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Abstract

We propose efficient algorithms for solving large-scale matrix differential equa-
tions. In particular, we deal with Riccati differential equations (RDEs) and
Lyapunov differential equations (LDEs). We focus on methods, based on stan-
dard versions of ordinary differential equations, in the matrix setting. The ap-
plication of these methods yields algebraic Lyapunov equations (ALEs) with a
certain structure to be solved in every step. The alternating direction implicit
(ADI) algorithm and Krylov subspace based methods allow to exploit this special
structure. However, a direct application of classic low-rank formulations requires
the use of complex arithmetic. Using an LDLT -type decomposition of both, the
right hand side and the solution of the equation we avoid this problem. Thus,
the proposed methods are a more practical alternative for large-scale problems
arising in applications. Also, they make feasible the application of higher order
methods. The numerical results show the better performance of the proposed
methods compared to earlier formulations.

1 Introduction

Differential matrix equations arise in many fields like optimal control, model reduction
of linear time-varying (LTV) systems, damping optimization in mechanical systems,
control of shear flows and the numerical solution of stochastic differential equations
[14, 15, 27, 38, 39, 42, 43]. We will focus on solving Riccati differential equations
(RDEs) and differential Lyapunov equations (LDE).

The RDE is one of the most deeply studied nonlinear matrix differential equations
arising in optimal control, optimal filtering, H∞ control of linear-time varying systems,
differential games, etc.(see e.g. [2, 29, 30, 41]). In the literature there is a large variety
of approaches to compute the solution of small-scale RDEs (see e.g. [18, 20, 21, 33]).
In this article we consider the numerical solution of large-scale RDEs arising in optimal
control problems for partial differential equations. In [10] efficient numerical methods
capable of exploiting this structure based on matrix-valued versions of the backward
differentiation formula (BDF), Midpoint and Trapezoidal rules and the Rosenbrock
(Ros) methods are proposed. Moreover, Hansen and Stillfjord [25] present an abstract
framework based on operator splittings. In contrast to their work we will focus on the
matrix setting.

The implementation in [10] uses a low-rank Alternating Directions Implicit (ADI)
iteration for solving the algebraic Lyapunov equations (ALE) in the inner iteration.
Here, we also consider Krylov subspace based methods for the solution of the arising
ALEs. When methods of order p ≥ 2 are applied, complex arithmetic is required which
increases the computational cost. For the Rosenbrock methods an elaborate method
has been proposed to keep the computations in real arithmetic, [37]. This yields a
challenging implementation already for order 2. The ALE arises in many fields like
optimal control and model order reduction [4, 19]. Many methods for solving large-
scale ALEs have been proposed [34, 35, 40, 44, 45, 46, 48]. However, there have been
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no attempts to solve large-scale differential Lyapunov equations. After discretization
of the LDE in time, an ALE with special structure has to be solved in every step. If the
structure of the matrix coefficients is not exploited, then it is not feasible to solve LDEs
of high dimension arising in applications due to the fact that memory requirements
and computational costs are quite high. So far, there is no solver in the literature
that can perform this task efficiently. Numerical methods capable of exploiting the
structure of the LDE based on matrix-valued version of standard ODE methods can
be applied, e.g., methods based on a low-rank approximation of the solution as in [10].
Once again, if we want to apply higher order methods (p ≥ 2) complex arithmetic
is required. In this paper we restrict the presentation and experiments to the RDEs.
However all our methods and techniques naturally restrict to the LDE (see comments
in Section 2.2). A more detailed explanation and extensive numerical experiments will
be presented elsewhere to keep the presentation within usual page limits.

In this paper we propose novel formulations of the algorithms based on an LDLT de-
composition that keep the computations in real arithmetic. First, we describe how the
LDLT -type splitting can be applied to the BDF schemes and extend these ideas to the
Rosenbrock methods. Moreover, the method can, in general, be used in combination
with any implicit ODE solver which is applied in the matrix setting. We focus on im-
plicit methods since RDEs and LDEs, arising in applications, are often fairly stiff. We
point out that the proposed methods are not restricted to solve RDE and LDE and can
be applied, in principle, to any matrix differential equation. The paper is organized as
follows: in Section 2 we review matrix versions of standard methods for stiff problems
and their application to RDE and LDE. Further, a column compression technique for
the treatment of complex data arising in the right hand side of the ALEs in the in-
nermost iteration is proposed. In Section 3, we present the LDLT based algorithms
which are the main contribution of this paper. Then, in Section 4 we introduce some
motivating examples and test our methods. Numerical results show the performance
of the new methods. Finally, some conclusions close the paper in Section 5.

2 Matrix versions of standard ODE integrators

In applications the RDEs/LDEs are usually fairly stiff. This, in turn, demands for
implicit methods to solve such equations numerically. Therefore, we will focus on
matrix versions of standard ODE solvers for (vector valued) stiff problems, [11, 18, 21].
In order to optimally exploit the problem structure, we are interested in methods
which, written in matrix form, yield an algebraic Riccati equation (ARE) or an ALE
to be solved in each time step when they are applied to the RDE, or LDE. It turns
out that there is a vast variety of methods that can be applied, e.g., the Backward
Differentiation formulas, the Midpoint, the Trapezoidal rules and Rosenbrock methods.
In particular the BDF and Rosenbrock methods allow an efficient implementation for
large-scale problems [10]. We will focus on these methods and see how the proposed
ideas can be extended to other implicit methods.
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2.1 Application to RDEs

Let us first consider the time-varying symmetric RDEs of the form

Ẋ(t) = −Q(t)−X(t)A(t)−AT (t)X(t) +X(t)S(t)X(t),

X(tf ) = Xtf

(1)

arising in the linear quadratic regulator(LQR) framework for time varying dynamical
systems. Here t ∈ [t0, tf ] and Q(t), A(t), S(t) ∈ Rn×n are assumed to be piecewise
continuous locally bounded matrix-valued functions, which ensures the existence and
uniqueness of the solution of (1), see [3]. Note that the RDE, originating from an LQR
problem replaces the adjoint state from the optimization framework and thus has to
be solved backwards in time. Defining X̃(tf ; t) := X(tf − t), we can easily reformulate
(1) as an initial value problem of the form

˙̃X(t) = Q(t) + X̃(t)A(t) +AT (t)X̃(t)− X̃(t)S(t)X̃(t),

X̃(t0) = X̃0,

since ˙̃X(tf ; t) = −Ẋ(tf − t). Furthermore, considering e.g., finite element semi-
discretized partial differential equation constrained optimal control problems one usu-
ally faces the generalized RDE

ET ẊE = −Q− ETXA−ATXE + ETXSXE,

ETX(tf )E = ETXtfE.
(2)

In order to simplify the expressions in the following sections we will focus on the
standard case and only state the algorithms in terms of the generalized RDE. The latter
can easily be derived by applying the standard theory with Ã := E−1A, B̃ = E−1B
and avoiding the inversion of E in the resulting algorithms.

Therefore, in the remainder we will consider

Ẋ(t) = R(t,X(t)),

R(t,X(t)) : = Q(t) +X(t)A(t) +AT (t)X(t)−X(t)S(t)X(t),

X(t0) = X0.

(3)

Backward differentiation formulas: Applying the fixed-coefficients BDF method to
the RDE (1) we obtain the matrix valued BDF scheme

Xk+1 =

p∑
j=1

−αjXk+1−j + τβR(tk+1, Xk+1),

where τ denotes the time step size, tk+1 = tk+τ , Xk+1 ≈ X(tk+1). The expressions αj ,
β denote the determining coefficients for the p-step BDF formula given in Table 1 (see,
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p β α1 α2 α3 α4 α5 α6

1 1 -1

2 2
3 − 4

3
1
3

3 6
11 − 18

11
9
11 − 2

11

4 12
25 − 48

25
36
25 − 16

25
3
25

5 60
137 − 300

137
300
137 − 200

137
75
137 − 12

137

6 60
147 − 360

147
450
147 − 400

147
225
147 − 72

147
10
147

Table 1: Coefficients of the BDF p-step methods up to order p = 6.

e.g. [5]). Note that the coefficients are chosen in a way such that α0 corresponding
to the current solution Xk+1 equals 1, ∀p = 1, . . . , 6. This leads to the Riccati-BDF
difference equation

−Xk+1 + τβ(Qk+1+ATk+1Xk+1 +Xk+1Ak+1 −Xk+1Sk+1Xk+1)

−
p∑
j=1

αjXk+1−j = 0

with Qk+1 ≡ Q(tk+1), Ak+1 ≡ A(tk+1), Sk+1 ≡ S(tk+1)which can be written as the
algebraic Riccati equation

(τβQk+1 −
p∑
j=1

αjXk+1−j)+(τβAk+1 −
1

2
I)TXk+1 +Xk+1(τβAk+1 −

1

2
I)

−Xk+1(τβSk+1)Xk+1 = 0,

(4)

for Xk+1. For large-scale applications it is necessary to avoid forming the matrices Xk

explicitly, because this in general leads to dense computations. In practical applications
the data often is given in an low-rank representation of the form

Qk = CTk Ck, Ck ∈ Rq×n,
Sk = BkB

T
k , Bk ∈ Rn×m.

(5)

In these situations one observes that the solution also is of numerically low rank. That
means, using low-rank representation based algorithms to solve (4), the solution can
be well approximated by a product of the form Xk ≈ ZkZTk (Zk ∈ Rn×zk , zk � n).

In the remainder of this section we review the classical low-rank approximation based
formulation. In Section 3 we present a novel reformulation based on an Xk ≈ LkDkL

T
k

(Lk ∈ Rn×`k , Dk ∈ R`k×`k , `k � n) approximation and its benefits for the fast nu-
merical computation. Using the low-rank factors (5), the ARE (4) can be written
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as

ĈTk+1Ĉk+1 + ÂTk+1Zk+1Z
T
k+1 + Zk+1Z

T
k+1Âk+1

−Zk+1Z
T
k+1B̂k+1B̂

T
k+1Zk+1Z

T
k+1 = 0

(6)

with

Âk+1 = τβAk+1 −
1

2
I,

B̂k+1 =
√
τβBk+1,

ĈTk+1 = [
√
τβCTk+1,

√
−α1Zk, . . . ,

√
−αpZk+1−p ].

Exploiting the sparsity of Ak+1, together with the low-rank representations of the
constant and quadratic terms, equation (6) can be solved efficiently in terms of com-
putational effort and storage costs, if the rank zk � n for all times. The described
formulations above can serve as the basis of an RDE solver for large-scale problems.
We note, the main idea here is to solve an ARE by e.g., Krylov subspace methods
[26, 31, 32], using Newton’s method or other methods [47] in every time step. Due
to the availability of Newton based codes to the authors, here we restrict our selves
to these procedures. This results in solving one algebraic Lyapunov equation in each
Newton step. The coefficient matrix in this equation has the form sparse + low-rank
perturbation. The special structure of the ALE can be efficiently exploited, e.g., by a
low-rank version of the ADI iteration or Krylov subspace based methods, see e.g., the
recent surveys [13, 45].

The implementation of the BDF methods for RDEs is sketched in Algorithm 2.1. For
a detailed explanation see [10] and the references therein. For methods of order p ≥ 2
some of the coefficients of the BDF method are negative, see Table 1. This leads to
algebraic Lyapunov equations which have indefinite right hand sides and thus the right
hand side factor G in Algorithm 2.1 becomes complex. This, in turn, makes complex
arithmetic and storage unavoidable.

Rosenbrock methods: The application of the general p-stage Rosenbrock method,
as a matrix-valued algorithm, to the RDE (1) yields

(
1

τγii
I − ∂R

∂X
(tk, Xk))Ki =R

(
tk,i, Xk +

i−1∑
j=1

aijKj

)
+

i−1∑
j=1

cij
τ
Kj + γiτRtk ,

Xk+1 = Xk +

p∑
j=1

mjKj ,

(7)

where tk,i = tk +αiτ , i = 1, . . . , p, and γii, aij , cij , γi, mj are the method coefficients,
that are avilable in text books as, e.g. [24]. We denote by Ki the n×n matrix represent-
ing the solution of the i-th-stage of the method and abbreviate Rtk = ∂R

∂t (tk, X(tk)).
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Algorithm 2.1 LRF BDF method of order p

Require: E(t), A(t), S(t), Q(t), ∈ Rn×n smooth matrix-valued functions satisfying
(5), t ∈ [a, b], and step size τ .

Ensure: (Zk+1, tk+1) such that Xk+1 ≈ Zk+1Z
T
k+1.

1: t0 = a.
2: for k = 0 to d b−aτ e do
3: tk+1 = tk + h.
4: Âk+1 = τβAk+1 − 1

2Ek+1.

5: B̂k+1 = τβBk+1.
6: ĈTk+1 = [

√
τβCTk+1,

√
−α1E

T
k+1Zk, . . . ,

√−αpETk+1Zk+1−p ].
7: for ` = 1 to `max do
8: G(`) = [ĈTk+1

√
τβK(`−1)].

9: Compute Z(`) such that X(`) ≈ Z(`)Z(`)T is the solution of

F (`)TX(`)Ek+1 + ETk+1X
(`)F (`) = −G(`)G(`)T

.
10: K(`) = ETk+1Z

(`)(Z(`)TBk+1).
11: end for
12: Zk+1 = Z(`max).
13: end for

The derivative ∂R
∂X (tk, Xk) in (7) is given by the (Frechét) derivative of R at Xk,

represented by the Lyapunov operator

∂R
∂X

(tk, Xk) : U → (Ak − SkXk)TU + U(Ak − SkXk),

where Xk ≈ X(tk), Ak ≡ A(tk), Sk ≡ S(tk) and U ∈ Rn×n.

Replacing ∂R
∂X (tk, Xk) by the left hand side of the first equation in (7) we obtain,

1

τγii
Ki − (Ak − SkXk)TKi −Ki(Ak − SkXk),

and re-arranging terms yields

−
((
Ak − SkXk −

1

2τγii
I
)T
Ki +Ki

(
Ak − SkXk −

1

2τγii
I
))
. (8)

Defining

Āk := Ak − SkXk −
1

2τγii
I,
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we can, then, write (7) for i = 1, . . . , s as

ĀTkKi +KiĀk =−R
(
tk,i, Xk +

i−1∑
j=1

aijKj

)
−

i−1∑
j=1

cij
τ
Kj − γiτRtk ,

Xk+1 =Xk +

s∑
j=1

mjKj ,

(9)

Hence, in each stage of every time step of the method one algebraic Lyapunov equation
has to be solved. In order to avoid explicitly forming the dense solutions Ki of the
single stage equations in (9), as in the BDF-case, we expect the coefficient matrices to
be given in low-rank form.

The particular low-rank representation directly depends on the order of the Rosenbrock
method. Therefore, we exemplary illustrate a first and a second order scheme for cer-
tain choices of the determining coefficients. First, we consider the 1-stage Rosenbrock
scheme (Ros1)

Xk+1 = Xk +K1,

ĀTkK1 +K1Āk = −R(Xk),

= −Qk −ATkXk −XkAk +XkSkXk

(10)

with γ = 1 and Āk = Ak − SkXk − 1
2τ I. With K1 = Xk+1 −Xk, rewriting the right

hand side of (10) as

−Qk − (Ak − SkXk −
1

2τ
I)TXk −Xk(Ak − SkXk −

1

2τ
I)−XkSkXk −Xk

and using the low-rank factorizations of Qk, Sk in (5) we obtain the 1-stage scheme

ĀTkXk+1 +Xk+1Āk = −CTk Ck −XT
k BkB

T
k Xk −

1

τ
Xk, (11)

iterating explicitly on the solution Xk+1 of RDE (1) at time integration step k + 1.
Now, using the standard low-rank splitting −GkGTk of the right hand side and of the
solution Xk = ZkZ

T
k , respectively, we end up with Algorithm 2.2. Using a higher

order Rosenbrock scheme (p > 1) leads to an increasing number of ALEs to be solved
as shown in Equation (9). As an illustration we consider the second order Rosenbrock
scheme (Ros2) proposed in [16]. Therein, the second order method is applied to
autonomous atmospheric dispersion problems describing photochemistry, advective,
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Algorithm 2.2 1-stage Rosenbrock for RDEs (linear implicit Euler), [37]

Require: E(t), A(t), S(t), Q(t), ∈ Rn×n smooth matrix-valued functions satisfying
(5), t ∈ [a, b], and step size τ .

Ensure: Xk+1 such that Xk+1 ≈ Zk+1Z
T
k+1.

1: for k = 0 to d b−aτ e do
2: Āk = Ak −Bk((BTk Zk)ZTk Ek)− 1

2τγii
Ek

3: Gk = [CTk , E
T
k ZkZ

T
k Bk,

√
1
τE

T
k Zk]

4: Compute T1 such that K1 ≈ T1TT1 is the solution of

ĀTkK1Ek + EkK1Āk =−GkGTk .

5: Zk+1 =
[
Zk,
√
τT1

]
6: end for

and turbulent diffusive transport. The 2-stage procedure is given in the form

Xk+1 =
3

2
τK1 +

1

2
τK2,

(I − γτ ∂R
∂X

(Xk))K1 = R(Xk),

(I − γτ ∂R
∂X

(Xk))K2 = R(Xk + τK1)− 2K1.

(12)

An extension to the non-autonomous case is presented in [37]. The given representation
in [16] slightly varies from the general scheme shown in (9). Hence, using the Frechét
derivative of R as in (8) and re-arranging the terms yields

Xk+1 =
3

2
τK1 +

1

2
τK2,

ÃTkK1 +K1Ãk = −R(Xk),

ÃTkK2 +K2Ãk = −R(Xk + τK1) + 2K1

(13)

with Ãk := γτ(Ak − SkXk) − 1
2I. Following the reformulations in [37] (13) can be

simplified to

Xk+1 =
3

2
τK1 +

1

2
τK2,

ÃTkK1 +K1Ãk = −R(Xk),

ÃTkK21 +K21Ãk = +τ2K1BkB
T
k K1 + (2− 1

γ
)K1

K2 = K21 + (1− 1

γ
)K1

(14)
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Again considering the low-rank splitting given in (5) the right hand side of the first
stage in (14) becomes

−CTk Ck −ATk ZkZTk − ZkZTk Ak + ZkZ
T
k BkB

T
k ZkZ

T
k .

Noting that terms of the form ATk ZkZ
T
k + ZkZ

T
k Ak can be split as

ATk ZkZ
T
k + ZkZ

T
k Ak :=

(
ATk Zk + Zk

) (
ATk Zk + Zk

)T −ATk ZkZkAk − ZkZTk , (15)

as explained in [37], we consider the following two possible splittings of the form
−GkGTk . A partitioning

Gk =
[
CTk , ATk Zk + Zk, iZkZ

T
k Bk, iATk Zk, iZk

]
(16)

of the right hand side ends up in complex arithmetic. Avoiding complex data requires
a superposition approach splitting the first stage equation into the two equations

ÃTk K̄1 + K̄1Ãk = −NkNT
k

ÃTk K̃1 + K̃1Ãk = −UkUTk
(17)

such that K1 := K̄1 − K̃1 and −GkGTk := −NkNT
k + UkU

T
k . Here,

Nk =
[
CTk , ATk Zk + Zk

]
, Uk =

[
ZkZ

T
k Bk, ATk Zk, Zk

]
.

The right hand side of the second stage equation of the Rosenbrock scheme (14) in
standard low-rank representation with K1 = T1T

T
1 , T1 ∈ Rn×tk reads

Gk =
[
τT1T

T
1 B,

√
2− 1

γT1

]
.

Note that the two equations in (17) share the same Lyapunov operator and therefore,
recycling inner solvers leads to basically the same computational cost as for the solution
of only one Lyapunov equation. The splitting (15), however, introduces additional
blocks to the factors of the right hand sides. Furthermore, numerical experiments
have shown that the formation of K1 may suffer from cancellation problems in finite
arithmetic. That is, constructing the solution K1 := K̄1− K̃1 is affected by numerical
inaccuracies and therefore breaks the entire second order low-rank algorithm.

Other implicit methods: As stated in [21] the application of any implicit method to
the RDE yields an ARE to be solved in every step. For illustration we will exemplary
consider the Midpoint and Trapezoidal rules.

The Midpoint rule applied to the RDE (1) yields

Xk+1 = Xk + τF

(
tk +

τ

2
,

1

2
(Xk+1 +Xk)

)
,

9



Rearranging terms, we see that this again leads to an ARE for Xk+1[
τQk′ +Xk +

τ

2

(
ATk′Xk +XkAk′ −

XkSk′Xk

2

)]
+(
τ

2
Ak′ −

τ

4
Sk′Xk −

1

2
I)TXk+1 +Xk+1(

τ

2
Ak′ −

τ

4
Sk′Xk −

1

2
I)

−Xk+1(
τ

4
Sk′)Xk+1 = 0,

(18)

where Xk ≈ X(tk), Ak′ ≡ A(tk + τ
2 ), Qk′ ≡ Q(tk + τ

2 ), Sk′ ≡ S(tk + τ
2 ).

Applying the Trapezoidal rule to the RDE (1) we obtain

Xk+1 = Xk +
τ

2
(F (tk, Xk) + F (tk+1, Xk+1)).

Collecting terms in the same way as for the previous method, we end up with an ARE
for Xk+1 [

τ

2
Qk+1 +Xk +

τ

2

(
Qk +ATkXk +XkAk −XkSkXk

)]
+

(
τ

2
Ak+1 −

1

2
I

)T
Xk+1 +Xk+1

(
τ

2
Ak+1 −

1

2
I

)
−Xk+1

(
τ

2
Sk+1

)
Xk+1 = 0,

(19)

as before. That is, in both cases an ARE has to be solved in every time step. Thus,
as for the BDF methods, for the Midpoint and Trapezoidal rule and in general any
implicit (Runge-Kutta) method the key ingredient for an efficient Algorithm is a fast
low-rank ARE solver.

We are interested in solving large-scale problems and therefore the Rosenbrock meth-
ods are more attractive to apply. Moreover, most codes for solving initial value prob-
lems are intended to deal with stiff or nonstiff problems but not both. Rosenbrock
methods allow to deal with this issue choosing the coefficients of the method common
to the ones of an explicit Runge-Kutta method. In [23] the authors investigated this
idea for a fourth order method. The result is a Rosenbrock integrator of order four
that contains an embedded explicit Runge-Kutta method. It switches from one to
the other solver, when the solution leaves a stiff domain and enters a nonstiff domain
and vice versa. Even though it is not a simple task to determine when the solution
leaves or enters a stiff domain, this idea can be efficiently exploited to integrate a
certain type of problems [23]. The exploitation of both the fourth order method and
the mixed solver for solving large-scale matrix differential equations will be reported
somewhere else. Especially, in the context of Section 3 additional difficulties appear
in the determination of the optimal representation of the low-rank formulation of the
right hand sides of the single stage equations.
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2.2 Application to LDEs

As for the RDEs the application of implicit ODE methods in the matrix setting for
solving LDEs requires complex arithmetic. As an illustration we will consider the BDF
methods.

Let us consider the time-varying symmetric LDEs of the form

Ẋ(t) = Q(t) +X(t)A(t) +AT (t)X(t) ≡ L(t,X(t)),
X(t0) = X0,

(20)

where t ∈ [t0, tf ] and Q(t), A(t) ∈ Rn×n are piecewise continuous locally bounded
matrix-valued functions. Using the same notation as in the previous subsection the
application of the BDF methods to the LDE yields an algebraic Lyapunov equation
to be solved in each step for Xk+1,

(τβQk+1 −
p∑
j=1

αjXk+1−j) + (τβAk+1 −
1

2
I)TXk+1 +Xk+1(τβAk+1 −

1

2
I) = 0 (21)

where β, αj are given in Table 1.
The algebraic equation (21) can be written in terms of low-rank factors similar to the
Riccati case in (6). Note that the application of higher order methods will require
complex arithmetic as complex numbers will arise in the factor of the constant term.
This is due to the fact that Qk+1 and all Xk+1−j are positive (semi-)definite and thus
the difference is in general indefinite. The same happens when Rosenbrock methods are
applied to the LDE. There the problem appears when solving the algebraic Lyapunov
equation corresponding to each stage of the method. In general the application of
an implicit higher order method will require complex arithmetic. The latter can be
avoided using the LDLT -type algorithms which are described in Section 3.

2.3 Classical column compression

For all kinds of integration methods, explicit and implicit, the respective low-rank
solution factor of either the previous or the current time step will appear in the right
hand side of the ALEs that have to be solved within the current time integration step.
That is, the block size of the right hand side low-rank factor will increase drastically.
Therefore, the elimination of redundant information in terms of a column compression
based on the numerical rank of the factor becomes necessary. As mentioned before,
using integration methods the right hand sides become indefinite and therefore we are
faced with complex right hand side factors. This directly leads to the inadmissibility
of the classic rank-revealing QR decomposition and SVD based column compressions.
In the following we employ Matlab notation to specify subblocks of a matrix and
consider the ALE

FTX +XF = −GGT . (22)
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Note that the rank r in practice needs to be decided numerically or memory restrictions
make a rank truncation necessary and thus we usually have GrG

T
r ≈ GGT . Still, we

present the results for exact computations here.

QR based column compression:

i) Compute GT = QRΠT with G ∈ Rn×k, Q ∈ Rk×k, QTQ = Ik, R ∈ Rk×n and a
permutation matrix Π ∈ Rn×n.

ii) Set Gr = ΠRTr ∈ Rn×r, where r := rank (R) and Rr := R(1 : r, :) ∈ Rr×n,
Qr := Q(1 : r, 1 : r) ∈ Rr×r, such that

GrG
T
r = ΠRTr RrΠ

T = ΠRTr Q
T
r QrRrΠ

T = ΠRTQTQRΠT = GGT .

SVD based column compression:

i) Compute G = UΣV T with G ∈ Rn×k, U ∈ Rn×k, UTU = Ik, Σ ∈ Rk×k and
V ∈ Rk×k, V TV = Ik.

ii) Set Gr = UrΣr ∈ Rn×r, where r = rank (R), Ur := U(:, 1 : r) ∈ Rn×r, Σr := Σ(1 :
r, 1 : r) ∈ Rr×r, and Vr := V (:, 1 : r) ∈ Rk×r, such that

GrG
T
r = UrΣ

2
rU

T
r = UrΣrV

T
r VrΣrU

T
r = UΣV TV ΣUT = GGT .

Column compression for complex data: Consider the ALE (22) to originate from a
higher order (p > 1) time integration method. That is, the low-rank factor G of the
right hand side is complex. Therefore, the QR decomposition similar to the real case
reads

GH = QRΠT with Q ∈ Ck×k, QHQ = Ik, R ∈ Ck×n and Π ∈ Rn×n.

Analogously setting the compressed factor Gr = ΠRHr ∈ Cn×r fails, since we have
given the right hand side product GrG

T
r . This yields

GrG
T
r = ΠRHr R̄rΠ

T 6= ΠRHr Q
H
r QrRrΠ

T .

A similar problem occurs in the case of the SVD based approach. There, we compute

G = UΣV H with U ∈ Cn×k, UHU = Ik, Σ ∈ Ck×k, V ∈ Ck×k, V HV = Ik

and therefore obtain

GrG
T
r = UrΣrV

H V̄ UTr 6= UrΣrV
HV ΣrU

T
r = UrΣ

2
rU

T
r .

Clearly using G ∈ Cn×k in the real symmetric and indefinite product GGT ∈ Rn×n
requires us to properly adjust the compression to the outer product in use. We propose
the following procedure:

12



i) Compute G = QR with Q ∈ Cn×k, QHQ = Ik, R ∈ Ck×k.

ii) Compute a decomposition RRT = V ΛV T with V ∈ Ck×k, V TV = Ik and a
diagonal matrix Λ ∈ Ck×k with diagonal entries |λ1| > |λ2| > · · · > |λk|.

iii) Set the compressed factor Gr := QVrΛ
1
2
r ∈ Cn×r, where r ≤ k and |λr+1| ≤ ε.

Following the statements in [28, Theorem 4.4.13], the existence of the desired form
V TV = Ik is guaranteed, since RRT diagonalizable. This directly follows from the
fact that GGT is real symmetric and therefore a decomposition

GGT = UΛUT

with diagonal Λ and an orthogonal U exists. That is, using Step i) from the above
procedure we obtain

UΛUT = GGT = QRRTQT ⇔ RRT = QHUΛUT Q̄.

Note that the eigendecomposition (e.g. in Matlab) for the complex symmetric matrix
RRT within Step ii) in general leads to

RRT = Ṽ ΛṼ −1,

with eigenvectors ṽi ∈ Ck (i.e. columns in Ṽ ) satisfying the properties

‖ṽi‖2 = ṽ∗i ṽi = 1, ṽTi ṽi 6= 1,

ṽ∗i ṽj 6= 0, ṽTi ṽj = 0.
(23)

Since, the right hand side is constructed to be of the form GGT = QV ΛV TQT , we
need to ensure RRT = V ΛV T . Using (23), we have

Ṽ T Ṽ =

ṽ
T
1 ṽ1 0

. . .

0 ṽTk ṽk

 .
Defining V := Ṽ D̃ with D̃ = diag

(
1√
ṽT1 ṽ1

, . . . , 1√
ṽTk ṽk

)
yields,

V TV = D̃Ṽ T Ṽ D̃ = Ik

⇔ D̃Ṽ T = V T = V −1 = D̃−1Ṽ −1

with D̃−1 = diag
(√

ṽT1 ṽ1, . . . ,
√
ṽTk ṽk

)
. Therefore, we obtain

RRT = Ṽ ΛṼ −1 = Ṽ ΛD̃D̃−1Ṽ −1

= Ṽ D̃ΛD̃−1Ṽ −1 = V ΛV −1 = V ΛV T .

13



That means, scaling the eigenvectors ṽi via
√
ṽTi ṽi, i = 1, . . . , k does not change the

eigendecomposition of the complex symmetric matrix RRT and we end up with the
required representation

RRT = V ΛV T .

Again, note that using the BDF and Rosenbrock methods of order p ≥ 2, the Midpoint
or Trapezoidal rules will lead to indefinite right hand sides for the ALEs that have
to be solved in the innermost iteration. The associated complex splittings require
complex data storage, complex arithmetic and as the above statements show the effort
for the necessary column compression techniques increases as well. In the case of
definite right hand sides and the corresponding real splittings the column compression
is either performed by using the QR or an SVD decomposition. Given complex data the
proposed approach computes a QR decomposition of the factor to be compressed and
an eigendecomposition of the small complex symmetric matrix RRT that additionally
increases the over-all computational effort of the low-rank methods for the solution of
the RDE.

3 LDLT -type Lyapunov solvers

It is necessary to solve an ALE of dimension n of the form

FTX +XF = −W (24)

with an indefinite matrix W in every step of either the Rosenbrock method or the
Newton method within the BDF scheme, the Midpoint or Trapezoidal rule to solve
the RDE. In this section we present a new approach which avoids the problem of
complex arithmetic and storage arising when the right hand side is decomposed as
W = GGT . We propose to split the right hand side W to in the form GSGT with
G ∈ Rn×k, k � n and a small but indefinite matrix S ∈ Rk×k.

3.1 LDLT -type ADI

Following the theory in [9] the one step iteration at step j of the ADI method becomes

Lj+1Dj+1L
T
j+1 =− 2Re(µj)(F

T + µjI)−1GSGT (F + µ̄jI)−1

+ (FT + µjI)−1(FT − µjI)LjDjL
T
j (F − µjI)(F + µjI)−1.

(25)

Using the inherent structure of (25) the factors Lj+1, Dj+1 can be computed as follows:

Lj+1 :=
[
(FT + µjI)−1G, (FT + µjI)−1(FT − µjI)Lj

]
,

Dj+1 :=

[
−2Re(µj)S

Dj

]
.
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For the sake of easier reading we define Rj := (FT + µjI)−1 and Tj := (FT − µjI).
Plugging in the factors Lj and Dj recursively yields

Lj+1 =
[
Rj+1G, Rj+1Tj+1RjG, . . . , Rj+1Tj+1 . . . R2T2R1G

]
,

Dj+1 =


−2Re(µj+1)S

−2Re(µj)S
. . .

−2Re(µ1)S

 . (26)

Since the ordering of the ADI shifts µj does not affect the solutions quality the in-
dices can be reversed. Additionally, using the commutativity of the Rj ’s and Tj ’s the
reordered sequence leads to

Lj+1 =
[
R1G, R2T1(R1G), . . . , Rj+1Tj(RjTj−1 . . . R2T1R1G)

]
,

Dj+1 =


−2Re(µ1)S

−2Re(µ2)S
. . .

−2Re(µj+1)S


= −2diag (Re(µ1), . . . ,Re(µj+1))⊗ S

(27)

in complete analogy to the procedure first employed by Li and White for the ZZT

case in [35]. Thus, the LDLT -based factorization does not differ to much from the
low-rank factored ADI as proposed in [6, 8, 7].

The introduction of the potentially indefinite matrix S in the decomposition of the
right hand side immediately avoids the necessity for complex storage and arithmetic.
Moreover, the introduction of the diagonal block Dj in every step allows to remove the
multiplication of the shifts µj from the low-rank factor Lj and for the computation of
the block diagonal matrix Dj one only needs to store the given diagonal matrix S and
the shift sequence which is done during the ADI anyway. Since the low-rank factors L
and Z are computed by the same iteration sequence they will be of the same size zk
and quality. A sketch of the LDLT -type procedure is given in Algorithm 3.1.

Remark: Let %(M) denote the spectral radius of a matrix M . Note that the matrices
Wj−1SW

T
j−1 ∈ Rn×n and WT

j−1Wj−1S ∈ Rk×k share the same non-zero spectrum.
Therefore, to avoid the computation of the norm of the large and usually dense matrix
products in Step 2 of Algorithm 3.1, we exploit

‖Wj−1SW
T
j−1‖2 = %(Wj−1SW

T
j−1) = %(WT

j−1Wj−1S).
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Algorithm 3.1 LDLT -factorization based ADI method

INPUT: ADI shifts µ1, . . . , µ`, G, S, tolerance ε
OUTPUT: L = LnADI

, D = DnADI

1: W0 = G, j = 1
2: while ‖Wj−1SW

T
j−1‖2 ≥ ε‖GSGT ‖2 do

3: Solve (F + µjE)Vj = Wj−1 for Vj .
4: if µj is real then
5: Wj = Wj−1 − 2µjVj , Lj = [Lj−1, Vj ]
6: else
7: ηj =

√
2, δj = Re (µj)/ Im (µj)

8: Wj+1 = Wj−1 − 4 Re (µj)(Re (Vj) + δj Im (Vj))

9: Lj+1 = [Lj−1, ηj(Re (Vj) + δj Im (Vj)), ηj
√
δ2j + 1 Im (Vj)]

10: j = j + 1
11: end if
12: j = j + 1
13: end while
14: Dj = −2 diag (Re (µ1), . . . ,Re (µj))⊗ S

3.2 LDLT -type Krylov subspace method

Following the statements in [22, 44] the rational Krylov subspace method (RKSM)
and the exteded Krylov subspace method (EKSM) compute a solution

Xs = VsYsV
T
s (28)

of the ALE (24) with a given right hand side of the form W := ĜĜT . Here, Vs denotes
an orthonormal basis of the Krylov subspace

Ks(F, Ĝ, p) = {Ĝ, (FT − µ1I)−1Ĝ, . . . ,

s∏
j=1

(FT − µjI)−1Ĝ} ⊂ Rn×sk or

K2s(F, F
−sĜ) = {F−sĜ, . . . , F−1Ĝ, Ĝ, F Ĝ, . . . , F sĜ} ⊂ Rn×2sk,

respectively, where k is the number of columns of Ĝ and Ys is the solution of the
projected small-scale ALE

V Ts F
TVsYs + YsV

T
s FVs = −V Ts ĜĜTVs.

That is, the RKSM and EKSM Lyapunov solvers directly compute the solution of (24)
in the required LDLT -type format. Exploiting the inherent structure of the solution
Xs = VsYsV

T
s given by the Krylov subspace methods, the LDLT based methods avoid

the additional computation of a ZZT decomposition of the solution Xs as it is done in
the classical low-rank algorithms. Note that constructing the splitting ĜĜT out of the
given right hand side GSGT can be performed efficiently. Using a column compression
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technique in order to reduce the block size of G and S will result in a diagonal block

Sr (see Section 3.4). Therefore, we easily obtain Ĝr = GrS
1
2
r with

ĜrĜ
T
r ≈ ĜĜT = GSGT .

Note that using the Krylov subspace based methods the advantage of the LDLT

representation of solutions solely is the avoidance of the additional computation of an
artificial ZZT factorization of the solution Xs.

3.3 Application to matrix-valued ODE solvers

Applying the LDLT -type splitting to the arising ALEs within the previously described
matrix-valued ODE solvers allows us to avoid complex arithmetic arising from the
standard low-rank splitting of the right hand sides of the ALEs which need to be
solved in the innermost iteration of the BDF, the Midpoint and Trapezoidal rules
and Rosenbrock methods. In addition, the number of system solves within the ADI
iteration can be reduced by an a priori elimination of redundant column blocks in the
right hand sides. For simplicity, we restrict ourselves to the autonomous case. For
details on non-autonomous ODEs see e.g., [11, 37]. In particular, we will demonstrate
the advantageous of the LDLT -type splitting on the example of a general p-step BDF
method, as well as for the first and second order Rosenbrock schemes presented in e.g.,
[11, 37] and the references therein. Further, we restrict the following illustration to
the application of the above mentioned methods to the RDE.

Backward differentiation formulas: Again, consider the ARE

(τβCTk+1Ck+1 −
p∑
j=1

αjXk+1−j) + ÂTk+1Xk+1 +Xk+1Âk+1

−Xk+1(τβBk+1B
T
k+1)Xk+1 = 0

(29)

arising in the BDF method at time integration step k+ 1. Applying Newton’s method
to the ARE results in the solution of the ALE

(Âk+1 − τβBk+1B
T
k+1X

(`−1)
k+1 )TX

(`)
k+1 +X

(`)
k+1(Âk+1 − τβBk+1B

T
k+1X

(`−1)
k+1 )

= −(τβCTk+1Ck+1 −
p∑
j=1

αjXk+1−j)−X(`−1)
k+1 (τβBk+1B

T
k+1)X

(`−1)
k+1

(30)

for X
(`)
k+1 in the `-th Newton step. The p-step BDF coefficients αj , j = 1, . . . , p lead to

an indefinite constant term in the ALE (30) for all schemes of order p ≥ 2, see Table 1.
That is, the solution of (29) via Newton’s method, in particular the application of
the inner solver to the ALE (30), needs to deal with complex arithmetic and data.
Now, using the factorization Xk+1 := Lk+1Dk+1L

T
k+1 instead of the standard low-rank
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Algorithm 3.2 LDLT factored BDF method of order p

Require: E(t), A(t), S(t), Q(t), ∈ Rn×n smooth matrix-valued functions satisfying
(5), t ∈ [a, b], and step size τ .

Ensure: (Lk+1, Dk+1, tk+1) such that Xk+1 ≈ Lk+1Dk+1L
T
k+1.

1: t0 = a.
2: for k = 0 to d b−aτ e do
3: tk+1 = tk + h.
4: Âk+1 = τβAk+1 − 1

2E.

5: ĈTk+1 = [CTk+1, E
TLk, . . . , E

TLk+1−p ].
6: for ` = 1 to `max do
7: G(`) = [ĈTk+1, K

(`−1)].

8: S(`) =


τβIq

−α1Dk

. . .

−αpDk+1−p
τβIm

.

9: Compute L(`), D(`) by an LDLT -factorization based Algorithm such that

X(`) ≈ L(`)D(`)L(`)T is the solution of

F (`)TX(`)Ek+1 + ETk+1X
(`)F (`) = −G(`)S(`)G(`)T

.
10: K(`) = ETk+1(L(`)(D(`)(L(`)TBk+1))).
11: end for
12: Lk+1 = L(`max), Dk+1 = D(`max).
13: end for
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representation of the solution of the RDE, Algorithm 2.1 changes to Algorithm 3.2.
That is, using the LDLT factorization and the associated splitting GSGT of the right
hand side of (30) allows to put the coefficients αj , j = 1, . . . , p into the diagonal blocks
of S. This avoids taking the square root of the non-positive αj (see Table 1) and in
turn removes complex data and arithmetic.

As mentioned in Section 2 the Midpoint or Trapezoidal rule also lead to the solution
of an ARE in every time integration step. Having a closer look at the correspond-
ing Equations (18) and (19), we note that again the constant terms of the AREs are
indefinite. Therefore, the application of the above steps also avoids complex compu-
tations. Furthermore, the problem of indefinite right hand sides also appears for the
application of Rosenbrock methods, where it can be treated the same way.

First order Rosenbrock method (linear implicit Euler): As given in Algorithm 2.2
the first order Rosenbrock scheme in standard low-rank formulation deals with the
right hand side

Gk =
[
CTk , ZkZ

T
k Bk,

√
1
τZk,

]
∈ Rn×q+m+zk

where Gk is of size n× q +m+ zk. Here, the right hand side is definite and therefore
can be split into real factors Gk. Still, the application of the LDLT -type factorization
with the associated right hand side G̃kS̃kG̃

T
k

G̃k =
[
CTk , Lk, Lk

]
∈ Rn×q+2zk

S̃k =

I DkL
T
kBkBkLkDk

1
τDk

 ∈ Rq+2zk×q+2zk

for the solution factorization Xk = LkDkL
T
k will improve the numerical computations,

since re-arranging the blocks in the form

G̃k =
[
CTk , Lk

]
∈ Rn×q+zk

S̃k =

[
I

DkL
T
kBkBkLkDk + 1

τDk

]
∈ Rq+zk×q+zk

(31)

leads to a factor G̃k of size n× q + zk representing the same product. The number of
columns of Gk, G̃k equals the number of solves within the first step of the Lyapunov
solver and the number of columns which are added to the right hand side at every
subsequent iteration step. This at least saves m system solves in every step of the
Lyapunov solver within every time integration step. That is, assuming a constant
number nlyap of Lyapunov solver steps per time step, the LDLT -type factorization
for the linear implicit Euler integration method requires m · nlyap · nODE less linear
system solves during the solution of the RDE (1) compared to the standard low-rank
factorization. Here, nODE is the number of time steps taken in the linear implicit

19



Euler scheme. Note that the products DkL
T
kBk are of size zk ×m and therefore do

not require a significant amount of computation time as long as zk,m� n, which is a
required assumption for low-rank computations anyway.

Second order Rosenbrock method: As introduced in Equations (16) and (17) for
the first stage equation of the second order method we either have to deal with the
complex right hand side

Gk =
[
CTk , ATk Zk + Zk, iZkZ

T
k Bk, iATk Zk, iZk

]
, ∈ Rn×q+m+3zk

or the split Lyapunov equation and the corresponding right hand sides NkN
T
k , UkU

T
k

with

Nk =
[
CTk , ATk Zk + Zk

]
, ∈ Rn×q+zk ,

Uk =
[
ZkZ

T
k Bk, ATk Zk, Zk

]
. ∈ Rn×m+2zk .

In order to avoid the complex blocks, the splitting of the first stage Lyapunov equation
into two separate ALEs, and the additionally introduced terms using (15), again, we
consider the LDLT -type splitting. Hence, the right hand side of the first stage equation
becomes

−CTk Ck −ATk LkDkL
T
k − LkDkL

T
kAk + LkDkL

T
kBkB

T
k LkDkL

T
k .

Thus, we obtain the splitting −G̃kS̃kG̃Tk with

G̃k =
[
CTk , ATk L, Lk, Lk

]
,

S̃k =


Iq

Dk

Dk

DkL
T
kBkB

T
k LkDk

 . (32)

Re-arranging blocks, similar to (31), leads to

G̃k =
[
CTk , ATk Lk, Lk

]
∈ Rn×q+2zk ,

S̃k =

Iq Dk

Dk DkL
T
kBkB

T
k LkDk

 ∈ Rq+2zk×q+2zk .
(33)

Hence, the number of system solves within the Lyapunov solver for the first stage
equation is reduced from q + m + 3zk for the low-rank representation to q + 2zk for
the LDLT -type factorization. That is, we are able to save m+ zk linear system solves
for the solution of stage 1.

Furthermore, the right hand side of the second stage equation of the Rosenbrock
scheme (14) in standard low-rank representation with the factorization K1 = T1T

T
1 ,

T1 ∈ Rn×tk of the first stage solution reads

Gk =
[
τT1T

T
1 B,

√
2− 1

γT1

]
∈ Rn×m+tk .
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Now, using the LDLT -type splitting with K1 = T1D1T
T
1 we obtain

G̃k = T1 ∈ Rn×tk ,

S̃k = τ2D1T
T
1 BB

TT1D1 + (2− 1

γ
)D1 ∈ Rtk×tk .

For the solution of the second stage equation we save another m linear system solves.

In total this leads to saving 2m + zk solves in each step of the ALE solver within
each time integration step. Again, note that for an increasing order of the Rosenbrock
scheme the number of ALEs, which have to be solved, also increases. On the one hand,
the number of system solves will increase as well. On the other hand, analogous block
re-arrangements will lead to similar savings per stage. That means, the higher the
order of the integration method one uses the better the accuracy of the solution will
be, while at the same time the speedup caused by the LDLT -type factorization will
increasingly pay off.

3.4 LDLT column compression

As for the classical low-rank methods the right hand side low-rank factors will increase
within each time integration step. That is, we also need to perform a column com-
pression in order to reduce the number of columns of the LDLT -type right hand sides
or RDE solutions. Consider the matrix GSGT , where G ∈ Rn×k, S ∈ Rk×k. Following
the statements in Section 6.3.3 in [17] the factors G,S can be compressed as follows:

i) Compute G = QRΠT with Q ∈ Rn×k, R ∈ Rk×k and Π ∈ Rn×n.

ii) Compute a decomposition RSRT = V ΛV T with V ∈ Rk×k and a diagonal matrix
Λ ∈ Rk×k with diagonal entries |λ1| > |λ2| > · · · > |λk|.

iii) Set the compressed factors Gr := QVr ∈ Rn×r, Sr := Λr with r ≤ k and |λr+1| ≤
ε.

Comparing the computational cost, the above procedure is equal to the classical low-
rank column compression for complex data if the sizes of the thin rectangular matrices
coincide.
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4 Numerical results

As an illustrating problem in this section we consider the linear quadratic regulator
(LQR) problem

min
u

J(t; y, u) =

∫ tf

t0

yT (t)Qy(t) + uT (t)Ru(t) dt+ y(tf )TMy(tf ),

s.t. Eẋ(t) = Ax(t) +Bu(t),

y = Cx(t)

(34)

on the finite time horizon t ∈ [t0, tf ] with symmetric weighting matrices Q, R. The
state space systems we consider in the remainder are all linear time invariant (LTI).
Considering LTV systems, it is still a crucial question to find an efficient storage
strategy for the given data E(t), A(t), B(t), C(t) and the resulting solution factors of
X(t) of the RDE. The optimal solution to (34) is given by the feedback law (e.g., [36])

u = −R−1BTX(t)Ex(t) = −K(t)x(t). (35)

This means, in order to compute the optimal solution u of (34), we need to find a
matrix valued function X(t), which is given as the solution of the generalized RDE

ET ẊE = Q+ATXE + ETXA− ETXBBTXE
ETX(tf )E = 0

(36)

Note that the RDE arising from an LQR problem has to be solved backwards in time.
Therefore, the following results, in particular the convergence behavior of the RDE
to the ARE needs to be interpreted starting from the end point of the corresponding
time interval.

4.1 ADI based Lyapunov solvers

The following examples show the evolution of one component of the feedback matrix
K = −R−1BTX(t)E in equation (35), where X(t) is the solution of the RDE (36)
computed via an ADI iteration based Lyapunov solver inside the time integration
schemes.

4.1.1 Example 1: Steel profile

We consider the semi-discretized heat transfer model described in [12]. The model is
given with m = 7 inputs and q = 6 outputs. The solution is computed on the time
interval [0, 45]s.

In order to be able to compare the results of the different low rank RDE solvers to
a classical dense 4th order Rosenbrock scheme (Ros4), we start with the smallest
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available state space dimension n = 371. Figure 1 shows component K1,77(t) of the
reference solution computed via the Ros4 with fixed time step size τ = 1e−4 compared
to the LDLT based solutions of the BDF method of order p = 1, the Midpoint and
Trapezoidal rules and the Rosenbrock methods of order one and two performed with a
fixed time step size τ = 1e− 1. In addition the constant solution of the corresponding
ARE is depicted in order to show the convergence of the several methods. Table 2
presents the timings for the different methods, as well as the relative error between the
classical low-rank methods and the LDLT based algorithms. From that we can see
that the LDLT based RDE solvers achieve a speed-up up to a factor of almost 4 for
the second order Rosenbrock method. Note that the rather small time saving in the
case of the first order Rosenbrock scheme is due to the definiteness of the right hand
side of the ALE (11). Here the benefits of avoiding complex data and the splitting
of the ALE do not come into effect. That is, the decrease in time originates solely
from saving the m system solves within each ADI step at each time integration step.
Table 2 further shows that the classical low-rank solvers and the LDLT based schemes
achieve the same results except for numerical errors. Still, there seems to be a problem
with the Ros2 method. This has to be further investigated in the future.

time in s avg. rel. err.
LR LDL LRvsLDL

BDF1 1 909.53 1 299.17 1.87e-14
Ros1 845.74 658.11 1.85e-15
Ros2 4 514.19 1 242.30 2.97e-08

Midpoint 2 598.54 1 494.33 1.50e-14
Trapezoidal 2 602.14 1 180.55 1.53e-14

Table 2: Timings, average relative errors between standard low-rank and the LDLT

based methods of the steel profile example with n = 371 on the time interval
[0, 45] s, τ=1e-1.
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(c) Relative error of the LDLT based meth-
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Figure 1: Comparison of the dense 4th order Rosenbrock reference solution computed
with step size τ=1e-4 and the LDLT BDF method of order 1, the Midpoint
and Trapezoidal rules and the Rosenbrock methods of order p=1,2 computed
with a fixed step size τ=1e-1.
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(a) Elapsed time and average relative error
for the computation of solution compo-
nent K1,77 on the time interval [0, 45] s
with time step size τ=1e-1.
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(b) Comparison of elapsed time and ac-
curacy for the first order Rosenbrock
method for the decreasing time step sizes
τ ∈ {1e0,1e-1,1e-2}.

BDF1 Ros1 Ros2 Mid Trap
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Figure 2: Accuracy investigations with respect to the time integration method 2a and
decreasing time step size τ 2b.

Figure 2 presents some accuracy results with respect to the chosen time integration
methods and the time step size. In Figure 2a the comparison of the computation
times and the achieved accuracy is given for the first order BDF, first and second
order Rosenbrock methods, the Midpoint and Trapezoidal rules for both, the classical
low-rank and the LDLT based integration schemes. According to Table 2, we also
observe the superiority of the LDLT based methods with respect to the computation
times. Figure 2b shows the increasing accuracy for decreasing time step sizes τ of
the LDLT based algorithms. We observe that reducing the time step size increases
the overall computation time while the accuracy of the resulting solution increases,
as expected. We also realize that the average relative errors for the Midpoint and
Trapezoidal rules for τ=1e-2 is slightly larger than the one for τ=1e-1. For now, the
reason for this is obscure.

In Table 3 we present the results of the steel profile model with n = 1357 degrees of
freedom computed with a fixed time step size τ = 1. Given are the timings of the
standard low-rank codes compared to the LDLT implementations and the average of
the relative errors between both of them. For the Ros1 we observe that the timings
for the classical low-rank version and the LDLT method are basically the same. The
savings of the system solves within the LDLT based scheme (see Section 3.3) are
approximately compensated by the column compression technique of lower computa-
tional cost (see Section 2.3) for the standard low-rank splitting of the real definite right
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time in s avg. rel. err.
LR LDL LRvsLDL

BDF1 1 682.59 1 409.83 2.76 e-15
Ros1 864.19 857.93 9.89 e-15
Ros2 12 796.24 1 788.25 2.48 e-07

Midpoint 2 625.05 1 524.23 1.28 e-15
Trapezoidal 2 652.60 1 316.43 6.28 e-15

Table 3: Timings, the average relative errors between low-rank and LDLT methods
for K1,77 of the steel profile with n=1 357 on the time interval [0, 45] s, τ=1.

hand sides arising in the first order Rosenbrock method. Using a higher order method,
as one can easily observe in the case of Ros2, the LDLT routines can benefit from
all their advantages, i.e., avoiding the complex data and the removing of redundant
information by re-arranging the middle block S of the right hand sides. Therefore, the
LDLT version achieves a significant time saving.

4.1.2 Example 2: Diffusion on the unit square

The second example describes a diffusion model acting on the unit square with n =
1089 degrees of freedom. The system matrices E, A, B, C are given from a finite
element discretization. Here we have m = 1 input and q = 9 outputs. Similar to
the above example Figure 3a shows the convergence behavior of the solutions of the
different time integration methods to the solution of the ARE. Furthermore, Figure 3b
depicts the relative errors of the solutions of the LR methods compared to the LDLT

results.
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Figure 3: Comparison of the LDLT BDF method of order 1, the Midpoint and Trape-
zoidal rules and the Rosenbrock methods of order p=1,2 computed with a
fixed step size τ=1e-1.

Table 4 shows the timings of the standard low-rank algorithms and the LDLT based
schemes, as well as the average relative errors between both. Here we observe that in
the case of the first order Rosenbrock method the classical low-rank version computes
the solution of the RDE in less time compared to the LDLT scheme. The saving of
m = 1 system solves, given by the single input system, within every ADI step at each
time integration step cannot counterbalance the additional computational effort of the
column compression for the LDLT factorization.

time in s avg. rel. err.
LR LDL LRvsLDL

BDF1 10 255.16 6 369.10 9.12 e-07
Ros1 3 574.56 3 959.63 7.98 e-09
Ros2 12 876.42 6 946.71 8.99 e-07

Midpoint 9 968.02 6 636.28 2.14 e-09
Trapezoidal 9 939.94 5 540.53 1.10 e-09

Table 4: Timings, average relative errors between low-rank and LDLT methods for
K1,11 of the diffusion model with n=1 089 on the time interval [0, 50] s, τ=1e-
1.
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time in s avg. rel. err.
LR LDL LRvsLDL

Ros1 421.98 254.57 2.05e-08

Table 5: Timings, average relative error between low-rank and LDLT method for K1,1

of the carex model with n=1 000 on the time interval [0,10], τ=1e-2.
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(a) Convergence behavior of solution com-
ponent K1,1 on the time interval [0, 10] s.
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(b) Relative error between the classical low-
rank and the LDLT based methods.

Figure 4: Comparison of the standard low-rank and LDLT Rosenbrock method of
order 1, computed with a fixed step size τ=1e-2.

4.2 Krylov based Lyapunov solvers

The following example presents the numerical results achieved for an EKSM based
Lyapunov solver.

4.2.1 Example 3: carex model

The third example originates from the CAREX benchmark collection for continuous-
time algebraic Riccati equations [1]. The model is a single-input-single-output (SISO)
system with E,A ∈ Rn×n, B = CT ∈ Rn and n = 1 000. Figure 4 shows component
K1,1 computed via the classical low-rank Ros1 scheme compared to the LDLT based
version. The corresponding computation times and the average relative error are
presented in Table 5.
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time in s avg. rel. err.
LR LDL LRvsLDL

Ros1 197.73 118.58 2.03e-10

Table 6: Timings, average relative errors between standard low-rank and the LDLT

based methods of the steel profile example with n = 371 on the time interval
[0, 45] s, τ=1e-1.

10 20 30 40

time in [s]

LR and LDLT RDE solutions via EKSM

Ros1 LR
Ros1 LDL

ARE

(a) Convergence behavior of solution com-
ponent K1,77 on the time interval
[0, 45] s.

10 20 30 40

10−8

10−10

10−12

time in [s]

relative error LR vs LDLT

(b) Relative error between the classical low-
rank and the LDLT based methods.

Figure 5: Comparison of the standard low-rank and LDLT Rosenbrock method of
order 1, computed with a fixed step size τ=1e-2.

4.2.2 Example 4: Steel profile

Again, we consider the semi-discretized heat transfer model from Example 1 in Sec-
tion 4.1.1 with n = 371, τ=1e-1 on the time interval [0, 45]s. Similar to Example 4.2.1
Figure 5 presents solution component K1,77 for both, the classical low-rank and LDLT

based EKSM Lyapunov solvers inside the Ros1. Further, the relative error between
both is given and shows the equality of the algorithms except for numerical deviations.

5 Conclusion

We have investigated the p-step BDF, the p-stage Rosenbrock methods and the Mid-
point and Trapezoidal rules applied to matrix valued differential equations. In par-
ticular we have seen the application of those time integration schemes to the Riccati
differential equation.
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A review of an efficient solution strategy in terms of the standard low-rank techniques
was given. We revealed several problems of the classical methods regarding complex
data and cancellation effects arising in a superposition approach for the solution of the
algebraic Lyapunov equations with indefinite right hand sides that need to be solved
in the innermost loops of the RDE solvers. We have shown that these problems show
up for higher order integration methods, that are recommended to use due to the high
stiffness of e.g., the RDE. Our main contribution is the presentation of an LDLT based
decomposition of the solution of the RDE and the right hand side of the arising ALEs.
This special type of factorization naturally avoids all of the aforementioned problems.

The theoretical stated advantages have been numerically validated for a number of
examples. Here we compared the accuracy, as well as the computational timings
of the classical low-rank and LDLT based methods for ADI and Krylov subspace
based solvers for Lyapunov equations. Using an ADI based Lyapunov solver the given
examples show that the LDLT formulation significantly reduces the computation time
for higher order methods. In case of e.g., a first order Rosenbrock method the classical
low-rank representation will achieve faster results as long as the savings of the linear
system solves in the LDLT based method can not compensate the extra cost of the
column compression for the LDLT decompositions. In Section 3.3 we showed that
this directly depends on the number of inputs of the underlying state-space system as
we also observe from the multiple input Example in Section 4.1.1 and the single input
Example 4.1.2. For the Krylov subspace based solvers we have shown that the time
savings are generated by the avoidance of an additional and artificial recreation of a
classical low-rank factorization of the form ZZT . A more direct comparison of the ADI
and EKSM based Lyapunov solvers inside the time integration methods is postponed
and will be reported somewhere else. This is due to the fact that the currently running
experimental codes will be further optimized in the future and at the same time the
comparability, e.g., with respect to comparable stopping criteria, at the most efficient
level needs to be guaranteed.
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