update and discuss the special issues: the computation
of the weight matrices, the construction of the adaptive cluster bases for C+XY T , the update
of the H 2-matrix, and the preparation of auxiliary date required for further updates.

The efficient computation of the weight matrix of a cluster requires the weight matrix of the
father. If we compute an update for the root this poses no problem, but computing the weight
for a higher-level cluster would require us to visit all of its predecessors and therefore lead to
undesirable terms in the complexity estimate. We solve this problem by computing the weight
matrices for all clusters in a preparation step. This can be done in linear complexity once
before we start the LDLT factorization. For the local update we only have to recompute the
weight matrices in the sub block of the update. Outside of the sub-block, the matrix remains
unchanged, therefore we do not have to update the weight matrices.

There is a second challenge with the computation of the weight matrices. The blocks (t,si)
corresponding to the matrices C|t̂,ŝi do not necessarily belong to the subblock of the local
update. Thus we need access to all admissible blocks (t,si) with row cluster t. This is handled
by lists containing all row and column blocks connected to clusters.

As shown in subsection 2.5 the computation of the adaptive cluster basis is a bottom-up
algorithm that can be applied to the subtree corresponding to the update. The cluster basis
outside of this subtree remains unchanged. All predecessors can be updated by simple mod-
ifying the transfer matrix connecting the root of the subtree to its father. Hence there are no
special problems for the local update in comparison to the global update.

The third step is more challenging than second one. The coupling matrices have to be
updated for all blocks (t,si), i.e., they have to be multiplied by the basis change matrix Rt .
Since si may lie outside of the subblock that is being updated, we again make use of the block
lists mentioned before. In each of these blocks we only have to multiply the small matrices
Rt and St,si . Assuming again that block tree is csp-sparse, for one cluster t ∈ TI not more
than csp such products have to be computed, so the number of operations is in O(k3) for one
cluster. Updating all blocks connected to the sons of t0 or s0 requires O(k3(#Tt̂0 + #Tŝ0))
operations, where Tt̂0 and Tŝ0 denote the subtrees of TI and TJ with roots t0 and s0. Using
again the standard assumptions #Tt̂0 . #t̂0/k and #Tŝ0 . #ŝ0/k, we obtain a complexity of
O(k2(#t̂0 +#ŝ0).

To conclude the local update, we have to ensure that the weight matrices are correct by
recomputing them in the subtree Tt̂0 and Tŝ0 . The weight matrices do not change for clusters
outside the sub-block.

Altogether we end up with computational complexity in O(k2(#t̂0 +#ŝ0)) for the local up-
date in a sub-block b0 = (t0,s0). Using this estimate, we can prove [11] that the matrix multi-
plication and other higher arithmetic functions require not more than O((nI +nJ )k2 log(n))
operations.
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3 Slicing the Spectrum

In order to use our efficient matrix-arithmetic operations to solve an eigenvalue problem, we
use the slicing-the-spectrum algorithm that has been described in [21]. For the related H`-
matrices, which are H -matrices with a particularly simple block tree, the algorithm has been
investigated in [4]. Further, in [4] it has been shown by numerical examples that a generaliza-
tion of the approach to H -matrices is difficult.

We are computing the eigenvalues of a symmetric matrix. Thus all eigenvalues are real and
the function ν(σ) = #{λ ∈ Λ(A) : λ < σ} is well defined for all σ ∈R. If ν(a)< m≤ ν(b),
we know that the interval [a,b] contains the m-th smallest eigenvalue λm of A. We can run
a bisection algorithm on this interval until the interval is small enough. The midpoint of the
interval is then taken as approximation λ̂m of the desired eigenvalue. We bisect the interval
by computing ν( a+b

2 ). If ν( a+b
2 )> m, we continue with [a, a+b

2 ], otherwise with [ a+b
2 ,b]. We

stop the algorithm if b−a < εev = 10−5 holds.
It remains to explain how we get the inertia or ν(σ). The inertia is invariant under congru-

ence transformations, thus the matrix D of the LDLT factorization of A has the same inertia
as A itself. To get ν(σ) we compute the LDLT factorization of A−σ I = Lσ Dσ LT

σ and simply
count the negative diagonal entries of D.

3.1 Accuracy

By using H 2-matrices the computation of LDLT factorization is comparably cheap, taking
essentially O(nk2 logn). This allows the fast computation of the inertia, which would be in
O(n3) for general dense matrices. The price we have to pay is that the factorization is only
approximative, i.e., A−σ I≈ L̃D̃L̃T , so we have to ensure that it is sufficiently accurate to yield
the correct value ν(σ). In [21] it is shown that this is the case if ‖Hσ‖ ≤ min j |λ j(A)−σ |,
with L̃σ D̃σ L̃T

σ = (A−σ I)−Hσ .
Thus we need a bound for the error of the form ‖A− L̃D̃L̃T‖ ≤ δ‖A‖. We further need

this bound for all shifted matrices A−σ I. In the literature the LU-decomposition has been
paid much more attention than the LDLT factorization. Since the inertia of A−σ I can also
be obtained from an LU-decomposition, we will cite some results for LU-decomposition for
hierarchical matrices: to our best knowledge such a bound is currently not available in the
literature on H - and H 2-matrices. In [2] it was shown that for certain H -matrices orig-
inating from certain finite element discretizations there exist H -matrices L̃ and Ũ so that
‖A− L̃Ũ‖ ≤ δ‖A‖. This results has been generalized in [3, 19] and more recently in [12]. Un-
fortunately, it has so far not been shown that the algorithms actually used to compute approx-
imations yield results satisfying similar estimates. Fortunately, many numerical experiments
show that the algorithms for the computation of the H LU-decomposition are very good.

For the case of A−σ I, with σ 6= 0, the picture is not positive. In [4, Table 4.1] one can see
that using shifts near eigenvalues leads to high local block ranks, which make the H LDLT

factorization expensive. We do not observe a similar behavior for H 2-arithmetic, but we
cannot provide theoretical bounds for the ranks.
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3.2 Generalized Eigenvalue Problem

For the solution of generalized eigenvalue problems we have to compute the inertia of A−σB
instead of A−σ I. If we think of a finite element discretization as basis for the generalized
eigenvalue problem, then we observe that the structures of the mass and the stiffness matrix are
similar enough to allow for a cheap computation of A−σB in the H 2-arithmetic. The mass
matrix B can be stored as a sparse matrix. Fortunately, the nonzero entries in B correspond
with inadmissible leaves in A, which are stored as dense matrices. Thus the subtraction A−σB
affects only these inadmissible leaves.

Further research should investigate the numerical properties of the LDLT factorization of
A−σB.

3.3 Parallelization

The slicing of disjoint intervals is independent, thus we can easily parallelize the algorithm
by giving each node/core an instance of the matrix and an interval to slice. Since the size of
the matrix grows only linearly with the dimension of the matrix, this is possible for compara-
bly large matrices. This simple parallelization has been used in [4] for the slicing algorithm
for H`-matrices. In [20] a speedup of 267 by using 384 processes has been reported for a
MPI-based parallelization of the algorithm from [4]. For this parallelization a master-slave
structure is used. The master provides each slave with a small interval, which the slaves slices
until all eigenvalues are found. For these intervals the master provides a lower bound and an
upper bound and the number of eigenvalues to be found. To provide these informations some
initial computations of ν(σ) are necessary. These are also performed by the slaves. The time
required for the slicing of one interval varies and thus the intervals are chosen small enough
to allow for a load balancing.

This parallelization works best for many cores. If the number of processes is small, the
master process is frequently just waiting for answers, thus running 5 process on the quad-core
CPU is improving the overall run-time.

4 Numerical Experiments

Due to the facts described in Subsection 3.1 we cannot prove that the proposed algorithm
is accurate and efficient; at least at the moment. Thus numerical experiments are the only
way to provide evidence that the slicing algorithm is performing well. For the numerical
experiment we use the software package H2Lib developed by the Scientific Computing Group
at Kiel University. This library provides examples of finite element discretizations on different
triangle meshes, see Figure 1. These meshes can be refined as needed.

First, we want to show that the absolute accuracy of the computed eigenvalues is acceptable.
Therefore we use the finite element matrix related to the meshed unit square. We refine the
mesh in Figure 1(a) twice, compute the eigenvalues of this standard eigenvalue problem with
the slicing algorithm and compare them to the actual eigenvalues, which are known exactly.
In Figure 2(a) the accuracy of computed eigenvalues is shown. The computed eigenvalues lie
all within the computed intervals.
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(a) Unit square. (b) Unit circle. (c) L-shape. (d) U-shape.

Figure 1: Different meshes.
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(a) Eigenvalues of Ax = λx
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(b) General eigenvalues of Ax = λBx

Figure 2: Absolute error |λi− λ̂i| for a 961× 961 finite element matrix corresponding to the
unit square, εev = 10−5.

16



 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  2  3  4  5  6  7  8  9  10

O(h^2)

Figure 3: Convergence of the eigenvalues with respect to the mesh parameter.

On the same mesh we then compute the mass matrix and solve the generalized eigenvalue
problem, both with the LAPACK [1] eigenvalue solver for symmetric generalized eigenvalue
problems dsygv and with the slicing algorithm. The result is similar to the previous one, as
we observe in Figure 2(b) that again the allowed tolerance is fulfilled for all eigenvalues.

Since we are solving finite element eigenvalue problems, we expect the smallest eigenvalues
to converge to the eigenvalues of the differential operator. This can be seen in Figure 3 for the
8 smallest eigenvalues, where 3 refinements correspond to the mesh shown in Figure 1(a): we
obtain the O(h2) convergence predicted by standard theory.

In Table 1 the runtime, the time for one slice, and the accuracy are shown for different
refinements of the meshes in Figure 1. The accuracy is the maximum absolute error for the
computed eigenvalues compared with the results from LAPACK eigenvalues solver dsygv.
For matrices with n ≥ 5000 the accuracy is not computed, since the dense matrices are too
large and the computations with LAPACK would take too long. Figure 4 shows the time
per degree of freedom using a logarithmic scale for n. It seems to suggest a complexity of
O(n logn) for large values of n, i.e., the effective rank k of the H 2-matrix approximation of
the LDLT factorization appears to be bounded independently of the mesh size.

Finally we test the MPI based parallelization, see Table 2. We use a quadcore CPU, Intel
Core i5-3570 (running at 3.40 GHz) and compute the speedup in comparison with the runtime
of the single core code. Since the master is not doing any work we see good speedups for up
to 4 slave processes.
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Unit Square
n t8 ev in s tsingle slice in s maximal abs. err.

49 0.02 ≤0.01 2.8967 e−06
225 0.21 ≤0.01 2.8522 e−06
961 2.25 0.02 3.4909 e−06

3969 26.11 0.18 3.2314 e−06
16129 202.92 ∼1.5 —
65025 1278.89 ∼9.5 —

261121 7169.32 ∼55 —
1046529 36262.10 ∼270 —

Unit Circle
n t8 ev in s tsingle slice in s maximal abs. err.

113 0.09 ≤0.01 3.2872 e−06
481 0.69 ≤0.01 3.1179 e−06

1985 8.90 0.07 3.4508 e−06
8065 76.13 ∼0.65 —

32513 691.28 ∼5 —
130561 4068.92 ∼29 —
523265 24289.70 ∼170 —

L-Shape
n t8 ev in s tsingle slice in s maximal abs. err.

161 0.20 ≤0.01 3.5866 e−06
705 2.83 0.01 3.6529 e−06

2945 15.49 0.09 3.1440 e−06
12033 158.11 ∼0.9 —
48641 1178.19 ∼4.7 —

195585 5863.64 ∼34 —

U-Shape
n t8 ev in s tsingle slice in s maximal abs. err.

153 0.21 ≤0.01 3.6112 e−06
689 2.45 0.01 7.2988 e−05

2913 18.69 0.11 2.0474 e−05
11969 123.64 ∼1.0 —
48513 853.67 ∼5.1 —

195329 5303.43 ∼32 —

Table 1: Runtime for the computation of the 8 smallest eigenvalues on different shapes; for
small matrices including the accuracy.
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Figure 4: Runtime divided by matrix dimension; unit circle, 8 smallest eigenvalues of the
generalized eigenvalue problem.

Unit Square
n no. of cores tall ev in s speedup

961 1+0 185.40 single core code
961 1+1 182.73 1.01
961 2+1 99.85 1.86
961 3+1 68.71 2.70
961 4+1 47.77 3.88
961 5+1 38.60 4.80

Table 2: Speedup by parallelization; generalized eigenvalue problem, all eigenvalues.
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