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Abstract

We consider a controlled second order stochastic partial di�erential equation (SPDE) with
Levy noise. To solve this system numerically, we apply a Galerkin scheme leading to a sequence
of ordinary SDEs of large order. To reduce the high dimension we use balanced truncation.

1 Introduction

We introduce a controlled second order SPDE driven by Levy processes equipped with an output
equation and transform it into a �rst order system. Regarding this transformation we follow Cur-
tain [3] who deals with a similar SPDE but uncontrolled and with Wiener noise. For numerical
purposes it is meaningful to do a �nite dimensional approximation of the �rst order system we
obtain at the end of Section 2. Therefore, we construct a sequence of �nite dimensional pro-
cesses using a Galerkin method in Section 3. The Galerkin scheme is for example also studied
in Grecksch, Kloeden [5], Jentzen, Kloeden [7] and Hausenblas [6], where it is applied to other
particular problems. Furthermore, we show the convergence of the �nite dimensional sequence to
the mild solution of the �rst order system. Finally, in Section 3 we provide an example which
is covered by the second order system from the beginning and determine the coe�cients of the
corresponding Galerkin solution. Since the resulting Galerkin solution is of high dimension it is
meaningful to treat it with model order reduction to save computational time. For that reason we
introduce balanced truncation in Section 4 which Moore [8] considered �rst for linear deterministic
systems. In addition, the book of Antoulas [1] summarizes all results concerning this method in
the deterministic case. Benner, Damm [2] and Redmann, Benner [11] generalized this approach
for linear systems with Wiener and Levy noise, respectively. We apply their results to the high
order Galerkin equation of the example stated here. We compute an error bound and the exact
error of balanced truncation to show the quality of this method and compare the output of the
Galerkin system with the output of the reduced order model in a plot.

2 Second order systems

Let M1 and M2 be uncorrelated scalar square integrable Levy processes with zero mean being
de�ned on a complete probability space (Ω,F , (Ft)t≥0,P).1 In addition, we assume Mk (k = 1, 2)
to be (Ft)t≥0-adapted and the increments Mk(t+h)−Mk(t) to be independent of Ft for t, h ≥ 0.

Suppose Ã : D(Ã)→ H is a self adjoint and positive de�nite operator such that we can choose an

orthonormal basis
(
h̃k

)
k∈N

of the separable Hilbert space H consisting of eigenvectors of Ã:

Ãh̃k = λkh̃k,

where 0 < λ1 ≤ λ2 ≤ . . . are the corresponding eigenvalues. The well de�ned square root of Ã we

denote by Ã
1
2 . D(Ã

1
2 ) equipped with the scalar product 〈x, y〉

D(Ã
1
2 )

=
〈
Ã

1
2x, Ã

1
2 y
〉
H

represents

a Hilbert space. In this case, the norm ‖·‖
D(Ã

1
2 )

is equivalent to the graph norm of Ã
1
2 .

The equation we consider next is also studied by Curtain in [3] forM1,M2 being Wiener processes
and u ≡ 0. There the stability is analyzed for example. The system we focus on is the following
(symbolic) second order stochastic di�erential equation:

Ẍ(t) + αẊ(t) + ÃX(t) + B̃u(t) + D̃1X(t−)Ṁ1(t) + D̃2Ẋ(t−)Ṁ2(t) = 0 (1)

with initial conditions X(0) = x0, Ẋ(0) = x1 and output equation

Y (t) = C
(
X(t)

Ẋ(t)

)
, t ≥ 0.

1We assume that (Ft)t≥0 is right continuous and that F0 contains all P null sets.
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Above, we make the following assumptions:

• The constant α is positive, D̃1 ∈ L(D(Ã
1
2 ), H) and D̃2 ∈ L(H).

• The process u : R+ × Ω→ Rm is (Ft)t≥0-adapted with

‖u‖2L2
T

:=

∫ T

0

E ‖u(s)‖2Rm ds <∞

for every T > 0.

• B̃ is a linear and bounded operator on Rm with values in H and C ∈ L(D(Ã
1
2 )×H,Rp).

We introduce the Hilbert space H = D(Ã
1
2 )×H equipped with the scalar product〈(

Z̃1

Z̃2

)
,
(
Z̄1

Z̄2

)〉
H

=
〈
Ã

1
2 Z̃1, Ã

1
2 Z̄1

〉
H

+
〈
Z̃2, Z̄2

〉
H
.

An orthonormal basis of H is given by (hk)k∈N de�ned by

h2i−1 = λ
− 1

2
i

(
h̃i
0

)
and h2i =

(
0

h̃i

)
for i ∈ N. The second order equation (1) can be expressed by the following �rst order system:

dZ(t) = AZ(t) +Bu(t)dt+D1Z(t−)dM1(t) +D2Z(t−)dM2(t), (2)

Y (t) = CZ(t), t ≥ 0, Z(0) = z0 = ( x0
x1

) ,

where

Z(t) =
(
X(t)

Ẋ(t)

)
, A =

[
0 I
−Ã −αI

]
, B =

[
0
B̃

]
, D1 =

[
0 0
D̃1 0

]
and D2 =

[
0 0
0 D̃2

]
.

Regarding this transformation we follow [3], where it is used as well. The next lemma from [10]
provides a stability result and is also needed to de�ne a cadlag mild solution of (2).

Lemma 2.1. For every α > 0 the linear operator A with domain D(Ã) × D(Ã
1
2 ) generates an

exponential stable contraction semigroup (S(t))t≥0 with

‖S(t)‖L(H) ≤ e−ct,

where

c ≥ 2αλ1

4λ1 + α(α+
√
α2 + 4λ1)

.

The following de�nition is meaningful due to Theorem 9.29 in [9]. There it is stated that the mild
solution of (2) has the cadlag property if (S(t))t≥0 is a contraction semigroup.

De�nition 2.2. An (Ft)t≥0-adapted cadlag process (Z(t))t≥0 with values in H is called mild
solution of (2) if P-almost surely

Z(t) = S(t)z0 +

∫ t

0

S(t− s)Bu(s)ds+

2∑
i=1

∫ t

0

S(t− s)DiZ(s−)dMi(s)

holds for all t ≥ 0.
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3 Galerkin approximation

We approximate the mild solution of the in�nite dimensional equation (2) by a sequence (Zn)n∈N
of �nite dimensional processes with values in Hn = span {h1, . . . , hn} given by

dZn(t) = [AnZn(t) +Bnu(t)] dt+D1,nZn(t−)dM1(t) +D2,nZn(t−)dM2(t), (3)

Zn(0) = z0,n, t ≥ 0,

where

• Anx =
∑n
k=1 〈Ax, hk〉H hk ∈ Hn holds for all x ∈ D(A),

• Bnx =
∑n
k=1 〈Bx, hk〉H hk ∈ Hn holds for all x ∈ Rm,

• Di,nx =
∑n
k=1 〈Dix, hk〉H hk ∈ Hn holds for all x ∈ H (i = 1, 2),

• z0,n =
∑n
k=1 〈z0, hk〉H hk is an Hn-valued and F0-measurable random variable.

We know that An generates a C0 semigroup (Sn(t))t≥0 on Hn, which is de�ned by Sn(t)x =∑n
k=1 〈S(t)x, hk〉H hk for all x ∈ H, such that the mild solution of equation (3) is given by

Xn(t) = Sn(t)z0,n +

∫ t

0

Sn(t− s)Bnu(s)ds+

2∑
i=1

∫ t

0

Sn(t− s)Di,nZn(s−)dMi(s)

for t ≥ 0. Since every An also generates the C0 semigroup eAnt, t ≥ 0, we know that Sn(t) = eAnt

on Hn. Furthermore, we consider the p-dimensional approximating output

Yn(t) = CZn(t), t ≥ 0.

We now show that

E ‖Zn(t)− Z(t)‖2H → 0 and hence E ‖Yn(t)− Y (t)‖2Rp → 0

for n→∞ and t ≥ 0.

Theorem 3.1. It holds

E ‖Zn(t)− Z(t)‖2H → 0

for n→∞ and t ≥ 0.

Proof.

E ‖Z(t)− Zn(t)‖2H ≤4E ‖S(t)z0 − Sn(t)z0,n‖2H

+ 4E
∥∥∥∥∫ t

0

(S(t− s)B − Sn(t− s)Bn)u(s)ds

∥∥∥∥2

H

+ 4E
∥∥∥∥∫ t

0

S(t− s)D1Z(s−)− Sn(t− s)D1,nZn(s−)dM1(s)

∥∥∥∥2

H

+ 4E
∥∥∥∥∫ t

0

S(t− s)D2Z(s−)− Sn(t− s)D2,nZn(s−)dM2(s)

∥∥∥∥2

H
.

Since (S(t))t≥0 is a contraction semigroup, we obtain

4E ‖S(t)z0 − Sn(t)z0,n‖2H ≤ 8E ‖S(t)z0 − S(t)z0,n‖2H + 8E ‖S(t)z0,n − Sn(t)z0,n‖2H
≤ 8E ‖z0 − z0,n‖2H + 8E ‖S(t)z0,n − Sn(t)z0,n‖2H . (4)
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By the representation Sn(t)zn =
∑n
i=1 〈S(t)zn, hi〉H hi (zn ∈ Hn) and Lebesgue's theorem, (4)

tends to zero for n→∞. The Hölder inequality yields

E
∥∥∥∥∫ t

0

(S(t− s)B − Sn(t− s)Bn)u(s)ds

∥∥∥∥2

H
≤ tE

∫ t

0

‖(S(t− s)B − Sn(t− s)Bn)u(s)‖2H ds.

We obtain

‖S(t− s)Bu(s)− Sn(t− s)Bnu(s)‖2H
≤ 2 ‖S(t− s)Bu(s)− S(t− s)Bnu(s)‖2H + 2 ‖S(t− s)Bnu(s)− Sn(t− s)Bnu(s)‖2H
≤ 2 ‖Bu(s)−Bnu(s)‖2H + 2 ‖S(t− s)Bnu(s)− Sn(t− s)Bnu(s)‖2H → 0

P- almost surely for n→∞ and

8tE
∫ t

0

‖Bu(s)−Bnu(s)‖2H + ‖S(t− s)Bnu(s)− Sn(t− s)Bnu(s)‖2H ds→ 0 (5)

for n→∞ by Lebesgue's theorem. Applying the Ito isometry from Corollary 8.17 in [9], we have

4E
∥∥∥∥∫ t

0

S(t− s)DiZ(s−)− Sn(t− s)Di,nZn(s−)dMi(s)

∥∥∥∥2

H

= 4

∫ t

0

E ‖S(t− s)DiZ(s−)− Sn(t− s)Di,nZn(s−)‖2H ds E[M2
i (1)]

≤ 8E
[∫ t

0

‖DiZ(s)−Di,nZ(s)‖2H ds
]
E[M2

i (1)] (6)

+ 8E
[∫ t

0

‖S(t− s)Di,nZ(s)− Sn(t− s)Di,nZn(s)‖2H ds
]
E[M2

i (1)].

The term (6) converges to zero for n→∞ by Lebesgue's theorem. Moreover, it holds

8E
[∫ t

0

‖S(t− s)Di,nZ(s)− Sn(t− s)Di,nZn(s)‖2H ds
]
E[M2

i (1)]

≤ 16E
[∫ t

0

‖S(t− s)Di,nZ(s)− Sn(t− s)Di,nZ(s)‖2H ds
]
E[M2

i (1)] (7)

+ 16E
[∫ t

0

‖Sn(t− s)Di,nZ(s)− Sn(t− s)Di,nZn(s)‖2H ds
]
E[M2

i (1)].

Again, by Lebesgue's theorem the term (7) tends to zero for n→∞ and

16E
[∫ t

0

‖Sn(t− s)Di,nZ(s)− Sn(t− s)Di,nZn(s)‖2H ds
]
E[M2

i (1)]

≤ 16 ‖Di‖2L(H) E
[∫ t

0

‖Z(s)− Zn(s)‖2H ds
]
E[M2

i (1)].

Summarizing everything we obtain

E ‖Z(t)− Zn(t)‖2H ≤ fn(t) + k1

∫ t

0

E ‖Z(s)− Zn(s)‖2H ds,

where k1 := 16 ‖Di‖2L(H) E[M2
i (1)] and fn is a sequence of functions consisting of the terms (4),
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(5), (6) and (7). Hence,

E ‖Z(t)− Zn(t)‖2H ≤ fn(t) + k1

∫ t

0

fn(s) ek1(t−s) ds (8)

by Gronwall's inequality. The �rst term of the right hand side of inequality (8) converges to zero
since fn(t) converges to zero for n→∞. In addition, fn is bounded by the increasing function f̃
de�ned by

f̃(t) := k2

(
E ‖z0‖2H + t

∫ t

0

E ‖u(s)‖2Rm ds+

∫ t

0

E ‖Z(s)‖2H ds
)

with a suitable constant k2 > 0. So, fn(s) ≤ f̃(t) for all 0 ≤ s ≤ t and every n ∈ N. Hence, the
second term of the right hand side of inequality (8) converges to zero by Lebesgue's theorem.

Moreover, notice that mild and strong solution of equation (3) are equivalent. This fact we use
below but �rst we determine the components of Yn. They are given by

Y `n(t) = 〈Yn(t), e`〉Rp = 〈CZn(t), e`〉Rp =

n∑
k=1

〈Chk, e`〉Rp 〈Zn(t), hk〉H

for ` = 1, . . . , p, where e` is the `th unit vector in Rp. We set

Z(t) = (〈Zn(t), h1〉H , . . . , 〈Zn(t), hn〉H)
T
and C = (〈Chk, e`〉Rp) `=1,...,p

k=1,...,n

and obtain

Yn(t) = CZ(t), t ≥ 0. (9)

The components Zk(t) := 〈Zn(t), hk〉H of Z(t) ful�ll the following:

dZk(t) = [〈AnZn(t), hk〉H + 〈Bnu(t), hk〉H] dt+

2∑
i=1

〈Di,nZn(t−), hk〉H dMi(t).

By using the Fourier series representation of Zn, we obtain

dZk(t) =

 n∑
j=1

〈Anhj , hk〉HZj +

m∑
j=1

〈Bnej , hk〉H 〈u(t), ej〉Rm

 dt
+

2∑
i=1

n∑
j=1

〈Di,nhj , hk〉HZj(t−)dMi(t)

=

 n∑
j=1

〈Ahj , hk〉HZj(t) +

m∑
j=1

〈Bej , hk〉H 〈u(t), ej〉Rm

 dt
+

2∑
i=1

n∑
j=1

〈Dihj , hk〉HZj(t−)dMi(t),

where ej is the jth unit vector in Rm. Hence, in compact form Z is given by

dZ(t) = [AZ(t) + Bu(t)] dt+

2∑
i=1

DiZ(s−)dMi(s), (10)
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where

• A =
(
〈Ahj , hk〉H

)
k,j=1,...,n

= diag(E1, . . . , En
2

) with E` =
(

0
√
λ`

−
√
λ` −α

)
(` = 1, . . . , n2 ),

• B =
(
〈Bej , hk〉H

)
k=1,...,n
j=1,...,m

and Di =
(
〈Dihj , hk〉H

)
k,j=1,...,n

.

Below, we present an example for system (1).

Example 1. Lateral displacement of an electricity cable impacted by wind can be modeled by

∂2

∂t2
X(t, ζ) + α

∂

∂t
X(t, ζ) + e−(ζ−π2 )2 u(t) + 2 e−(ζ−π2 )2 X(t−, ζ)

∂

∂t
M1(t) =

∂2

∂ζ2
X(t, ζ)

for t ∈ [0, T ] and ζ ∈ [0, π]. Here, we have

• Ã = − ∂2

∂ζ2 , the operator B̃ is represented by the function e−(·−π2 )2 ,

• D̃2 = 0, D̃1 is characterized by 2 e−(·−π2 )2 and

• H = L2([0, π]), D(Ã
1
2 ) = H1

0 ([0, π]), m = 1.

The boundary and initial conditions are

X(0, t) = 0 = X(π, t) and X(0, ζ),
∂

∂t
X(t, ζ)

∣∣∣∣
t=0

≡ 0.

The output is an approximation for the position of the middle of the string

Y (t) =
1

2ε

∫ π
2 +ε

π
2−ε

X(t, ζ)dζ,

where ε > 0. Here, we set C = Ĉ
[
I 0

]
with Ĉx = 1

2ε

∫ π
2 +ε
π
2−ε

x(ζ)dζ (x ∈ D(Ã
1
2 )), such that p = 1.

Next, we study the Galerkin solution of Example 1. The orthonormal basis of eigenvectors of

− ∂2

∂ζ2 for H is given by h̃k =
√

2
π sin(k·) and the corresponding eigenvalues are λk = k2 for k ∈ N.

Hence, the matrices of the Galerkin system (10) are

• A = diag
(
E1, . . . , En

2

)
with E` =

(
0 `
−` −α

)
,

• B = (〈B, hk〉H)
k=1,...,n

with

〈B, h2`−1〉H = 0, 〈B, h2`〉H =

√
2

π

〈
e−(·−π2 )2 , sin(`·)

〉
H
,

• D2 = 0 and D1 =
(
〈D1hj , hk〉H

)
k,j=1,...,n

= (dkj)k,j=1,...,n with

d(2`−1)j = 0, d(2`)j =

{
0, if j = 2v,
4
πv

〈
sin(`·), e−(·−π2 )2 sin(v·)

〉
H
, if j = 2v − 1,

for j = 1, . . . , n and v = 1, . . . , n2 ,

• the output matrix C in (9) is given by CT = (Chk)k=1,...,n with

Ch2` = 0 and Ch2`−1 =
1√

2π`2

[
cos
(
`
(π

2
− ε
))
− cos

(
`
(π

2
+ ε
))]

,

where we assume n to be even and ` = 1, . . . , n2 .
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4 Balanced truncation and numerical results

Balanced truncation is a model order reduction technique which was �rst introduced for deter-
ministic linear systems, see [1] and [8]. This scheme was generalized in [2] and [11], where linear
systems with Wiener and Levy noise, respectively are considered. Below we use the results from
[11] and apply balanced truncation to the Galerkin solution of Example 1. This model order
reduction method only works for systems (10) being mean square asymptotically stable, which
means that

E ‖Z(t)‖2Rn → 0 (11)

for t → ∞ for every initial value if u ≡ 0. Below, we can ensure that property by setting α = 2
and M1(t) = −(N(t) − t) with N being a Poisson process with parameter 1 such that we get
E
[
M2

1 (1)
]

= 1. Then the matrix equation

ATX +XA+DT1 XD1 E
[
M2

1 (1)
]

= −I

has a positive de�nite solutionX > 0, which we check numerically. Due to Theorem 3.6.1 in [4] this
implies condition (11), such that the desired model order reduction technique can be used. The
reduced order model by balanced truncation of state space dimension r � n has the representation

dZ̃(t) = [ARZ̃(t) + BRu(t)]dt+DRZ̃(t−)dM1(t), (12)

Ŷ (t) = CRZ̃(t)

with

AR = WTAV, BR = WTB, DR = WTD1V, CR = CV.

Here, WT are the �rst r rows of T and V are the �rst r columns of T−1, where T is determined
by

T = Σ
1
2KTU−1 (13)

with U coming from the Cholesky decomposition of P = UUT and K is an orthogonal matrix
corresponding to the EVD (SVD respectively) of UTQU = KΣ2KT . The matrices P and Q are
solutions of

ATQ+QA+DT1 QD1 E
[
M2

1 (1)
]

= −CTC,
AP + PAT +D1PDT1 E

[
M2

1 (1)
]

= −BBT .

In the next theorem we state an error bound for the estimation (see [11]).

Theorem 4.1. Let Yn be the output of the Galerkin solution of Example 1 and Ŷ be the output
of the reduced order model (12), then

sup
t∈[0,T ]

E
∥∥∥Ŷ (t)− Yn(t)

∥∥∥
2
≤
(
tr
(
CPCT

)
+ tr

(
CRPRCTR

)
− 2 tr

(
CPGCTR

)) 1
2 ‖u‖L2

T

for every T > 0. PR and PG satisfy the equations

ARPR + PRATR +DRPRDTR E
[
M2

1 (1)
]

= −BRBTR,
APG + PGATR +D1PGDTR E

[
M2

1 (1)
]

= −BBTR.

We �x the dimension of the Galerkin solution to n = 1000 and compute exact errors and error
bounds for di�erent dimensions r of the reduced order model (ROM), where we choose partic-
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ular normalized control functions u1(t) =
√

2
π1[0,π2 ](t) and u2(t) =

√
8
π 1[0,π2 ](t)w(t) (t ∈ [0, π]).

Moreover, w is a Wiener process and E :=
(
tr
(
CPCT

)
+ tr

(
CRPRCTR

)
− 2 tr

(
CPGCTR

)) 1
2 .

Dim. ROM Exact Error (u = u1) Exact Error (u = u2) Bound E
40 1.4484 · 10−6 1.1182 · 10−6 4.0103 · 10−5

20 7.2173 · 10−6 8.5996 · 10−6 1.2695 · 10−4

10 5.1396 · 10−5 3.8038 · 10−5 3.6395 · 10−4

5 5.2740 · 10−4 4.3632 · 10−4 2.3446 · 10−3

3 0.0113 8.6287 · 10−3 0.0380
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0
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Time t
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f
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Figure 1:
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In Figure 1 we plot the output Yn of the Galerkin system with state space dimension n = 1000 and
the output Ŷ of the ROM with state space dimension r = 3, where we choose u ≡ u1. Due to the
input, which can be interpreted as electricity �owing through the cable, the curves are increasing
�rst. Additionally, the cable is randomly hit by wind which is marked by the peaks in this picture.
This e�ect pushes the cable in the opposite direction. After the electricity completely passed the
cable, the graphs decrease to zero due to the stability of the system. It is also obvious that even
after such a large reduction of the dimension the accuracy is quite good. In Figure 2 we increase
the dimension of the reduced order model by one such that it is di�cult to distinguish between
the output of the ROM and the output of the Galerkin system. Hence, one can conclude that the
output of the SPDE in Example 1 can be described by a system of ordinary SDEs of order four.

5 Conclusion

In this paper we dealt with a second order SPDE wit Levy noise and transformed it into a �rst
order system. The corresponding mild solution we approximated with a Galerkin scheme. We
obtained a large scale Galerkin system for a particular example and applied balanced truncation.
Finally, we provided numerical results to show the performance of the model order technique used
here.
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