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Abstract

This article discusses an approach to solving large-scale algebraic Riccati equa-
tions (AREs) by computing a low-dimensional stable invariant subspace of the
associated Hamiltonian matrix. We give conditions on AREs to admit solutions
of low numerical rank and show that these can be approximated via Hamilto-
nian eigenspaces. We discuss strategies on choosing the proper eigenspace that
yields a good approximation, and different formulas for building the approxima-
tion itself. Similarities of our approach with several other methods for solving
AREs are shown: closely related are the projection-type methods that use vari-
ous Krylov subspaces and the qADI algorithm. The aim of this paper is merely
to analyze the possibilities of computing approximate Riccati solutions from low-
dimensional subspaces related to the corresponding Hamiltonian matrix and to
explain commonalities among existing methods rather than providing a new al-
gorithm.

1 Introduction

Finding the solution of the continuous-time algebraic Riccati equation

A∗P + PA+Q− PGP = 0 (1)

is of great interest to the control theory community, which uses it in e.g. linear-
quadratic optimal regulator problems, H2 and H∞ controller design and balancing-
related model reduction. Current applications require efficient algorithms in cases
where A ∈ Rn×n is a large sparse matrix and Q = C∗C, G = BB∗ are positive
semidefinite low-rank matrices, B ∈ Rn×m, C ∈ Rp×n with m, p � n. In particular,
one is interested in obtaining the stabilizing solution P , which is the unique positive
semidefinite solution that makes the closed-loop matrix A−GP stable.

There are several competitive methods to tackle this problem, designed to exploit the
expected low-rank structure of the solution. These methods include the Newton-ADI
(Alternate Direction Implicit) [14, 16, 5, 21] and the various projection-type methods,
usually based on approximations using Krylov [11, 13, 22] or rational Krylov [9, 8]
subspaces generated by the matrices A∗ and A−∗ and the initial (block-)vector C∗.

In this paper, we follow up on the approach introduced in [3, 10], and further pursued
in [1]. There it is suggested to compute a low-dimensional stable invariant subspace

of the Hamiltonian matrix H =

[
A G
Q −A∗

]
via a symplectic Lanczos procedure,

which is then used to approximate the stabilizing solution of the Riccati equation. In
order to justify the existence of such a low-dimensional subspace that yields a good
approximation, in Section 2 we first discuss the properties of the input matrices A,G,Q
that imply the rapid decay in the singular values of the Riccati solution.

Section 3 addresses the questions on selecting the eigenvalues of H towards which
the Lanczos procedure should be steered, and on constructing an approximation to
the Riccati solution once the invariant subspace is available. In particular, we shall
see that the former question is especially difficult, even when the entire eigenvalue
decomposition of H is known in advance.
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Finally, in Section 4 we relate Krylov methods for computing Hamiltonian eigenspaces
to the aforementioned projection-type methods for solving the Riccati equation. This
gives some new insights on the latter, in particular on the shift selection in the ratio-
nal Krylov method. We also show that the approximation built from the Hamiltonian
eigenspace is closely tied to another method for large-scale Riccati equations—namely,
the qADI method of Wong and Balakrishnan [29].

We briefly recall several properties of Hamiltonian matrices that are needed in the
rest of the paper, and introduce some notation. Eigenvalues of real Hamiltonian matri-
ces come in quadruples: if λ ∈ C is an eigenvalue of H, then so are λ, −λ and −λ. For
the purpose of finding the stabilizing solution of the Riccati equation, we are particu-
larly interested in stable eigenvalues. The tuple of stable eigenvalues of H will be de-
noted as ~λH = (λH1 , . . . , λ

H
n ), and the tuple of all eigenvalues of A as ~λA = (λA1 , . . . , λ

A
n );

ordering of the eigenvalues in a tuple is arbitrary unless specified otherwise. The stable
part of the complex plane is denoted with C− = {z ∈ C : Re (z) < 0}. We are assum-
ing that none of the eigenvalues of H lies on the imaginary axis, which follows from
the usual assumption that the pair (A,B) is stabilizable (i.e. rank[ξI −A, B] = n, for
all ξ ∈ C \ C−), and that the pair (A,C) is detectable (i.e. (A∗, C∗) is stabilizable),
see e.g. [15].

Suppose that the columns of the matrix

[
Xk

Yk

]
span a k-dimensional stable invari-

ant subspace of H, i.e.

H
[
Xk

Yk

]
=

[
Xk

Yk

]
Λk,

for some Λk ∈ Ck×k with stable spectrum, and Xk, Yk ∈ Cn×k. When k = n, the
stabilizing Riccati solution is given by a simple formula: P = −YnX−1n . Furthermore,
the eigenvalues of the closed-loop matrix A − GP coincide with the eigenvalues of
Λn, which are λH1 , . . . , λ

H
n . For any k ≤ n, the stable invariant subspace is isotropic,

implying that X∗kYk = Y ∗k Xk. The subspace S is called isotropic if x∗J y = 0, for all

x, y ∈ S, where J =

[
0 In
−In 0

]
.

If P̃ is an approximate solution to (1), than the Riccati residual of P̃ will be denoted
as

R(P̃ ) = A∗P̃ + P̃A+Q− P̃GP̃ .

Finally, the subspace spanned by the columns of a matrix Z is denoted as span{Z},
and the singular values of Z as σ1(Z) ≥ σ2(Z) ≥ . . . For a matrix S = [ x1 x2 ... xk

y1 y2 ... yk ],
where xj , yj ∈ Cn, and the associated subspace S = span{[ x1

y1 ] , . . . , [ xk
yk ]}, it will be

useful to separately study the X component and the Y component, defined as

X(S) =
[
x1 x2 . . . xk

]
, Y(S) =

[
y1 y2 . . . yk

]
;

X(S) = span{x1, . . . , xk}, Y(S) = span{y1, . . . , yk}.
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2 Singular value decay of the Riccati solution

Since the matrices involved in the Riccati equation are assumed to be large and sparse,
it is important to have the ability of representing the Riccati solution P in a compact
form as well. Note that in general, P will be a fully populated, dense matrix even if the
coefficients are sparse. Both the Newton-ADI and the projection methods compute the
approximation to the solution in a factored form, such as P ≈ ZZ∗, or P ≈ Y∆Y ∗,
where Y,Z ∈ Rn×k, ∆ ∈ Rk×k, and k � n. For such an approximation to be effective,
one relies on the fact that the matrix P has a low numerical rank, or equivalently, that
its singular values are decaying rapidly.

In this section, we are going to justify such an assumption by providing an upper
bound on the fractions σk/σ1, where σ1 ≥ σ2 ≥ . . . ≥ σn are the singular values of the
matrix P . The technique we are going to use is similar to the one in [25], where the
bound for the Lyapunov equation is established. Our technique utilizes the Sylvester-
ADI method [28, 27], and the convenient error expression for the approximations it
generates. We recall this method in the following definition.

Definition 1. Given the matrices A,B, C ∈ Rn×n, two sequences of shifts (αj)j ⊂ C
and (βj)j ⊂ C, and an initial approximation P0, the Sylvester-ADI method builds a
sequence (Pj)j ⊂ Cn×n of approximations to the solution P of the Sylvester equation

AP + PB = C.

The sequence is generated by the recurrence{
(A+ βjI)Pj−1/2 = C − Pj−1(B − βjI),

Pj(B + αjI) = C − (A− αjI)Pj−1/2,
for j = 1, 2, . . .

Assuming P0 = 0, it is not difficult to see that the rank of Pk will be equal to
k · rank(C), and that the sequence generated by the Sylvester-ADI method satisfies the
following error expression [27]:

P − Pk =

 k∏
j=0

(A− αjI)(A+ βjI)−1

 · P ·
 k∏
j=0

(B − βjI)(B + αjI)−1

 . (2)

By rewriting the Riccati equation as a Lyapunov or a Sylvester equation, and by using
the ADI iterates as low-rank approximations to the Riccati solution, we can obtain
bounds on its singular value decay.

Theorem 2. Let σ1 ≤ σ2 ≤ . . . ≤ σn denote the singular values of the matrix P , the
solution of (1) with G = BB∗ and Q = C∗C, where B ∈ Rn×m, C ∈ Rp×n. Then,
for every k such that (m+ p)k+ 1 ≤ n and any selection of shifts τ1, . . . , τk ∈ C−, the
following bound holds:

σ(m+p)k+1

σ1
≤ κ2A−GP ·

 max
i=1,...,n

k∏
j=1

|λHi − τj |
|λHi + τj |

2

. (3)
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If the matrix A is stable, we have a slightly improved bound when pk + 1 ≤ n:

σpk+1

σ1
≤ κA−GPκA · max

i=1,...,n

k∏
j=1

|λHi − τj |
|λHi + τj |

· max
i=1,...,n

k∏
j=1

|λAi − τj |
|λAi + τj |

. (4)

Here κA and κA−GP denote the condition numbers of the eigenvector matrices of A
and A−GP , respectively.

Proof. For the first bound, rewrite the Riccati equation (1) as a Lyapunov equation

(A−GP )∗P + P (A−GP ) = −Q− PGP,

and assume that A − GP and PGP are known. Using the notation of Definition 1,
consider the Sylvester-ADI method with A = (A − GP )∗, B = A − GP , and C =
−Q−PGP . Let the shifts used by the method be αj = τj and βj = τj . Note that the
matrix C has rank less than or equal to m+p, and thus the iterate Pk is of rank at most
(m+p)k. Finally, assume that the matrix A−GP is diagonalizable with the eigenvalue
decomposition A−GP = XA−GPΛHX

−1
A−GP , where ΛH = diag(λH1 , . . . , λ

H
n ). Inserting

this into the error expression (2) yields

P − Pk = X−∗A−GP

 k∏
j=0

(Λ∗H − τjI)(Λ∗H + τjI)−1

X∗A−GP · P ·

XA−GP

 k∏
j=0

(ΛH − τjI)(ΛH + τjI)−1

X−1A−GP .

Taking norms, we have

σ(m+p)k+1 ≤ ‖P − Pk‖ ≤ κ2A−GP · σ1 ·

 max
i=1,...,n

k∏
j=1

|λHi − τj |
|λHi + τj |

2

.

The second bound is obtained similarly: this time we rewrite the Riccati equation
as the Sylvester equation

A∗P + P (A−GP ) = −Q, (5)

and apply the Sylvester-ADI with A = A∗, B = A−GP , C = −Q, and with the same
selection of shifts as before. Now the matrix C has rank p, and thus rankPk ≤ pk.
Using the eigenvalue decomposition A = XAΛAX

−1
A , where ΛA = diag(λA1 , . . . , λ

A
n ),

the expression (2) reduces to

P − Pk =X−∗A

 k∏
j=0

(Λ∗A − τjI)(Λ∗A + τjI)−1

X∗A · P ·

XA−GP

 k∏
j=0

(ΛH − τjI)(ΛH + τjI)−1

X−1A−GP .

The bound now follows easily by taking norms.
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Several remarks are in order. First, note that each of the fractions

|λHi − τj |
|λHi + τj |

is less than 1, since both λHi and τj are in the left half-plane. If A is stable, the same
holds for the fractions

|λAi − τj |
|λAi + τj |

as well. Thus even when using a single shift τj = τ , j = 1, 2, . . ., we have an exponential
decay in the singular values:

σ(m+p)k+1

σ1
≤ κ2A−GP · ρ2k, ρ = max

i=1,...,n

|λHi − τ |
|λHi + τ |

< 1.

Of course, the decay rate obtained this way may be very slow1. An optimal decay rate
is obtained by solving the minimax problem

min
τ1,...,τk∈C−

max
i=1,...,n

k∏
j=1

|λHi − τj |
|λHi + τj |

, (6)

or the variant with two eigenvalue tuples,

min
τ1,...,τk∈C−

 max
i=1,...,n

k∏
j=1

|λHi − τj |
|λHi + τj |

· max
i=1,...,n

k∏
j=1

|λAi − τj |
|λAi + τj |

 .

These problems are instances of the well-known task of determining the optimal ADI-
shifts, and the solution is not known in the general case when the eigenvalues λHi and
λAi are placed arbitrarily in the complex plane. Various heuristics can be deployed; see
e.g. [19]. One possible relaxation of (6) is to allow only shifts which coincide with the
eigenvalues of H. In that case, the shifts may be constructed in the following way: if
τ1, . . . , τk−1 are already chosen amongst the eigenvalues of H, the next one is selected
as

τk = arg max
λ∈{λH1 ,...,λHn }

k−1∏
j=1

|λ− τj |
|λ+ τj |

.

The obtained sequence of shifts establishes an ordering of the eigenvalues of H which
we are going to name the “ADI-minimax” ordering. (For definiteness, let τ1 be the
eigenvalue closest to the origin.)

1Also, note that when the eigenvalue λHi is close to the imaginary axis, then |λHi − τj |/|λHi + τj | ≈ 1

unless τj is very close to λHi . Thus in the case where H has many such eigenvalues, we cannot
expect the decay to be fast—a new shift is needed to resolve each of them. This effect is also
observed in Example 3.
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As the second remark, we notice a relation between certain Cauchy matrices and the
bounds (3) and (4). For the tuples ~α = (α1, . . . , αn) and ~β = (β1, . . . , βn) of complex
numbers, let

C(~α, ~β) =


1

α1+β1

1
α1+β2

. . . 1
α1+βn

1
α2+β1

1
α2+β2

. . . 1
α2+βn

...
...

. . .
...

1
αn+β1

1
αn+β2

. . . 1
αn+βn


denote the associated Cauchy matrix. Suppose for the moment that p = 1, i.e. that
Q = C∗C where C∗ is a one-column matrix. Using the eigenvalue decompositions of
A and A−GP , the equation (5) can be written as

Λ∗A(X∗APXA−GP ) + (X∗APXA−GP )ΛH = −X∗AQXA−GP

= −(X∗AC
∗)(X∗A−GPC

∗)∗.

Let DA = diag(X∗AC
∗), DA−GP = diag(X∗A−GPC

∗) denote the diagonal matrices
whose diagonal elements are the entries in the vectors X∗AC

∗ and X∗A−GPC
∗ respec-

tively. Then
Λ∗AP̃ + P̃ΛH = −ee∗, (7)

where we have denoted P̃ = D−1A X∗APXA−GPD
−∗
A−GP , and e ∈ Rn is the vector con-

sisting of all ones. It is easy to see that the solution to this Sylvester equation is
P̃ = −C(~λA, ~λH), and that from

P = −X−∗A DA · C(~λA, ~λH) ·D∗A−GPX−1A−GP
we have

σk ≤ κAκA−GP ‖C‖2 · σk(C(~λA, ~λH)). (8)

Here we have used ‖DA‖ = ‖ diag(X∗AC
∗)‖ = ‖X∗AC∗‖∞ ≤ ‖X∗AC∗‖ ≤ ‖XA‖‖C‖,

and the well-known property σk(ABC) ≤ ‖A‖σk(B)‖C‖, see e.g. [6]. The equation (8)
shows how the decay in the singular values of P is bounded by the decay in the singular
values of the Cauchy matrix. By applying the Sylvester-ADI iteration directly to (7),
the maximum from (4) reappears:

σk+1(C(~λA, ~λH))

σ1(C(~λA, ~λH))
≤ max
i=1,...,n

k∏
j=1

|λHi − τj |
|λHi + τj |

· max
i=1,...,n

k∏
j=1

|λAi − τj |
|λAi + τj |

.

Similarly, we note that another Cauchy matrix P̂ = −C(~λH, ~λH) is the solution of the
Lyapunov equation

Λ∗HP̂ + P̂ΛH = −ee∗, (9)

and that the Sylvester-ADI method yields the bound for its singular values that has
already appeared in (3):

σk+1(C(~λH, ~λH))

σ1(C(~λH, ~λH))
≤

 max
i=1,...,n

k∏
j=1

|λHi − τj |
|λHi + τj |

2

. (10)
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There is an interesting observation that ties the ADI iterates and the Cauchy ma-
trices even closer. Suppose that −C(~λH, ~λH) = L∆L∗ is the LDL-factorization of the

(positive definite) matrix −C(~λH, ~λH). One can show that the k-th ADI iterate P̂k for
the equation (9) is equal to

P̂k = L

[
∆(1 : k, 1 : k)

0

]
L∗,

where the shifts used are the eigenvalues ordered as they appear in the tuple ~λH; we
omit the proof for brevity. This fact also explains why the bounds in [2] and [25] have
“striking resemblance [. . . ] even though the approaches that lead to the results are
very different” [25]: the approximations obtained using the Cholesky factorization and
the ADI are in fact the same. Also note that our “ADI-minimax” eigenvalue ordering
is a very slight modification of the “Cholesky ordering” defined in [2].

Finally, we comment on the size of κA−GP in (3) and (4). Suppose now that m = 1,
i.e. that G = BB∗, where B is a one-column matrix. Then the row-vector K = B∗P
is the unique solution to the following eigenvalue assignment problem:

Given A and B, find K such that eig(A−BK) = {λH1 , . . . , λHn }.

Mehrmann and Xu [18] give a bound on the condition number of the closed-loop matrix
A−BK, which in our case coincides with A−GP . In our notation, the bound is

κA−GP ≤
√
n · ‖XA diag(X−1A B)‖ · ‖(XA diag(X−1A B))−1‖ · ‖C̃‖F ‖C̃−1‖F . (11)

The matrix C̃ is associated to yet another Cauchy matrix, C̃ = C(−~λA, ~λH) ·D, where
D is the diagonal scaling matrix that makes the columns of C̃ have unit norm. The
following formula [18] holds for the condition number of this matrix in the Frobenius
norm:

‖C̃‖F ‖C̃−1‖F =

√√√√n

n∑
i,j=1

∑n
`=1

∏n
k=1,k 6=` |λAi − λHk |2∏n

k=1,k 6=i |λHi − λHk |2
·
∏n
k=1,k 6=j |λAj − λHk |2∏n
k=1,k 6=j |λAj − λAk |2

. (12)

While the Cauchy matrices C(~λH, ~λH) and C(~λA, ~λH), each generated by two stable

tuples, exhibit rapid singular value decay, the matrix C(−~λA, ~λH) shows a very slow
decay. Moreover, the matrix C̃ has the smallest condition number (up to the factor√
n) among all matrices obtained by scaling the columns of the matrix C(−~λA, ~λH)

[24]. However, it seems that getting an upper limit for (12) is not an easy task.
Informally, one could provide a bound for this expression if the eigenvalues of H are
not far away from the eigenvalues of A. If we can reorder the eigenvalues of A and
H so that |λAj − λHj | � |λAj − λHk | for a majority of indices j and all k 6= j, then

|λAj − λHk | ≈ |λAj − λAk | ≈ |λHj − λHk |, and the fractions under the square root are
close to 1. Such an assumption is not unrealistic: the Hamiltonian matrix H can
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be considered as a low-rank perturbation of the matrix A defined below, which has
eigenvalues equal to ~λA plus its mirrors along the imaginary axis:

H =

[
A
−A∗

]
︸ ︷︷ ︸

A

+

[
BB∗

C∗C

]
. (13)

Analysis in the simplest, symmetric case indicates that most eigenvalues of H cannot
escape far away from those of A. In that case, p = m and C∗ = B, and we can rewrite
(13) as

H = A−
[
B 0
0 B

] [
B 0
0 B

]∗
︸ ︷︷ ︸

Ã

+

[
B
B

] [
B
B

]∗
.

The eigenvalues λAj , λÃj and λHj of A, Ã and H, respectively, are real; suppose that

they are ordered from the smallest to the largest. The matrix Ã is a perturbation of
the symmetric matrix A by a positive semidefinite matrix of rank 2m, thus [26],

λAj−2m ≤ λÃj ≤ λAj ,

for all j = 2m+ 1, . . . , 2n. Similarly, the matrix H is a perturbation of the matrix Ã
by a positive semidefinite matrix of rank m, and

λÃj ≤ λHj ≤ λAj+m,

for all j = 1, . . . , n−m. Put together,

λAj−2m ≤ λHj ≤ λAj+m,

and therefore only 3m eigenvalues of H can escape the interval [λA1 , λ
A
2n]. All the other

eigenvalues of H are interlaced with the eigenvalues of A, and each can appear in a
narrow window between the two nearby eigenvalues of A.

In the non-symmetric case, this argument does not pass, and one can construct
examples where many eigenvalues of H move far away from those of A and −A∗, for
carefully chosen perturbations B,C with large norms. However, behavior similar as
for the symmetric matrix H is still observed for generic perturbations.

We conclude this section with an example that illustrates our discussion.

Example 3. Consider the matrix A ∈ R100×100 obtained by semi-discretization of the
partial differential equation

∂u

∂t
= ∆u+ 10ux + 100uy

on the unit square, and vectors B,C∗ ∈ R100 with entries normally distributed in
[−10, 10]. The eigenvalues of A and of the Hamiltonian matrix H =

[
A BB∗

C∗C −A∗
]

are

8
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Figure 1: The relation of the singular value decay of the Riccati solution P and the
singular values of the Cauchy matrix C(~λA, ~λH).

shown in Figure 1a. As we commented above, most eigenvalues of H are only slight
perturbations of the eigenvalues of A. Figure 1b shows the rapid decay in the singular
values of the solution P of the Riccati equation associated with H—already the 20th
singular value is approximately 1010 times smaller than the first one. It is interesting
to observe that the decay in singular values of the Cauchy matrix C(~λA, ~λH) closely

follows the one of P ; the same holds true for the matrix C(~λH, ~λH) which is not shown
in the figure.

The slope of the line for the bound (4) is very similar to the slope in the decay of the
singular values of P . Shifts τj have been chosen here as the eigenvalues of H ordered
in the “ADI-minimax” ordering.

In this example, the bound (11) for κA−GP is quite pessimistic. While the condition
number of the matrix A − GP is κA−GP ≈ 104.1, the condition numbers of the two
matrices XA diag(X−1A B) and C̃ are 1987.7 and 3753.5, respectively. Nevertheless, in

Figure 1b we see that the singular values of C(−~λA, ~λH) (and then of C̃ as well) decline

drastically slower than the ones of C(~λA, ~λH).
Further demonstration of the rapid decay for the Cauchy matrices generated by stable

vectors is shown in Figure 2. On the left side, several different selections for the eigen-
value tuple ~λH are depicted: black circles correspond to 100 randomly chosen points
in the interval [−40,−20], green asterisks to 100 points in the rectangle [−40,−20] ×
[−20i,−20i], red diamonds to 100 points in the rectangle [−21,−1]× [−20i, 20i], blue
x’s to 100 points on the line −0.1 + [−20i, 20i], and purple pluses to 50 points in the
rectangle [−40,−20]× [−20i,−20i] and 50 points on the line −0.1 + [−20i, 20i].

For each selection of the tuple, on the right figure we plot the singular value decay
of the matrix C(~λH, ~λH). The decay is clearly faster when the eigenvalues are further
away from the imaginary axis, which can also be justified by the bound (10).
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Figure 2: Singular value decay of the Cauchy matrix C(~λH, ~λH) and its dependency on

the placement of the eigenvalue tuple ~λH in the complex plane.

3 Approximations using the Hamiltonian eigenspaces

In the small-scale setting, the solution to the Riccati equation (1) is obtained by
computing the stable invariant subspace of the matrix H: if[

A G
Q −A∗

] [
X
Y

]
=

[
X
Y

]
· Λ, (14)

where the columns of X,Y ∈ Cn×n form the basis of the eigenspace, and all the
eigenvalues of Λ ∈ Cn×n lie in the left half-plane, then the stabilizing solution is given
by the formula

P = −Y X−1.
Due to computational complexity and memory capacity limitations, for larger values
of n it is feasible to compute only a small-dimensional eigenspace of H. The discussion
from Section 2 can be adapted to demonstrate that there indeed exists such a subspace,
which can be used in order to obtain a good approximation to the exact solution P . To
see that, let us assume that the matrix Λ is diagonal, and that the matrix containing
the eigenvectors of H has been normalized so that each column of the matrix X has a
unit norm. Then, the X component of (14) (i.e. the first n rows) reads as

AX +GY = XΛ ⇒ A−GP = XΛX−1,

and we see that the matrix X is the eigenvector matrix of A − GP . Once again, we
assume that this matrix has a modest condition number.

The Y component of (14) can be rewritten as the Sylvester equation

A∗Y + Y Λ = QX,

where Y is the unknown. By using the Sylvester-ADI technique as described in the
previous section, one can conclude that the singular values of the matrix Y follow the
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rapid decay of the singular values in the Cauchy matrix C(~λA, ~λH). Thus already for
some k � n, we can have that σk(Y ) ≤ ε, where ε � 1 is a given tolerance. To see
that computing only k of the eigenvectors will suffice for a good approximation to P ,
note that there exists a rank-revealing QR-factorization [12, 7] of Y ,

YΠ =
[
Q1 Q2

] [ R11 R12

R22

]
,

such that ‖R22‖ ≤ f(n)σk+1(Y ). Here the orthonormal matrix Q1 has k columns, R11

is an upper triangular matrix of order k, Π is a permutation matrix, and f(n) is a
low-degree polynomial. Let

Ŷk = Q1

[
R11 R12

]
, Pk = −ŶkX−1.

Then the range of the matrix Pk is spanned by certain k columns of the matrix Y—
more precisely, these are the first k columns of YΠ and we will denote those as Yk.
Furthermore, we have

‖P − Pk‖ = ‖(−Y + Ŷk)X−1‖ ≤ ‖Y − Ŷk‖ · ‖X−1‖

= ‖
[
Q1 Q2

] [ 0 0
R22

]
‖ · ‖X−1‖ = ‖R22‖ · ‖X−1‖

≤ f(n)ε‖X−1‖ ≤ f(n)κA−GP · ε.

In the last inequality we have used the fact that the matrix X has columns of unit
norm. Therefore, one can compute only k eigenvectors of the matrix H to obtain the
matrix Yk. All columns of the matrix Pk, which is a good approximation to P , are
simply certain linear combinations of the columns of Yk.

The construction of the approximation Pk that we have just described still requires
knowledge of the entire stable invariant subspace of H. In order to make the method
practical, one has to resolve the following two issues while avoiding the computation
of the full eigenvector matrices X and Y :

1. Which are the k stable eigenpairs of H that should be computed?

2. Once the k eigenpairs of H are available, how to compute the matrix Pk (or some
other good approximation to P )?

We first turn our attention to the second question. Suppose that we have computed
a k-dimensional stable invariant subspace,

H
[
Xk

Yk

]
=

[
Xk

Yk

]
Λk. (15)

As we have seen, a good approximation to P may be formed by constructing a matrix
whose columns belong to the subspace span{Yk}. One such matrix (denoted from now

on as P proj
k ) is obtained by solving the Riccati equation projected onto span{Yk}. The

procedure is described in Algorithm 1.

11



Algorithm 1: Riccati solution approximation based on the projection to the
invariant subspace of the Hamiltonian matrix

Input: A,G,Q ∈ Rn×n, Xk, Yk ∈ Rn×k that satisfy (15)

Output: Approximation P proj
k to the solution of A∗P + PA+Q− PGP = 0

1 Compute an orthonormal basis Uk for the subspace span{Yk};
2 Obtain the stabilizing solution ∆ to the projected Riccati equation of order k:

(U∗kAUk)∗∆ + ∆(U∗kAUk) + (U∗kQUk)−∆(U∗kGUk)∆ = 0;

3 Set P proj
k = Uk∆U∗k ;

The approximate solution P proj
k is obviously positive semidefinite (assuming that the

projected Riccati equation has one), and direct calculation shows that it satisfies the
Galerkin condition

Y ∗k R(P proj
k )Yk = 0.

Another option is to avoid solving the projected Riccati equation, and instead com-
pute the approximation (denoted here as P dir

k ) directly from Xk and Yk. The following
formula was suggested by Amodei and Buchot [1]:

P dir
k = −Yk(Y ∗k Xk)−1Y ∗k . (16)

Note that the columns of P dir
k also belong to span{Yk}. For simplicity of exposition,

we study here only the generic case where the matrix Yk is of full column rank, which
implies that Y ∗k Xk is non-singular [1]. The motivation for introducing (16) was to
mimic certain properties of the exact solution P = −Y X−1, as shown in the following
proposition.

Proposition 4 ([1]). The matrix P dir
k has the following properties:

(a) P dir
k is a symmetric positive semidefinite matrix.

(b) P dir
k Xk = −Yk (c.f. PX = −Y ).

(c) Restriction of the closed loop matrix A − GP dir
k to the subspace span{Xk} is

stable.

(d) P dir
k is the unique matrix of rank k such that (a) and (b) hold.

(e) P dir
k fulfills the following Galerkin condition: X∗kR(P dir

k ) = 0.

The Riccati residual of the approximation P dir
k can be written in a special form

which suggests the role the selected eigenvectors have in providing the approximation.
With the help of this form, the following theorem also explains the dynamics of how
the approximation P dir

k improves as the number of eigenvectors k increases.

12



Theorem 5. Let C̃∗ = (I − Yk(Y ∗k Xk)−1X∗k)C∗, and let Ã = A−GP dir
k .

(a) The Riccati residual of the approximation P dir
k can be written as

R(P dir
k ) = C̃∗C̃. (17)

(b) If (Λ`,

[
X`

Y`

]
) is an eigenpair of the matrix H, i.e. H

[
X`

Y`

]
=

[
X`

Y`

]
Λ`,

where X`, Y` ∈ Cn×`, Λ` ∈ C`×` for some `, then

(Λ̃`,

[
X̃`

Ỹ`

]
) = (Λ`,

[
X`

Y` + P dir
k X`

]
)

is an eigenpair of the matrix

H̃ =

[
Ã G

C̃∗C̃ −Ã∗

]
. (18)

When Λ` is stable, then Y` + P dir
k X` = (I − Yk(Y ∗k Xk)−1X∗k)Y`.

(c) Let P̃ denote the exact stabilizing solution of the Riccati equation associated with
the Hamiltonian matrix (18),

Ã∗P̃ + P̃ Ã+ C̃∗C̃ − P̃GP̃ = 0. (19)

Then the exact stabilizing solution P of the original Riccati equation (1) is given
by

P = P dir
k + P̃ .

(d) Let (Λ`,

[
X`

Y`

]
) denote an eigenpair of the matrix H, such that the spectrum

of Λ` is stable and disjoint from the spectrum of Λk. Furthermore, let P dir
k+` de-

note the approximate solution to the initial Riccati equation (1) computed using

the eigenpair (

[
Λk

Λ`

]
,

[
Xk X`

Yk Y`

]
) of H, and let P̃ dir

` denote the approxi-

mate solution to the residual Riccati equation (19) computed using the eigenpair

(Λ̃`,

[
X̃`

Ỹ`

]
) of H̃ as defined in (b). Then

P dir
k+` = P dir

k + P̃ dir
` . (20)

Proof. (a) First, note that from AXk +GYk = XkΛk, we have

P dir
k GP dir

k = −P dir
k GYk(Y ∗k Xk)−1Y ∗k = −P dir

k (XkΛk −AXk)(Y ∗k Xk)−1Y ∗k

= P dir
k AXk(Y ∗k Xk)−1Y ∗k + YkΛk(Y ∗k Xk)−1Y ∗k ,
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and that from QXk −A∗Yk = YkΛk, we have

A∗P dir
k = −A∗Yk(Y ∗k Xk)−1Y ∗k = (YkΛk −QXk)(Y ∗k Xk)−1Y ∗k

= YkΛk(Y ∗k Xk)−1Y ∗k −QXk(Y ∗k Xk)−1Y ∗k .

Since Q and Y ∗k Xk are symmetric matrices (isotropy!), it follows that

P dir
k A = Yk(Y ∗k Xk)−1Λ∗kY

∗
k − Yk(Y ∗k Xk)−1X∗kQ,

and

P dir
k GP dir

k = Yk(Y ∗k Xk)−1Λ∗kY
∗
k − Yk(Y ∗k Xk)−1X∗kQXk(Y ∗k Xk)−1Y ∗k

+ YkΛk(Y ∗k Xk)−1Y ∗k .

Adding it all together, all the terms containing Λk cancel out, and we obtain

R(P dir
k ) = A∗P dir

k + P dir
k A+Q− P dir

k GP dir
k

= (I − Yk(Y ∗k Xk)−1X∗k)Q(I − Yk(Y ∗k Xk)−1X∗k)∗.

(b) By simply computing the X and the Y component, we show that[
Ã G

C̃∗C̃ −Ã∗

] [
X`

Y` + P dir
k X`

]
=

[
X`

Y` + P dir
k X`

]
Λ`.

The X component is straightforward:

ÃX` +G(Y` + P dir
k X`) = (A−GP dir

k )X` +GY` +GP dir
k X`

= AX` +GY` = X`Λ`.

The Y component is a bit more involved: with Q̃ = C̃∗C̃ we have

Q̃X` − Ã∗(Y` + P dir
k X`)

= Q̃X` −A∗Y` + P dir
k GY` −A∗P dir

k X` + P dir
k GP dir

k X`

= Q̃X` + (Y`Λ` −QX`) + P dir
k (X`Λ` −AX`)−A∗P dir

k X`

+ P dir
k GP dir

k X`

= Q̃X` + (Y` + P dir
k X`)Λ` − (A∗P dir

k + P dir
k A+Q− P dir

k GP dir
k )X`

= (Y` + P dir
k X`)Λ`,

since A∗P dir
k + P dir

k A + Q − P dir
k GP dir

k = R(P dir
k ) = Q̃. When Λ` is stable,

Y ∗k X` = X∗kY` since the stable subspace is isotropic. Hence,

Y` + P dir
k X` = Y` − Yk(Y ∗k Xk)−1Y ∗k X` = Y` − Yk(Y ∗k Xk)−1X∗kY`

= (I − Yk(Y ∗k Xk)−1X∗k)Y`.
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(c) The claim follows from

A∗(P dir
k + P̃ ) + (P dir

k + P̃ )A+Q− (P dir
k + P̃ )G(P dir

k + P̃ )

= (A−GP dir
k )∗P̃ + P̃ (A−GP dir

k )− P̃GP̃ +R(P dir
k ),

which is equal to zero since R(P dir
k ) = Q̃.

(d) Since P dir
k+` is the unique positive semidefinite matrix of rank k + ` that satisfies

P dir
k+`

[
Xk X`

]
= −

[
Yk Y`

]
, it suffices to show that the same holds true

for P dir
k + P̃ dir

` . Firstly, we have

(P dir
k + P̃ dir

` )Xk = −Yk + P̃ dir
` Xk = −Yk.

Here P̃ dir
` Xk = 0 since

Ỹ ∗` Xk = (Y` + P dir
k X`)

∗Xk = Y ∗` Xk +X∗` P
dir
k Xk = Y ∗` Xk −X∗` Yk = 0,

and the columns of

[
Xk X`

Yk Y`

]
lie in the isotropic stable invariant subspace of

H. Secondly,

(P dir
k + P̃ dir

` )X` = P dir
k X` + P̃ dir

` X̃` = P dir
k X` − Ỹ`

= P dir
k X` − (Y` + P dir

k X`) = −Y`.

From the first claim of Theorem 5, we have that

‖R(P dir
k )‖ = ‖(I − Yk(Y ∗k Xk)−1X∗k)C∗‖2. (21)

Note that the matrix Yk(Y ∗k Xk)−1X∗k is the skew projector onto the subspace span{Yk}
along the orthogonal complement of the subspace span{Xk}. Thus, using the eigen-
space span{

[
Xk

Yk

]
} for computing the approximation P dir

k has the effect of purging the
component that C∗ has in span{Yk}. Obviously, finding a Yk such that all columns of
C∗ lie inside the subspace span{Yk} will result in P dir

k being equal to the exact solution
P .

The statements (b), (c) and (d) of the theorem show that, by computing more and
more eigenpairs of H, we implicitly drive C̃ and the solution P̃ of the residual Riccati
equation (19) towards the zero matrix. Equivalently, the bottom left block in the
matrix H̃ of (18) converges to zero, along with the Y components of its eigenvectors.
Also, notice that the Y components of the eigenvectors of H̃ that correspond to the
eigenvalues used for computing P dir

k are exactly equal to zero.
Moreover, suppose that we incrementally build P dir

k , by initially using a single eigen-
pair to obtain P dir

1 , and then in each of the k − 1 steps adding another eigenpair to
obtain P dir

2 , . . . , P dir
k . Theorem 5 shows that

0 ≤ P dir
1 ≤ P dir

2 ≤ . . . ≤ P dir
k ≤ P = P dir

k + P̃ ,
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where the inequality symbol denotes the Löwner partial ordering. Thus the approxi-
mations P dir

k have another desirable property: as k increases, they are monotonically
increasing towards the exact solution.

The problem of finding a small subset of eigenvectors of H that yields a good ap-
proximation to P is more difficult—even when the full eigenvalue decomposition of H
is available, and the only task is to filter out the few representative eigenpairs. The
formula (21) for the residual norm indicates where the difficulty is when we use P dir

k

as the approximation. To obtain a small residual, one has to find eigenvectors such
that the skew projection of C∗ vanishes. Thus, it seems that strategies for selecting
the eigenpairs which are based purely on eigenvalue location have no prospect. For
example, computing P dir

k corresponding to the k largest or k smallest eigenvalues of H
may require a large k for the approximation to become good.

Nevertheless, sorting the eigenvalues in the “ADI-minimax” ordering, and expanding
the approximation subspace by adding the eigenpairs in that order works very well in
most cases, although one can carefully design a Riccati equation for which such a
method fails as well, as we will demonstrate in Example 6.

Theorem 5(c) shows that, once P dir
k is computed, one can switch to solving the

residual Riccati equation (19). Since Y components in all stable eigenvectors of H̃ have
to be driven to zero eventually, it is reasonable to expand the current invariant subspace
with the eigenvector of H̃ that has the largest Y component. This approach results
in fast convergence. However, an efficient method for finding such an eigenvector is
elusive. The following example summarizes the problematics of choosing a proper
invariant subspace.

Example 6. Consider the matrix A ∈ R100×100 obtained by semi-discretization of the
PDE

∂u

∂t
= ∆u+ 20ux − 180u,

and matrices B,C∗ ∈ R100×3 with entries chosen randomly from [0, 10]. For this small
example, we compute the full eigenvalue decomposition of the matrix H =

[
A BB∗

C∗C −A∗
]
.

By generating various stable subspaces of H, we compare the effectiveness of approxi-
mations P dir

k and P proj
k .

Figure 3a shows the residuals in the Riccati equation for different strategies of ex-
panding the invariant subspace. Suppose, for example, that we sort the eigenvalues of
H by decreasing real part, and then use the first k associated eigenvectors as the basis
for the invariant subspace. The green line with diamond marks shows the residuals of
the corresponding approximate Riccati solutions P proj

k . Similarly, the purple line with
asterisks shows the residuals when the eigenvalues are sorted by increasing real part.
In both cases, the final subspace (the one with the residual less than 10−9) has a di-
mension much larger than necessary. To see that, we computed the exact solution P ,
and for each k the matrix of rank k that is closest to P in 2-norm. Columns of this
matrix span a certain subspace of dimension k, and the Riccati residuals follow the
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Figure 3: Various strategies for selecting the stable invariant subspace of H.

black line with the x marks. Thus, there exists a subspace of dimension 20 yielding an
approximate Riccati solution with the residual of 10−9, while sorting the eigenvalues
of H by the real part requires almost the full stable subspace to reach that accuracy in
one case, and a subspace of dimension 55 in the other.

On the other hand, using the ADI-minimax ordering of the eigenvalues makes the
convergence very fast in this case, with either P dir

k or P proj
k . We must note here that

using suboptimal invariant subspaces with P dir
k may lead to numerical problems. The

issue is the following: if Yk does not have a full numerical rank, then the inverse in the
formula P dir

k = −Yk(Y ∗k Xk)−1Y ∗k is not well-defined. This issue, along with Theorem
5, motivates another possible strategy: in each step we expand the invariant subspace
with the eigenvector of H̃ which has the largest Y component. This strategy, denoted
by “greedy” in the figures, ensures that the matrix Yk keeps a full column rank, and
also tends to provide the strongest decrease in the Riccati residual. Eigenvalues of H
chosen by the greedy strategy are shown in Figure 3b.
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Example 7. In this example, we demonstrate that using only the location of the eigen-
values in the complex plane as a criterion for choosing the invariant subspace is not
sufficient. The goal is to construct a Hamiltonian matrix such that many eigenvalues
that must be computed for a good approximation are artificially clustered somewhere
in the interior of the spectrum (in this case, in the vicinity of the point −700). Let

H1 =


A BB∗

10−3A− 700I 10−3BB∗

C∗C −A∗
10−3C∗C −(10−3A− 700I)∗

 ,
where A,B,C are as in Example 6. The Riccati equation associated with H1 effectively
consists of two smaller equations of order 100. Its solution has the form

P1 =

[
P

Pε

]
,

where ‖Pε‖ ≈ 10−3 ‖P‖, and P is the exact solution from Example 6. Therefore, in
order to capture P1 with relative precision higher than 10−3, the invariant subspace
has to include several eigenvalues of H1 that are clustered around −700. As we see
in Figure 3d, all of the methods we described in Example 6 that are based exclusively
on eigenvalue location need many iterations until they discover the hidden, but crucial
part of the spectrum. This effect manifests itself as the typical stagnation plateaus in
the graphs. On the other hand, the greedy method immediately finds the eigenvectors
necessary for further progress in convergence. Unlike this artificial example, the ADI-
minimax ordering performed quite well in our experimentation with Riccati equations
arising in applications and in the typical benchmark problems.

As mentioned before, the ADI-minimax strategy described in the examples requires
full knowledge of the spectrum of H, while the greedy strategy needs all the eigenvec-
tors as well. Both of these are prohibitive for practical purposes. To remedy this issue,
one could deploy various heuristics, such as using Ritz values as approximations to
the eigenvalues for the ADI-minimax ordering. On the other hand, computing the Y
components of the Ritz vectors for the greedy strategy is more expensive and appears
to be less reliable.

Similar techniques are also necessary in other methods for solving the large-scale
matrix equations. For example, optimal shifts in ADI-methods are solutions to mini-
max problems similar to (6), which then have to be solved only approximately in order
to be feasible.

4 Relations with the Krylov projection methods and the
qADI

In the previous section we have discussed on how to compute the approximation to the
solution of the Riccati equation once a certain number of eigenpairs for the Hamiltonian

18



matrix H is available, and on the problem of selecting the proper eigenpairs for such
a task. However, an interesting interconnection with the already existing methods
for the Riccati equation arises when we start taking into consideration the process of
computing the eigenpairs itself.

There are several methods available for the partial eigenvalue problem of a large-
scale Hamiltonian matrix. In particular, symplectic Lanczos methods [3, 4] compute
the exterior eigenvalues and the associated eigenvectors while obeying the Hamiltonian
structure. Preservation of the structure is also a key feature of the SHIRA method
[17], which computes the eigenvalues closest to some given target τ ∈ C. All of these
methods approximate the eigenpairs by building up certain Krylov subspaces generated
by the matrix f(H), where f is a scalar rational function.

4.1 Krylov subspace methods based on (A∗, C∗)

On the other hand, the common projection methods for the Riccati equation also use
Krylov spaces; however, those methods involve the matrix A∗. Indeed, the literature
describes methods using the ordinary Krylov subspaces generated by the matrix A∗

[13], or the extended ones generated by both A∗ and A−∗ [22, 11], or the rational Krylov
subspaces generated with A∗ [8, 23]. These methods are summarized in Algorithm 2;
we use the following notation for the k-dimensional Krylov subspace generated by some
matrix M and an initial (block-)vector v:

Kk(M,v) = span{v,Mv,M2v, . . . ,Mk−1v},

and the rational Krylov subspace that uses shifts ~σ = (σ1, . . . , σk−1) ∈ Ck−1:

K(M, v, ~σ) = span{v, (M − σ1I)−1v, (M − σ2I)−1v, . . . , (M − σk−1I)−1v}.

Algorithm 2: Krylov projection methods for the Riccati equation

Input: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n
Output: Approximation to the solution of A∗P + PA+ C∗C − PBB∗P = 0

1 Build an orthonormal basis U for one of:
• ordinary Krylov subspace Kk(A∗, C∗);
• extended Krylov subspace K`(A∗, C∗) +Kk−`(A−∗, C∗); [KPIK]
• rational Krylov subspace K(A∗, C∗,−~σ); [RKSM]

2 Solve the projected Riccati equation:
(U∗AU)∗∆ + ∆(U∗AU) + (CU)∗(CU)−∆(U∗B)(U∗B)∗∆ = 0;

3 Approximate P kry
k = U∆U∗;

All variants of the algorithm were first applied to the Lyapunov equation, for which
a well-developed theoretical background exists on why precisely the aforementioned
subspaces provide a good approximation. Only later was it observed that by simply
replacing the projected Lyapunov equation with the projected Riccati equation, one
obtains a good approximation for the solution of (1) as well, while keeping the same
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projection subspace as in the Lyapunov case. The following theorem gives a new
perspective on why that is the case.

Theorem 8. For any F ∈ Cn×p, the following equalities hold:

(a) Y(Kk(H,
[
F
C∗
]
)) = Kk(A∗, C∗).

(b) Y(Kk(H−1,
[
F
C∗
]
)) = Kk(A−∗, C∗).

(c) Suppose that A is stable and ~σ ∈ Ck−1− . If none of σ1, . . . , σk−1 is an eigenvalue
of H, then

Y(K(H,
[
F
C∗
]
, ~σ)) ⊆ K(A∗, C∗,−~σ),

with the equality holding when none of the shifts is an eigenvalue of A and F = 0.
If σj is an eigenvalue of H, then K(A∗, C∗,−~σ) contains the Y component of the
associated eigenvector.

Proof.

(a) It suffices to show Y(Hj
[
F
C∗
]
) ∈ Kj+1(A∗, C∗) and (A∗)jC∗ ∈ Y(Kj+1(H,

[
F
C∗
]
)),

for all j = 0, . . . , k− 1, which we prove by induction. For j = 0, both claims are
obvious; suppose they hold true for some j = `. Then there exist Zj ,Wj ∈ Cp×p
and F̃ ∈ Cn×p such that

H`
[
F
C∗

]
=

[
F̃∑`

j=0(A∗)jC∗Zj

]
,

(A∗)`C∗ = Y(
∑̀
j=0

Hj
[
F
C∗

]
Wj).

Therefore,

H`+1

[
F
C∗

]
=

[
F̂

C∗CF̃ −
∑`
j=0(A∗)j+1C∗Zj

]
=

[
F̂∑`+1

j=0(A∗)jC∗Z̃j

]
,

for some F̂ ∈ Cn×p, and with Z̃0 = CF̃ and Z̃j+1 = −Zj for j = 0, . . . , `. Thus,
Y(H`+1

[
F
C∗
]
) ∈ K`+1(A∗, C∗).

Similarly,

H
∑̀
j=0

Hj
[
F
C∗

]
Wj =

[
F́

C∗CF̆ − (A∗)`+1C∗

]
,

for some F́ , F̆ ∈ Cn×p. Therefore, we have that

(A∗)`+1 = Y(
∑̀
j=0

Hj
[
F
C∗
]
W̃j)

with W̃0 = CF̆ and W̃j+1 = −Wj for j = 0, . . . , `, and (A∗)`+1 ∈ Y(K`+1(H,
[
F
C∗
]
).
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(b) The proof uses the same techniques as (a) and (c), so we skip it for the sake of
brevity.

(c) Assume that σj is not an eigenvalue of H, and let (H − σjI)−1
[
F
C∗
]

=: [XY ].
Then

(H− σjI)

[
X
Y

]
=

[
F
C∗

]
, (22)

and the Y component is

C∗CX + (−A∗ − σjI)Y = C∗. (23)

Since A is stable and σj ∈ C−, the matrix A∗+σjI is non-singular, and we have

Y = (A∗ + σjI)−1C∗ · (CX − Ip),

where Ip is the identity matrix of order p. Thus Y(K(H,
[
F
C∗
]
, ~σ)) ⊆ K(A∗, C∗,−~σ).

To show the reverse inclusion, we first prove that CX−Ip is non-singular. Assume
the opposite, i.e. that there exists some z ∈ Cp, z 6= 0 such that CXz = z.
Postmultiplying (23) with z, we have (A∗ + σjI)Y z = 0. Again, since A∗ + σjI
is non-singular, it follows that Y z = 0, and postmultiplying (22) with z yields
(A − σjI)Xz = 0. Here we have assumed that F = 0. With the additional
assumption that σj is not in the spectrum of A, it holds that Xz = 0 as well2.
Thus the matrix [XY ] is not of full-column rank, which contradicts C∗ being of
full column rank. Therefore, CX − Ip is non-singular, and

(A∗ + σjI)−1C∗ = Y (CX − Ip)−1 = Y((H− σjI)−1
[
F
C∗

]
· (CX − Ip)−1).

This completes the proof of Y(K(H,
[
F
C∗
]
, ~σ)) ⊇ K(A∗, C∗,−~σ).

Finally, assume that σj is an eigenvalue of H. Then[
A− σjI BB∗

C∗C −A∗ − σjI

] [
x
y

]
= 0

for the eigenvector [ xy ]. Rearranging the Y component yields

y = (A∗ + σjI)−1C∗ · Cx ∈ K(A∗, C∗,−~σ).

From the theorem, one can conclude the following: consider the process of computing
an invariant subspace of the Hamiltonian matrix H via any of the Krylov subspaces,
with the purpose of solving the Riccati equation. As the computation progresses, there
are better and better approximations of the Hamiltonian eigenvectors in the subspace.

2Note that when σj is an eigenvalue of A, it can happen that Y is not of full column rank. In such

a case, Y(K(H,
[

F
C∗

]
, ~σ)) is a strict subspace of K(A∗, C∗,−~σ).
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In particular, using the Y components of these eigenvectors, one can eventually build
a good approximate Riccati solution such as P proj

k or P dir
k .

On the other hand, consider the associated Krylov process generated by the matrix
A∗ instead of H. Theorem 8 states that the subspaces obtained with A∗ are the
same as the Y components of the Hamiltonian Krylov subspaces. Therefore, they also
contain better and better approximations to the Y components of the Hamiltonian
eigenvectors, which approximately span the range of the Riccati solution.

In fact, we have the following connection between the rational Krylov method and
the Hamiltonian eigenspace approximations.

Corollary 9. Suppose that the matrix C∗ has one column, and that the shifts used
in the RKSM variant of Algorithm 2 are equal to some k stable eigenvalues of the
Hamiltonian matrix H. Then P kry

k = P proj
k , where P proj

k is computed by Algorithm 1 in
which the invariant subspace is associated to the same eigenvalues. Here we assume a
slightly modified definition of the rational Krylov subspace for a k-tuple ~σ:

K̃(M, v, ~σ) = span{(M − σ1I)−1v, (M − σ2I)−1v, . . . , (M − σkI)−1v}.

Moreover, suppose that we extend Algorithm 1 so that
[
Xk

Yk

]
spans a Hamiltonian

Krylov subspace with the initial vector
[

0
C∗
]

instead of an exact invariant subspace.

Then P proj
k = P kry

k , where P kry
k is computed by Algorithm 2 with the same type of Krylov

subspace.

To summarize, success of the projection methods that use Krylov subspaces gener-
ated by A∗ may be explained by the fact that they contain good approximations for
Y components of the eigenvectors of H.

This relation between rational Krylov subspaces generated by H and those gener-
ated by A∗ also motivates an alternative shift selection procedure for RKSM, as the
following example demonstrates.

Example 10. Shift selection in the rational Krylov subspace method for the Lyapunov
and the Riccati equation, as well as in the ADI methods, is a very important part of the
algorithm, and can have a great influence on the convergence rate. Several heuristic
procedures exist for choosing the shifts, in particular,

• Penzl shifts [20] are chosen among the Ritz values of the matrix A∗, computed
from low-dimensional Krylov subspaces generated by A∗ and/or A−∗. More pre-
cisely, if θ1, . . . , θ` are the available Ritz values, then the shifts σ1, σ2, . . . are
computed sequentially as the approximate solutions of the ADI-minimax prob-
lem:

σj+1 = arg max
σ∈{θ1,...,θ`}

j∏
i=1

|σ − σi|
|σ + σi|

.

• Adaptive shifts [9] σ1, σ2, . . . are defined as

σj+1 = arg max
σ∈δSj

j∏
i=1

|σ − σi|
|σ + θi|

.
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Figure 4: Convergence of the rational Krylov subspace method for the Riccati equation
may be faster when shifts are computed using the Hamiltonian matrix H
instead of A∗.

Here, the θi approximate the eigenvalues of A∗, and are computed as the Ritz
values from the current rational Krylov subspace, and Sj is the convex hull of the
set {θ1, . . . , θj , σ1, σ2, σ3, σ4}. Estimates for the smallest and the largest eigen-
value of A∗ in the absolute value, together with their complex conjugates, are
taken as the first four shifts.

These procedures are applied for both the Lyapunov and the Riccati equation. However,
as we have seen, choosing the shifts so that they approximate the stable eigenvalues of
H instead of the eigenvalues of A∗ should be better suited for the Riccati equation. We
therefore also consider two alternatives: Penzl and adaptive shifts that use Ritz values
and Krylov subspaces generated by the matrix H.

This is indeed a better choice in certain cases: suppose that the matrix A ∈ R3375×3375

is obtained by the semi-discretization of

∂u

∂t
= ∆u

on the unit cube, and that the entries of the matrices B = C∗ ∈ R3375×5 are chosen
at random from [−1, 1], with normal distribution. Figure 4 shows the convergence of
RKSM with all four shift selection procedures. For this Riccati equation, the five left-
most eigenvalues of the Hamiltonian matrix are well separated from all the others, and
are also far away from the eigenvalues of A. None of the shifts generated by using
the matrix A∗ comes anywhere near these eigenvalues. Thus the associated eigenvec-
tors, which contribute significantly to the subspace spanned by the Riccati solution, do
not appear in the rational Krylov subspace. On the other hand, these eigenvectors are
captured already in the early iterations when H is used for shift generation, and that
yields a much faster convergence. The KPIK method can be understood as a rational
Krylov method with shifts 0 and −∞, and thus it is also able to retrieve the leftmost
eigenvectors of H in the subspace relatively fast.
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4.2 Hamiltonian eigenspaces and the qADI algorithm

Another method for solving the Riccati equation was introduced by Wong and Balakr-
ishnan [29]. This method, named qADI, is an adaptation of the Lyapunov-ADI method
and, unlike the standard Newton-ADI algorithms, it avoids the need to perform the
outer Newton steps.

The qADI iterates are defined by the initial approximation P adi
0 = 0 and the following

recurrence:

P adi
k+1/2(A+ σk+1I −GP adi

k ) = −Q− (A∗ − σk+1I)P adi
k ,

(A∗ + σk+1I − P adi
k+1/2G)P adi

k+1 = −Q− P adi
k+1/2(A− σk+1I).

Here the shifts (σk)k ⊆ C are free parameters which one choses with the goal of
accelerating the convergence of the method, similarly as in the Lyapunov-ADI. Our
final result shows that the qADI produces exactly the same sequence of approximations
as the Hamiltonian subspace approach, if the matrix C∗ has one column and the shifts
are equal to the eigenvalues of H.

Theorem 11. Suppose that Q = C∗C, where C ∈ C1×n. Consider the sequence
of approximations (P dir

k )k such that P dir
0 = 0 and P dir

k is obtained by computing the
Hamiltonian invariant subspaces associated with eigenvalues λ1, λ2, . . . , λk, and the
qADI iteration with the shifts equal to these eigenvalues:

P adi
k+1/2(A+ λk+1I −GP adi

k ) = −Q− (A∗ − λk+1I)P adi
k , (24)

(A∗ + λk+1I − P adi
k+1/2G)P adi

k+1 = −Q− P adi
k+1/2(A− λk+1I). (25)

If the matrices A+ λk+1I −GP adi
k and A∗ + λk+1I − P adi

k+1/2G are invertible for all k,

then P adi
k = P dir

k .

Proof. We show the claim using induction. When k = 0, the claim is trivial. Assume
that P dir

k = P adi
k for some k ≥ 0. It suffices to prove that P dir

k+1 satisfies equation (25).

Using notation of Theorem 5 and (20), we have that P dir
k+1 = P dir

k + ∆, with ∆ = P̃ dir
1 .

Thus (25) is equivalent to:

(A∗ + λk+1I − P adi
k+1/2G)(P dir

k + ∆) = −Q− P adi
k+1/2(A− λk+1I),

which we rewrite as

(A∗ + λk+1I)P dir
k + (Ã∗ + λk+1I)∆ + (P adi

k − P adi
k+1/2)G∆

= −Q− P adi
k+1/2(Ã− λk+1I).

(26)

Recall that Ã = A − GP dir
k = A − GP adi

k . We replace each of the three terms on the
left hand side after making the following observations:

1. By (17), and setting Q̃ = C̃∗C̃, we have

(A∗ + λk+1I)P dir
k = −P dir

k (Ã− λk+1I)−Q+ Q̃. (27)
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2. Note that ∆ = −ỹ(ỹ∗x̃)−1ỹ∗ for the eigenvector
[
x̃
ỹ

]
of H̃ associated with its

eigenvalue λk+1:

[
Ã− λk+1I G

Q̃ −Ã∗ − λk+1I

] [
x̃
ỹ

]
= 0. Thus

(Ã∗ + λk+1I)∆ = −(Ã∗ + λk+1I)ỹ(ỹ∗x̃)−1ỹ∗ = −Q̃x̃(ỹ∗x̃)−1ỹ∗

= −Q̃P,
(28)

and

G∆ = −Gỹ(ỹ∗x̃)−1ỹ∗ = (Ã− λk+1I)x̃(ỹ∗x̃)−1ỹ∗ = (Ã− λk+1I)P. (29)

Here P = x̃(ỹ∗x̃)−1ỹ∗ denotes the skew projector.

After inserting (27), (28), (29) into (26), we need to show that

−P dir
k (Ã− λk+1I)−Q+ Q̃− Q̃P + (P adi

k − P adi
k+1/2)(Ã− λk+1I)P

= −Q− P adi
k+1/2(Ã− λk+1I),

which, by using P adi
k = P dir

k , and assuming that Ã + λk+1I is nonsingular, can be
factored as (

(P adi
k+1/2 − P

adi
k )(Ã− λk+1I) (Ã+ λk+1I) + Q̃(Ã+ λk+1I)

)
· (Ã+ λk+1I)−1(I − P) = 0.

The expression in the first parentheses can be simplified:

(P adi
k+1/2 − P

adi
k )(Ã− λk+1I)(Ã+ λk+1I) + Q̃(Ã+ λk+1I)

= (P adi
k+1/2(Ã+ λk+1I)− P adi

k (Ã+ λk+1I))(Ã− λk+1I) + Q̃(Ã+ λk+1I)

= (−Q− (A∗ − λk+1I)P adi
k − P adi

k (Ã+ λk+1I))(Ã− λk+1I) + Q̃(Ã+ λk+1I)

= −Q̃(Ã− λk+1I) + Q̃(Ã+ λk+1I)

= 2 Re (λk+1) Q̃.

For the second equality we have used the defining relation (24) for P adi
k+1/2. From the

discussion so far, we conclude that the initial claim P dir
k+1 = P adi

k+1 is equivalent to

2 Re (λk+1) · Q̃ · (Ã+ λk+1I)−1(I − P) = 0. (30)

The matrix Q̃ = C̃∗C̃ is of rank 1, and thus the n × n matrix on the left-hand side
of (30) is also of rank 1. To show that some matrix Z is equal to zero, it suffices
to show z∗Z = 0 for all vectors z. Note that z∗Q̃ = 0 trivially holds for all vectors
z ⊥ C̃∗, and the set of these vectors spans an (n − 1)-dimensional subspace in Cn.
Thus it suffices to show that z∗ · 2 Re (λk+1) · Q̃ · (Ã+λk+1I)−1(I −P) = 0 for a single
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vector z for which z∗Q̃ 6= 0. We can take z = x̃: since (Ã+ λk+1I)∗ỹ = Q̃x̃, we have
ỹ∗ = x̃∗Q̃(Ã+ λk+1I)−1, and thus

x̃∗ · 2 Re (λk+1) · Q̃ · (Ã+ λk+1I)−1(I − P) = ỹ∗(I − P)

= ỹ∗(I − x̃(ỹ∗x̃)−1ỹ∗) = 0.

Note that x̃∗Q̃ = 0 would imply that either Ã + λk+1I is singular (which contradicts
the assumption of the theorem), or that ỹ = 0 (for which the sequence (P dir

k )k is not
well defined).

5 Conclusion

In this paper, we discussed a method for solving the large-scale Riccati equation that
is based on computing a low-dimensional invariant subspace of a Hamiltonian matrix.
The theoretical potential of this method is promising and backed up by the results on
the singular value decay of the Riccati solution, but there is a couple of issues that
can render it impractical.

On one hand, there is the problematics of selecting which eigenpairs to compute,
which is very similar to shift selection in the ADI and the rational Krylov methods,
and which may be resolved in a similar way by various heuristics (such as targeting the
eigenvalues of H that are closest to Penzl or adaptive shifts). On the other hand, the
requirement for computing an invariant subspace is more rigid compared to the other
methods which can approximate the Riccati solution using arbitrary subspaces. We
can relax this requirement, and consider the subspaces obtained by Krylov processes
generated with H. As we have seen, the Y components of these coincide with Krylov
subspaces generated with A∗, and the latter are computed more efficiently since the
matrix involved is half the size of H.

The interconnection between the two Krylov processes also offers an explanation for
the success of methods such as RKSM and KPIK, since they can be interpreted as
methods that tend to incorporate better and better approximations to Y components
of the eigenvectors of H. This fact has motivated us to use Ritz values of H instead
of A∗ in order to generate shifts for the RKSM. As shift generation with H using
the symplectic Lanczos process is relatively cheap, this combination with the rational
Krylov subspace method for (A∗, C∗) seems to be preferable over Krylov subspace
methods using H for solving large-scale AREs.

Moreover, we could also show that the qADI iteration for AREs can be interpreted
as a rational Krylov subspace method. This observation may lead to improvements in
the qADI method which are currently being investigated.
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