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Abstract

The solutions of Lyapunov and generalized Lyapunov equations are a key player
in many applications in systems and control theory. Their stable numerical com-
putation, when the full solution is sought, is considered solved since the seminal
work of Bartels and Stewart [1]. A number of variants of their algorithm have
been proposed, but none of them goes beyond BLAS level-2 style implemen-
tation. On modern computers, however, the formulation of BLAS level-3 type
implementations is crucial to enable optimal usage of cache hierarchies and mod-
ern block scheduling methods based on directed acyclic graphs describing the
interdependence of single block computations. In this contribution, we present
the port of our recent BLAS level-3 algorithm [9] to a GPU accelerator device.
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1 Introduction

Lyapunov equations play an important role in systems and control theory. They are,
e.g., a key ingredient in model order reduction, like Balanced Truncation [11], or part of
the Newton Method for the Algebraic Riccati Equation [7]. Nowadays many practical
situations require the solution of the generalized continuous-time Lyapunov equation

ATXE + ETXA = Y, (1)

where A, E, X and Y are real n × n matrices. Furthermore we assume a symmetric
right hand side Y such that the solution X is symmetric [13].

Before we derive a GPU based implementation we discuss some basics about the
solution of generalized Lyapunov equations here. First, one can show that Equation (1)
is uniquely solvable if and only if λi + λj 6= 0 for any two eigenvalues λi and λj of
(A,E) [13, 4]. As a direct consequence, we know that if one of the matrices A or E is
singular the Lyapunov equation is singular as well. The second consideration is that
Equation (1) does not have any structure which is useful in order to develop a forward
or backward substitution scheme. Also, the equivalent Kronecker product formulation
of Equation (1) (

ET ⊗AT +AT ⊗ ET
)

vec(X) = vec(Y ),

where ⊗ denotes the Kronecker product of two matrices and vec(·) the column-wise
concatenation of an n×m matrix to a vector of length nm, does not deliver any fur-
ther information. Like in the original Bartels-Stewart algorithm [1], we have to trans-
form the equation before. Due to the generalized structure of the equation Penzl [13]
proposed to use two orthogonal matrices Q and Z which transform the equation to
generalized Schur form. This can be done for example using the QZ algorithm [10].
Applying these two transformation matrices we get

A = QTAsZ,

E = QTEsZ, (2)
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where As is a (quasi-) upper triangular matrix and Es is an upper triangular matrix.
If we now plug the relation (2) into the Lyapunov equation (1) we end up with

ZTAT
s QXQ

TEsZ + ZTET
s QXQ

TAsZ = Y

AT
s QXQ

T︸ ︷︷ ︸
Xs

Es + ET
s QXQ

T︸ ︷︷ ︸
Xs

As = ZTY Z︸ ︷︷ ︸
Ys

. (3)

On the one hand, this equation is equivalent to the original Equation (1) and the
solution X is restored by

X = QTXsQ. (4)

On the other hand, it has an improved structure which is exploited for the formulation
of a forward or backward substitution scheme.

In the remaining parts of this contribution, we only focus on Lyapunov equation
which have already the structure shown in Equation (3). The acceleration of the
matrix-matrix products necessary to get the solution of the original Lyapunov equa-
tion (1) are trivial using common software libraries like BLAS on the host and CUBLAS
or clBLAS on the device. The only crucial operation is the computation of the trans-
formation matrices Q and Z via the QZ algorithm which we assume done here. A
multi core enabled way to compute them can, e.g., be found in [3, 2].

2 Blocked Variant of the Bartels-Stewart Algorithm

In addition to the (quasi-) upper triangular structure of the Lyapunov equation (3)
we recall Penzl’s extension [13] to the Bartels-Stewart algorithm [1], first. Employing
this, we briefly discuss the key ideas to get a blocked algorithm out of it. The details
of this blocked algorithm can be found in [9].

Regarding the structure of Equation (3), we partition the matrices As, Es, Ys and
Xs into blocks depending on the eigenvalues of (As, Es). If the diagonal entry of As

belongs to a real eigenvalue the corresponding block is of size 1× 1 and if the diagonal
entry of a belongs to a complex conjugate eigenvalue pair the resulting block is of size
2× 2. In this way, we get the following p× p block partitioning of (3):

As =

A11 · · · A1p

. . .
...

0 App

 , Es =

E11 · · · E1p

. . .
...

0 Epp

 ,

Xs =

X11 · · · X1p

...
. . .

...
Xp1 · · · Xpp

 , Ys =

Y11 · · · Y1p
...

. . .
...

Yp1 · · · Ypp

 . (5)

Employing this block structure the solution of the Lyapunov equation (3) now gets
equal to solving Sylvester equations

AT
kkXklEll + ET

kkXklAll = Ŷkl (6)
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Algorithm 1 Forward-Substitution for the generalized Lyapunov equation

Input: (As, Es) and Ys partitioned in PB blocks of size NB , like in (5)
Output: Xs solving the (quasi-) triangular Lyapunov equation (3)
1: Xs := Ys

2: for k = 1, . . . , PB do
3: if k > 1 then
4: Xk,1:k−1 := XT

1:k−1,k {Copy the symmetric part.}
5: end if
6: for l = k, . . . , PB do
7: if l > 1 then
8: Xk:l,l := Xk:l,l −AT

k,k:lXk,1:l−1E1:l−1,l

9: Xk:l,l := Xk:l,l − ET
k,k:lXk,1:l−1A1:l−1,l

10: end if
11: Solve AT

k,kX∗El,l + ET
k,kX∗Al,l = Xk,l

12: Xk,l := X∗
13: if k < l then
14: Xk+1:l,l := Xk+1:l,l −AT

k,k+1:lXk,lEl,l

15: Xk+1:l,l := Xk+1:l,l − ET
k,k+1:lXk,lAl,l

16: end if
17: end for
18: end for

with updated right hand sides Ŷkl:

Ŷkl = Ykl −
k,l∑

i=1,j=1
(i,j)6=(k,l)

(
AT

ikXijEjl + ET
ikXijAjl

)
(7)

for each block Xkl. Due to the fact that we assume to have a symmetric right hand
side Y and respectively Ys, the solution Xs will be symmetric as well. This allows us
to only solve for 1

2p (p+ 1) blocks above or below the diagonal instead of solving for
all p2 blocks. An efficiency improving rearrangement of the right hand side update (7)
is described in [13] and [9]. The remaining Sylvester equations (6) are reformulated to
the corresponding Kronecker-Product representation [13, 15]:(

ET
ll ⊗AT

kk +AT
ll ⊗ ET

kk

)
vec (Xkl) = vec

(
Ŷkl

)
, (8)

which are linear systems of size 1, 2 or 4 depending on All and Akk. If we solve for
the upper triangle of Xs in a row-wise order we end up with Algorithm 1, which uses
a block size of 1 or 2. Because the right hand side Ykl is not longer required after
we have solved for the corresponding Xkl we overwrite the right hand side Ys with
the solution Xs and in this way we get an in-place algorithm. The algorithm has an
overall flop count of 8

3n
3 +O

(
n2
)

[13, 9].
As long as we only have the 1 × 1 or 2 × 2 block partitioning of Equation (3)

the algorithm will only involve level-2 BLAS operations or matrix-matrix products of
small size. This conflicts with the common guidelines for the development of efficient
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algorithms on current hardware architectures regardless of whether it is a CPU or
GPU platform. If we now take a look at all operations performed in Algorithm 1 we
see that all the updates on the right hand side work with arbitrary block sizes NB as
long as the matrix dimensions are compatible. From this point of view we can easily
get to a blocked algorithm if we increase the size of the blocks in Equation (5). The
only caveat is that we must not split the 2 × 2 blocks in the diagonal of As. That
means in the partitioning of As we have to increase or decrease the block size by 1 if
the partitioning with the original block size would lead to a splitting of a complex pair
of eigenvalues.

However, if we increase the block size to get better performing right hand side up-
dates we also increase the size of the inner Sylvester equation (6) and its Kronecker
representation (8). If we assume a block size NB for the inner Sylvester equation (6)
the corresponding Kronecker formulation is of dimension N2

B × N2
B and one LU de-

composition of it costs 2
3N

6
B flops which is too much even for moderate block sizes, like

NB = 64. In [9] we discussed different variants to solve the inner Sylvester equations
in O

(
N3

B

)
and how they influence the overall flop count of Algorithm 1. The following

paragraphs will introduce the fastest and most accurate approach from [9] to solve the
inner Sylvester equation (6). The approach is based on the ideas of Gardiner et al. [5]
and is adjusted to the structure of our equations.

Modified Gardiner-Laub Approach to solve the inner Sylvester equations For easier
reading, we denote the inner Sylvester equation (6)

AT
kkXklEll + ET

kkXklAll = Ŷkl

as
ÂT X̂B̂ + ĈT X̂D̂ = Ŷ , (9)

where Â, Ĉ ∈ Rn̂×n̂, B̂, D̂ ∈ Rm̂×m̂ and X̂, Ŷ ∈ Rn̂×m̂. Our application in Algo-
rithm 1 and the Transformation (2) guarantee that this equation has the following
structure:(

@
@@

)( )(
@
@@

)
+

(
@
@@

)( )(
@

@@

)
=

( )
,

where Â and D̂ may have 2× 2 diagonal blocks depending on the eigenvalue structure
of (As, Es). Employing this structure allows us to rewrite the k-th column of Ŷ as:

ÂT
k∑

l=1

B̂lkX̂·l + ĈT
k+1∑
l=1

D̂lkX̂·l = Ŷ·k for k = 1, . . . , m̂. (10)

Depending on the diagonal entries of D̂ we consider two cases. First, we assume that
D̂k+1,k = 0, i.e., the diagonal entry of D̂ belongs to a real eigenvalue. In this case, we
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can express the k-th column of the solution X̂ as:

B̂kkÂ
T X̂·k + ÂT

k−1∑
l=1

B̂lkX̂·l + D̂kkĈ
T X̂·k + ĈT

k−1∑
l=1

D̂lkX̂·l = Ŷ·k

(
B̂kkÂ+ D̂kkĈ

)T
X̂·k = Ŷ·k − ÂT

k−1∑
l=1

B̂lkX̂·l − ĈT
k−1∑
l=1

D̂lkX̂·l. (11)

Second, we consider the case where D̂k+1,k 6= 0. In this case, the diagonal entry of D̂
belongs to a complex conjugate eigenvalue pair. Now, the k-th and (k+ 1)-th column
of the solution X̂ depend on each other and can be written as:(

B̂kkÂ+ D̂kkĈ
)T

X̂·k + D̂k+1,kĈ
T X̂·k+1

= Ŷ·k − ÂT
k−1∑
l=1

B̂lkX̂·l − ĈT
k−1∑
l=1

D̂lkX̂·l = Ȳ·k

and (
B̂k,k+1Â+ D̂k,k+1Ĉ

)T
X̂·k +

(
B̂k+1,k+1Â+ D̂k+1,k+1Ĉ

)T
X̂·k+1

= Ŷ·k+1 − ÂT
k−1∑
l=1

B̂lkX̂·l − ĈT
k−1∑
l=1

D̂lkX̂·l = Ȳ·k+1.

Rewriting this equation into a linear system of size 2n̂× 2n̂(
B̂kkÂ+ D̂kkĈ B̂k,k+1Â+ D̂k,k+1Ĉ

D̂k+1,kĈ B̂k+1,k+1Â+ D̂k+1,k+1Ĉ

)T (
X̂·k
X̂·k+1

)
=

(
Ȳ·k
Ȳ·k+1

)
(12)

we can solve for X̂k and X̂k+1 at once. In this way, we determine all columns of the
solution X̂ without setting up the Kronecker-Product representation of the Sylvester
equation. The whole procedure is shown in Algorithm 2. The algorithm needs 4n̂2+2n̂
floating point numbers extra memory and have a flop count of 10n̂3 − 2n̂2 in the best
case and 13n̂3 + 31

4 n̂
2 in the worst case [9]. In the context of the Lyapunov solver that

means that as long as we use a moderate block size NB = n̂ = m̂ the flop count of
the inner Sylvester equation solver does not influence the asymptotic flop count for
the Bartels-Stewart algorithm in a mentionable way. There exists another approach to
solve the inner Sylvester equation (9) based on the ideas by K̊agström and Westin [8]
which turned out to be slower and less accurate than the variant based on the idea by
Gardiner and Laub [9].

Handling the inner Sylvester equations using Algorithm 2 we are able to use the
Bartels-Stewart algorithm with level-3 BLAS operations for the right hand side up-
dates. This already gains a considerable speed up on common desktop CPUs [9]. The
only crucial point is that if we solve for a diagonal block Xkk we have to ensure its
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Algorithm 2 Solution of the generalized Sylvester equation (9)

Input: (A,C) ∈ Rn×n and (D,B) ∈ Rm×m in real generalized Schur form, Y ∈ Rn×m.
Output: X ∈ Rn×m solving ATXB + CTXD = Y
1: k := 1
2: while k ≤ n do
3: if Dk+1,k = 0 then
4: Solve (11) for X·k
5: x1 := ATX·k, x2 := CTX·k
6: for l = k + 1, . . . ,m do
7: Y·l := Y·l −Bk,lx1 −Dk,lx2

8: end for
9: k := k + 1

10: else
11: Solve (12) for X·k and X·k+1

12: x1 := ATX·k, x2 := CTX·k
13: y1 := ATX·k+1, y2 := CTX·k+1

14: for l = k + 2, . . . ,m do
15: Y·l := Y·l −Bk,lx1 −Dk,lx2

16: Y·l := Y·l −Bk+1,ly1 −Dk+1,ly2
17: end for
18: k := k + 2
19: end if
20: end while

symmetry. We proposed different strategies for this in [9], but we restrict the resym-
metrization of the diagonal blocks using

1

2

(
Xkk +XT

kk

)
→ Xkk, (13)

here.

3 GPU Implementation

For the GPU implementation we use a hybrid GPU-CPU based approach similar to
the approaches used by MAGMA [17, 16]. To this end, we split Algorithm 1 into two
parts. The first one, which only involves level-3 BLAS operations, is the update of
the right hand side. The second one is the solution of the inner Sylvester equation (6)
which is solved with Algorithm 2. The basic idea is now to move all level-3 BLAS
operations to the GPU and solve the remaining inner Sylvester equations on the CPU
because Algorithm 2 involves only level-1 and level-2 BLAS operations. An easy
implementation works as follows: We copy all three matrices As, Es and Ys to the
device and we surround Step 11 of Algorithm 1 by transferring the current block
Xk,l from the device, solve the inner Sylvester equation on the host and Xk,l back
to the device. This is only the basic idea to use the GPU, but does not yet include
any efficiency improving techniques like parallel computations on host and device or
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communication hiding via asynchronous data transfers. Rearranging Algorithm 1 in
order to use these techniques (among others) is covered by the following paragraphs.

In order to enable our algorithm to make use of asynchronous operations we first
have to figure out which data is necessary to compute the next iterate on the host such
that we can prepare the data for the next iteration step while the GPU still finishes
the current computations. A closer look to the order in which the blocks of Xs are
computed (without the copy operations for the symmetric parts) we see the following
scheme: 

1 2 · · · p
p+ 1 · · · p+ p− 1

. . .
...

1
2p(p+ 1)


That means for a computation scheme, that enables both GPU and CPU to work
in parallel, we have to prepare the next block Xk,l+1 in a row before we perform
the remaining work on the GPU. For a fixed row k the first right hand side update in
Steps 8 and 9 of Algorithm 1 only requires data from the previous blocks in the current
row. That means the update of Xk,l+1 depends only on the knowledge of Xk,1:l. If we
now have solved for Xk,l we can perform these updates. The problem is that the rest
of the first right hand side update in column l overlaps with the second right hand side
update in Steps 14 and 15 of Algorithm 1. This problem can be solved if we rearrange
the Algorithm 1 such that we solve the small Sylvester equation for Xkl on the CPU
first and then compute

Xk:l+1,l+1 := Xk:l+1,l+1 −AT
k,k:l+1Xk,1:lE1:l,l+1

Xk:l+1,l+1 := Xk:l+1,l+1 − ET
k,k:l+1Xk,1:lA1:l,l+1

and

Xk+1:l,l := Xk+1:l,l −AT
k,k+1:lXk,lEl,l

Xk+1:l,l := Xk+1:l,l − ET
k,k+1:lXk,lAl,l

in parallel. The results are the data access patterns for Xs shown in Figures 1 and 2
for both parts of the right hand side update. We easily see from the figures that the
areas which are updated (shown on the left side of the arrow) are independent from
each other with respect to write operations. This enables us to perform both updates
independently. The only problem is that this only works for a fixed row. After one row
is completed we have to copy the now known parts of the solution to their symmetric
positions in the matrix Xs. At this point we have to synchronize all computations on
the GPU and the CPU to prevent race conditions.

The described rearrangement of Algorithm 1 including the necessary data transfers
is shown in Algorithm 3. The computations in Step 13 and the back transfer of the next
right hand side Xk,l+1 in Step 14 are done in parallel to the remaining update of the
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

l l+ 1

∗ ∗ ∗ ∗
k ∗ ∗ Xk,l+1 ∗

∗ ∗
... ∗

l + 1 ∗ ∗ Xl+1,l+1 ∗
∗ ∗ ∗ ∗

 ←


1 l

∗ ∗ ∗ ∗
k Xk,1 · · · Xk,l ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



Figure 1: Access Pattern of Xs in the (k, l) iteration for the next right hand side update
to compute Xk,l+1.



l l+ 1

∗ ∗ ∗ ∗
k + 1 ∗ Xk+1,l ∗ ∗

∗
... ∗ ∗

l ∗ Xk+1,l ∗ ∗
∗ ∗ ∗ ∗

 ←


1 l

∗ ∗ ∗ ∗
k ∗ ∗ Xk,l ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



Figure 2: Access Pattern of Xs in the (k, l) iteration for the second right hand side
update.

current column in Step 17. On the Nvidia R© CUDA architecture this behaviour can be
implemented using streams and asynchronous communication [12]. Additionally after
we have transfered the next block Xk,l+1 back to the host we solve the small Sylvester
equation for that right hand side. The only necessary synchronization is after we
finished a row of Xs. Beside this parallelization aspects the algorithm assumes that
As, Es and Xs reside on the CPU as well. This saves many transfer operations for
copying the corresponding All, Ell, Akk and Ekk back to the CPU when they are
needed there.

Alongside these implementation aspects there exists a less obvious problem if we
want to run Algorithm 3 efficiently on a GPU. One basic requirement of a fast GPU
implementation is an ordered data access [12]. This means that the data, which is
involved in a computation, should start at a cache-line boundary. Only if this condition
is fulfilled the GPU can deploy its computational power as well as the full memory
bandwidth. This is achieved using an even leading dimension for the matrix storage
which is a multiple of the cache-line length,i.e., typically 128 byte. For many devices a
multiple of 32 floating point numbers is good value because this fits to the cache-line
length in single as well as in double precision. This condition is easily satisfied by
rearranging the data layout when the matrices are copied to the device.

Because this property must especially hold for each block in As, Es and Xs the
block size NB must be a multiple of the cache-line length as well. This is necessary
such that each block operation gains an advantage out of the ordered memory access.
But as we mentioned in Section 2 the block size NB can differ by ±1 with respect to
the eigenvalue value distribution on the diagonal of As. If we consider the following
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Algorithm 3 Forward-Substitution for the generalized Lyapunov equation on a GPU

Input: (As, Es) and Ys partitioned in PB blocks of size NB , like in (5)
Output: Xs solving the (quasi-) triangular Lyapunov equation (3)
1: Xs := Ys and copy As, Es and Xs to the device.
2: for k = 1, . . . , PB do
3: for l = k, . . . , PB do
4: if l > 1 and k = l then
5: Synchronize all computations.
6: Xk,1:k−1 := XT

1:k−1,k on the GPU. {Copy the symmetric part.}
7: Xk,k := Xk,k −AT

k,kXk,1:k−1E1:k−1,k − ET
k,kXk,1:k−1A1:k−1,k on the GPU.

8: Copy Xk,l from the device to the host.
9: end if

10: Solve AT
k,kX∗El,l + ET

k,kX∗Al,l = Xk,l on the host.
11: Xk,l :=

1
2

(
X∗ −XT

∗
)
and upload it to the device.

12: if l < n then
13: Xk:l+1,l+1 := Xk:l+1,l+1 − AT

k,k:l+1Xk,1:lE1:l,l+1 − ET
k,k:l+1Xk,1:lA1:l,l+1 on the

GPU.
14: Copy Xk,l+1 from the device to the host.
15: end if
16: if k < l then
17: Xk+1:l,l := Xk+1:l,l −AT

k,k+1:lXk,lEl,l − ET
k,k+1:lXk,lAl,l on the GPU.

18: end if
19: end for
20: end for
21: Synchronize all computations and copy Xs from the device to the host.

example the problem becomes obvious: We assume a block size NB = 32 which fulfills
the requirements of the cache-line length and the (32, 32) entry of the matrix As

belongs to a complex eigenvalue pair. Then we have use either 31 or 33 as block size
in this case. That means that all following blocks will be moved by one column and
one row. The column shift does not disturb the alignment because all columns are
aligned using a appropriate leading dimension but the row shift disturbs the memory
access. Once we have at least one odd block size in the whole matrix partitioning the
alignment for the remaining blocks in all three matrices As, Es and Xs is destroyed.

One way to solve this problem is to reorder the eigenvalues of the pencil (As, Es)
such that all 2 × 2 diagonal block starts on an odd position. Using Givens rotations
we can move the eigenvalues in (As, Es) to any position on the diagonal [6]. Due to
the fact that we do not want to introduce further restrictions to the block size, we sort
all complex eigenvalue pairs to the upper left on the diagonal. Now, all 2 × 2 blocks
start in an odd row and column position and we never get into trouble if the block
size is a multiple of the cache-line length. The block structure of the matrix As in
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H
HHHHn

NB
32 64 96 128

1 000 0.457 0.341 0.415 0.502
2 000 1.931 1.363 1.596 1.965
3 000 4.360 3.014 3.574 4.376
4 000 7.736 5.185 6.194 7.622
5 000 12.298 8.310 9.838 12.091
6 000 18.432 12.685 14.906 18.005

Table 1: Runtime (in s) for different block sizes NB on the GPU with sorted
eigenvalues.

Equation (5) then changes to

As :=



A1,1 . . . A1,k a1,k+1 . . . a1,p
. . .

...
...

...
Ak,k ak,k+1 . . . ak,p

ak+1,k+1 . . . ak+1,p

. . .
...

ap,p


, (14)

where A∗,∗ denotes a 2× 2 block and a∗,∗ a scalar value. This reordering can be done
using the QZ algorithm implemented in LAPACK. Using the additional select function
as an argument one can select eigenvalues which should be moved to the upper left part
of the matrix As. This gives us the desired structure presented in (14) and guarantees
that all block operations in Algorithm 3 access the memory in the proper way. The
same idea is used on the CPU in [9] to increase the performance using modern vector
extension of the CPU.

We skip a multi-GPU implementation because of the expected high communication
effort. The reason behind this is that none of the usual data distributions, like row-
/column-wise block cyclic or block checkerboard layout fits to the computation scheme.

4 Numerical Results

In this section we present the performance and accuracy results to show that the
GPU implementation provides comparable results as the current SLICOT [13] and the
level-3 BLAS CPU [9] implementations. All computations are performed on a dual
socket Intel R© Xeon R© E5-2690 (2×8 Cores, 2.9 GHz) equipped with 32 GB RAM.
As accelerator device we use one Nvidia R© Tesla K20m card. All test are performed
under Ubuntu 14.04 using the Intel C and Fortran Compiler 14.0, the Intel R© MKL
11.1 library for the host computations and Nvidia R© CUDA 6.5 on the device. The
host computations for the GPU variant are executed in single-thread mode because
the level-2 BLAS code for the small Sylvester equations does not scale well on the 16
core architecture. The host implementation SG03AY from SLICOT [14] and its level-3
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SG03AY SG03CY Speed up relative to
n (SLICOT [13]) (level-3 BLAS [9]) GPU SLICOT level-3 BLAS

1 000 1.744 0.312 0.341 5.120 0.917
2 000 21.119 1.392 1.363 15.494 1.021
3 000 57.166 3.368 3.014 18.970 1.118
4 000 135.156 6.063 5.185 26.066 1.169
5 000 245.516 10.116 8.310 29.544 1.217
6 000 426.566 15.491 12.685 33.627 1.221

Table 2: Runtime (in s) and speed up of the different implementations.

SG03AY SG03CY

n (SLICOT) (level-3 BLAS) GPU

1 000 1.319e-15 5.677e-16 8.299e-16
2 000 1.874e-15 5.997e-16 7.639e-16
3 000 2.213e-15 6.201e-16 6.110e-16
4 000 2.641e-15 6.912e-16 6.348e-16
5 000 2.800e-15 7.204e-16 6.363e-16
6 000 3.190e-15 7.811e-16 6.875e-16

Table 3: Average relative residual of the different implementations with optimal block
size.

BLAS reformulation SG03CY [9] use the MKL with 16 threads in order to maximize
exploitation of the host CPU features.

The numerical tests are performed with a set of random problems. We use scalable
random matrix pencils to analyze the performance without focusing on a special eigen-
value structure which may influence the performance as described in Section 3. Each
matrix pencil is generated via two subsequent calls of DLARNV from LAPACK. The
initial seed for this subroutine is set to (1, 1, 1, 1) and incremented internally during
each call. For each test we generate ten of these pencils. The pencils are transformed
to generalized Schur form before the benchmarks start. That means, we focus on the
performance of solving Equation (3). In order to figure out the difference between
sorted and unsorted eigenvalues on the diagonal of As we computed the QZ decom-
position of (A,E) twice with and without the additional select function to order the
eigenvalues. For all cases we compute the right hand side Y such that the true solution
X(true) is the matrix with all unit entries.

Before we compare the GPU implementation in Algorithm 3 with the two existing
CPU implementations, we have to determine the optimal block size NB for Algorithm 3
first. Therefore we solve the Lyapunov equation (3) for the already reduced random
matrix pencils with different block sizes. We use 32, 64, 96 and 128 in order to fit to
the cache-line boundary problem described in Section 3. Preliminary tests showed that
using a smaller or a larger block size will not lead to a performance improvement. The
complex eigenvalue pairs are sorted to the upper left block of the matrix. In Table 1
we see that independent of the problem size the minimal runtime is achieved using a
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1 000 2 000 3 000 4 000 5 000 6 000 Average

Unorted ev. 0.388 1.399 3.177 5.764 9.024 13.562
Sorted ev. 0.341 1.363 3.014 5.185 8.310 12.685

Ratio 1.139 1.027 1.054 1.112 1.086 1.069 1.081

Table 4: Influence of the eigenvalue sorting on the runtime.
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Figure 3: Runtime comparison of the GPU and level-3 BLAS CPU version.

block size of Nopt
B = 64 which we use for the remaining computations. In contrast to

the block CPU implementation [9] the selection of a non optimal block sizes slows the
algorithm down drastically. From the Tables 1 and 2 we see that even small deviations
from the optimal block size will results in the same or even slower performance as the
CPU implementation.

The second test is the comparison between the two existing CPU implementations,
namely the old level-2 BLAS version from Penzl [13] and the level-3 BLAS presented
in [9], against the new GPU implementation. Table 2 show that the GPU imple-
mentation gains a large speed up in direct comparison against the old level-2 BLAS
implementation. Even with moderate size problems of dimension n = 1 000 the GPU
implementation is much faster than the old one. In comparison to the level-3 imple-
mentation we only gain a performance improvement for large problems. From Table 2
and Figure 3 we see that the performance gain gets larger with increasing block size,
but the problem must be at least of dimension n = 2 000 to beat the CPU implemen-
tation. There are two reasons behind this behavior. On the one hand, the CPU has
a high peak performance of 371.2 GFlops/s in double precision. On the other hand,
the size of the matrix products is not large enough to fully load the GPU. But from
Table 1 we have already seen that increasing the block size will slow down the compu-
tations because then the communication between host and device will take more time
and the level-2 BLAS solver for the inner Sylvester equation is not efficient for large
block sizes.
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Figure 4: Optimal block size with and without sorted eigenvalues.

Beside the performance we compare the relative residuals of all three implementa-
tions. From Table 3 we see that the GPU implementation produces comparable results
in the same order of accuracy as the host implementations as we expect it for an IEEE
compatible device.

In Section 3 we described that we can only get good performance of the GPU if we
access the memory on the device in a well structured way. Therefore, we sorted all
complex conjugate eigenvalue to the upper left part of the matrix As in the preparatory
computations. If we do not sort the eigenvalues before, e.g., by deactivating the
select subroutine in LAPACK’s QZ algorithm, the performance of the GPU should
decrease. In Table 4 we show the runtime of Algorithm 3 in the case of a sorted and a
unsorted spectra. The average performance gain of using sorted eigenvalues is about
8%. Interestingly this is not valid if we use a block size of NB = 32, where Figure 3
shows that using sorted eigenvalues is slower than using the sorted diagonal.

All benchmarks assume that the pencils is already transformed to (quasi-) upper
triangular form. If this it not the case we have to add the overhead of computing
the generalized Schur decomposition to the runtime. However, in situations, where
the Lyapunov equation needs to be solved for different right hand sides and the Schur
decomposition can be reused, and the overhead shrinks.

5 Conclusions

We have seen how we can build a GPU accelerated variant of the generalized Bartels-
Stewart algorithm on top of the level-3 BLAS implementation in [9]. By reordering
the computations in the algorithm we are able to use asynchronous communications
and overlapping of the host and device computations. Our new implementation is 5
to 33 times faster than the current implementation in SLICOT [13] on which even the
MATLAB lyap solver is based on. In case of the new level-3 BLAS implementation [9]
we still get a performance gain of 20%. One reason behind this comparably small
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gain is the rather powerful host CPU on systems with less powerful CPUs a higher
performance gain is possible. We have also seen that rearranging the input data to
get a well ordered data access scheme will result in an additional speed up. The only
remaining piece to get an GPU accelerated solver for the non-triangular Lyapunov
equation (1) is the efficient computation of the generalized Schur decomposition which
is part for future research.
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