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Abstract

Dynamical systems often have structural features that incorporate underlying
physics and conservation laws that reflect basic properties of phenomena of interest.
Reduced models for these dynamical systems that do not share such key structural
features, even if they otherwise have high fidelity, may produce responses that are
“unphysical” and as a result may be unsuitable for use as dependable surrogates.

We seek systems that have structure characterized as either port-Hamiltonian or
second-order (or both), and that, within the latitude allowed by those constraints,
is also a best possible approximation to the original system as discerned by the H2

error measure. In this work, we develop necessary optimality conditions that must
be satisfied by such reduced systems.
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1 Introduction

Dynamical systems are a basic framework in modeling and control of many physical
phenomena that are of interest in science and industry. Examples include chatter sup-
pression in high precision machine tools, protein folding and molecular dynamics, and
control of micro-electro-mechanical systems (MEMS). Direct numerical simulation is one
of few available means to examine these systems and others like it in order to accurate
predict or control their behavior. Persistent needs for greater accuracy lead to inclu-
sion of greater detail in the model and potential coupling with other systems that may
themselves operate in different time and spatial scales; this can produce computational
tasks that make unmanageably large demands on resources. Efficient model utilization
is a necessary component of simulations in such large-scale settings.

A key observation that leads one to consider the potential for inexpensive, high-fidelity
system surrogates is that often the internal states of the original system model evolve
along trajectories that do not fully occupy the state space but hew rather more closely
to some subspace of substantially lower dimension. The system behaves nearly as if it
had very many fewer internal degrees-of-freedom. A natural goal then is to replace the
original system with a lower dimensional dynamical system having as much of the same
input/output response characteristics as the original system as possible. The resulting
reduced-order model could then be used as a surrogate replacing the original system
model as a component in a larger simulation [1, 5, 6, 7].

Dynamical systems often have structural features that encode underlying physics and
conservation laws. Reduced models that do not share such key structural features with
the original system, even if they otherwise have high fidelity, may produce responses that
are “unphysical” and as a result may be unsuitable for use as dependable surrogates for
the original system. The structural features that we focus on here are port-Hamiltonian
and second-order systems.

The goal here is to derive necessary conditions that must be satisfied by reduced-order
models with particular structure in order to achieve, at least locally, error minimization.
Following H2-norm minimization ideas successful for (unstructured) first-order linear
systems [13], we generalize these concepts to dynamical systems constrained to have
port-Hamiltonian or second-order structure.

We provide in §2 background information about H2-error measures and associated (un-
structured) necessary conditions for optimality. We discuss particular system structures
of interest in §3; H2-optimal port-Hamiltonian approximations are considered in §4; §5
considers necessary conditions for best H2-optimal approximations among second-order
modally damped systems; finally, in §6 structural constraints are combined and we con-
sider systems that are both port-Hamiltonian and second order.

2



2 Setting and Background

Let Hm×p2 denote the set of m × p matrix-valued functions, H(s), with components,
hij(s), that are analytic for s in the open right half plane, Re(s) > 0, and such that for
each fixed Re(s) = x > 0, hij(x+ ıy) is square integrable as a function of y ∈ (−∞,∞)
in such a way that

sup
x>0

∫ ∞
−∞
|hij(x+ ıy)|2 dy <∞.

Hm×p2 is a Hilbert space. Indeed, if G(s) and H(s) are Hm×p2 -functions then the Hm×p2 -
inner product can be defined as

〈G, H〉H2

def
=

1

2π

∫ ∞
−∞

trace
(
G(ıω)H(ıω)T

)
dω (1)

with an associated norm defined as

‖H‖H2

def
=

(
1

2π

∫ +∞

−∞
‖H(ıω)‖2F dω

)1/2

. (2)

Here ‖M‖F =
√
〈M, M〉F and 〈M, N〉F = trace

(
M NT

)
denote the Frobenius norm and

Frobenius inner product, respectively. Notice that if G(s) and H(s) represent real dy-
namical systems then 〈G, H〉H2 = 〈H, G〉H2 and 〈G, H〉H2 itself must be real.

There is a substantial body of literature addressing the problem of optimal H2 model
reduction for general linear time-invariant systems. Such systems can be characterized
through standard first-order state-space realizations of the form, H(s) = C(sI−A)−1B.
The optimal H2 model reduction problem may then be posed as seeking a system Ĥr of
order r which solves:

min
Hr is stable

‖H−Hr‖H2
(3)

— see, for example, [32, 25, 8, 15, 19, 16, 31, 18, 33, 13, 29]. Necessary conditions for
a reduced order model to be an H2-optimal approximation are built typically from the
following lemma:

Lemma 1. Suppose that {Ĥ(ε)
r }ε>0 ⊂ Qr is a family of dynamical systems parameterized

by ε > 0 such that ‖Ĥr − Ĥ
(ε)
r ‖H2 = O(ε) as ε → 0. Then H2-optimality of any Ĥr

solving (3) implies that as ε→ 0,〈
H− Ĥr,

Ĥr − Ĥ
(ε)
r

‖Ĥr − Ĥ
(ε)
r ‖H2

〉
H2

−→ 0

First-order necessary conditions for Ĥr to solve (3) (and more generally to be a local
minimizer of theH2 error) were formulated by Wilson [31] and Hyland and Bernstein [16]
in terms of a pair coupled Lyapunov equations. When H(s) is not necessarily known
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in the customary first-order form, Meier and Luenberger [19] provided interpolation-
based first-order conditions for H2 optimality, at least for single-input single-output
systems. Gugercin et al. [13] extended these interpolation-based conditions to the
multi-input/multi-output case. For convenience, we state them here: Assume that Ĥr

is a local minimizer of ‖H −Hr‖H2 among those (stable) transfer functions having r

distinct poles. The residue of Ĥr at each pole, λ̃i, is matrix-valued and has rank one,
res[Ĥr(s), λ̃i] = ĉib̂

∗
i . Then for i = 1, . . . , r,

H(−λ̃i)b̂i = Hr(−λ̃i)b̂i,

ĉ∗iH(−λ̃i) = ĉ∗iHr(−λ̃i),
and ĉ∗iH

′(−λ̃i)b̂i = ĉ∗iH
′
r(−λ̃i)b̂i. (4)

Thus, first-order necessary conditions for H2-optimality without further structural con-
straints require tangential interpolation at mirror images of the reduced system poles,
λ̃i, reflected across the imaginary axis. Significantly, these conditions do not require
any particular realization for the original system, H(s) to be known although the op-
timal reduced system, Ĥr, is typically delivered in standard first order form, Ĥr =
Cr(sI − Ar)

−1Br. We describe below some approaches that have been developed to
accomplish this, using only evaluations of H(s); these approaches are not dependent on
any particular realization for H(s) being available.

3 Structured Systems

Dynamical systems may have additional discernible structure that reflects underlying
physics and conservation laws. Port-based network modeling [12] takes advantage of
a common situation where the system under study is decomposable into subsystems
that are interconnected through pairs of dynamic quantities whose pairwise product
gives the power exchanged among subsystems. This approach is especially useful for
multi-physics systems, where subsystems may be associated with different categories of
physical phenomena (e.g, mechanical, electrical, or hydraulic). This leads one to consider
port-Hamiltonian system representations (see [12, 27]) which encode structural features
related to the manner in which energy is distributed within and across subsystems.

Although greater generality is possible, it suffices for our purposes to consider port-
Hamiltonian systems that are linear time invariant H2 dynamical systems. Finite-
dimensional systems of this sort have realizations of the form

ẋ = (J−R)Qx + Bu
y = BTQx

(5)

where

1. J = −JT is skew-symmetric,

2. R = RT is symmetric positive-semidefinite, and
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3. Q is symmetric positive-definite.

A key feature of the class of port-Hamiltonian systems is that it is closed under power-
conserving interconnection, that is, if an array of port-Hamiltonian systems are con-
nected together in a way that preserves the integrity of the shared quantities, the re-
sulting aggregate system is also port-Hamiltonian, and hence, passive. Thus, it may be
important to substitute a portHamiltonian subsystem with a low order surrogate system
that is also port-Hamiltonian. There has been earlier work along these lines on structure-
preserving reduction of port-Hamiltonian systems, notably [14, 21, 22, 23, 28].

Let PH(r) denote the set of all port-Hamiltonian systems with state-space dimension r.
The model reduction problem that we pursue may then be posed as seeking a port-
Hamiltonian system Ĥr ∈ PH(r) which solves:

min
Hr is stable

Hr∈PH(r)

‖H−Hr‖H2
(6)

The reduced system, Ĥr ∈ PH(r) may be written as

ẋr = (Jr −Rr)Qrxr + Bru
yr = BT

r Qrxr
(7)

where (similar to the full order system),

1. Jr = −JTr is skew-symmetric,

2. Rr = RT
r is symmetric positive-semidefinite, and

3. Qr is symmetric positive-definite.

Another category of dynamical system that we consider arises in the modeling of forced
vibration of an n degree–of–freedom mechanical structure:

Mẍ(t) + Dẋ(t) + Kx(t) = B1u̇(t) + B0u(t)

y(t) = C1ẋ(t) + C0x(t),
(8)

where M, D, and K ∈ Rn×n are positive (semi)-definite symmetric matrices describing,
respectively, mass distribution, energy dissipation, and stiffness distribution throughout
the structure. The input u(t) ∈ Rm is a time-dependent force or displacement applied
along degrees-of-freedom specified in B0,B1 ∈ Rn×m and y(t) ∈ Rp is a vector of output
measurements defined through observation matrices C0,C1 ∈ Rp. The transfer function
H(s) from u(t) to y(t) is given by

H(s) = (sC1 + C0)(s2M + sD + K)−1(sB1 + B0).

Second order systems of the form (8) arise naturally in the analysis of other phenomena
apart from structural vibration, such as the response of electrical circuits and micro-
electro-mechanical systems; see [11, 24, 3, 10, 30, 9, 17, 2], and references therein. Note
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that second-order systems of the form (8) cannot be converted to first-order form in a
straightforward way when B1 is nontrivial. The goal is to generate, for some r � n, an
rth order reduced second-order system of the form

Mrẍr(t) + Drẋr(t) + Krxr(t) = B1,ru̇(t) + B0,ru(t)

yr(t) = C1,rẋr(t) + C0,rxr(t),

where Mr,Dr,Kr ∈ Rr×r are positive (semi)-definite symmetric matrices, B0,r, B1,r ∈
Rr×m, and C0,r, C1,r ∈ Rp×r are chosen in such a way so that yr(t) approximates y(t)
over a wide range of inputs, u(t).

One classical approach to model reduction of second-order systems is to the apply stan-
dard model reduction techniques to a first-order realization of the system. However,
even in cases where a first-order realization is straightforward to obtain, performing the
reduction on the first-order realization has several disadvantages: it destroys the original
second-order system structure and the physical meaning of the states. Moreover, once
the reduction is performed in the first-order framework, it will not always be possible
to convert this back to a corresponding second-order system of the form (8), see [20].
Even when this is possible, one typically cannot guarantee that structural properties
such as positive definite symmetric reduced mass, damping, and stiffness matrices, will
be retained. Keeping the original structure is crucial both to preserve physical meaning
of the states and to retain physically significant properties such as stability and passiv-
ity. Due to these considerations, we assert a better strategy will be to reduce directly in
the second-order setting, constructing first a projecting subspace Vr ∈ Rn×r and then
defining the reduced coefficient matrices:

Mr = VTr MVr, Dr = VTr DVr, Kr = VTr KVr, (9)

B1,r = VTr B1, B0,r = VTr B0, C0,r = C0Vr, and C1,r = C1Vr.

There have been significant efforts in this direction. Building on the earlier work of [26],
Bai and Su [4] introduced “second-order” Krylov subspaces and showed how to obtain a
reduced-order system directly in a second-order framework as in (9) while still satisfying
interpolation conditions at selected points. Their method does not treat cases in which
C1 in (8) is nontrivial, i.e., when the velocities are observed. Another second-order struc-
ture preserving interpolation-based reduction technique was introduced by Chahlaoui et
al. [9], though this approach also requires a first-order state-space realization and so is
not applicable to cases where B1 is nontrivial.

Let Q(r) denote the set of all second-order systems with state-space dimension r. The
second model reduction problem that we pursue may then be posed as seeking a a
second-order system Ĥr ∈ PH(r) which solves:

min
Hr is stable

Hr∈Q(r)

‖H−Hr‖H2
(10)
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4 H2-optimal Port-Hamiltonian Approximations

Consider the first problem of finding a Gr ∈ PH(r) that solves :

‖G−Gr‖H2
= min

G̃r ∈PH(r)

∥∥∥G− G̃r

∥∥∥
H2

. (11)

That is, Gr is an H2-optimal reduced order port-Hamiltonian approximation of order r
to (5).

We will denote the Loewner matrix associated with a transfer function H on tangential
interpolation data S = {{σi}r1, {wi}r1, {vi}r1} as

(L[H,S])i,j :=


wT
i H(σi)vj −wT

i H(σj)vj
σi − σj

if i 6= j

wT
i H′(σi)vi if i = j

Theorem 1. Suppose that Gr(s) is a solution to (11) with a reduced dissipation matrix
Rr that is positive definite. Suppose further that Gr(s) has r distinct poles and is
represented as Gr(s) =

∑r
i=1

1
s−λi cid

T
i . Then

L[G,S] = L[Gr,S].

where S here denotes derived interpolation data: S = {{−λi}r1, {ci}r1, {di}r1}.

Proof: Perform a state-space transformation on (7) to obtain a reduced system real-
ization in scaled energy coordinates (transforming Qr → Q̃r = I):

˙̃xr = (J̃r − R̃r)x̃r + B̃ru

yr = B̃T
r x̃r

(12)

The poles of Gr(s) are the eigenvalues of Ãr = J̃r − R̃r, so for some invertible matrix
Xr: ÃrXr = XrΛr where Λr = diag(λ1, λ2, . . . , λr) lists the poles of Gr(s). Given
the structure of (12), writing Ãr = J̃r − R̃r, notice that perturbations of Ãr −→ Ãε

r

will remain port-Hamiltonian if and only if the numerical range of Ãε
r remains in the

closed left half-plane. Indeed, if such perturbations Ãr −→ Ãε
r depend continuously

with respect to ε and we define Ãε
r = 1

2(Ãε
r − Ã∗εr ) + 1

2(Ãε
r + Ã∗εr ) = Jεr −Rε

r with skew

Hermitian Jεr and Hermitian Rε
r, then Rε

r is a perturbation of the (unperturbed) R̃r,
and since R̃r is assumed to be positive definite, Rε

r will also be positive definite for all
sufficiently small ε.

Define directions

[c1, c2, . . . , cr] = B̃T
r Xr and


dT1
dT2
...
dTr

 = X−1
r B̃r. (13)
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Write the reduced transfer function as

Gr(s) = B̃T
r

(
sI− Ãr

)−1
B̃r =

r∑
i=1

1

s− λi
cid

T
i (14)

Pick an index 1 ≤ i ≤ r and a vector v ∈ Cr such that vi = eTi v = 0, and then for ε > 0,
consider perturbations to Gr(s) of the form:

Ĝr(s) = B̃T
r Xr

(
sI− Λr − εe−ıθeivT

)−1
X−1
r B̃r, (15)

where θ is to be determined later.

Since the numerical range of Ãr lies in the open left halfplane, for all ε sufficiently
small, Ãr + ε e−ıθ Xreiv

TX−1
r will have numerical range in the open left halfplane as

well and can be decomposed into skew-symmetric/symmetric form, Jr − Rr with Rr

positive-definite. Thus, Ĝr(s) will have a port-Hamiltonian realization for all ε suffi-
ciently small.

Now consider,

(sI− Λr)
−1 −

(
sI− Λr − εeivT

)−1
= −ε e−ıθ (sI− Λr)

−1 eiv
T (sI− Λr)

−1 .

Thus,

Gr(s)− Ĝr(s) =− ε e−ıθ B̃T
r Xr (sI− Λr)

−1 eiv
T (sI− Λr)

−1 X−1
r B̃r

=
∑
j 6=i

−ε e−ıθ vj
(s− λi)(s− λj)

cid
T
j

Suppose that 〈G−Gr,
∑

j 6=i
vj

(s−λi)(s−λj)cid
T
j 〉H2 6= 0 and define the θ in (15) as

θ = arg〈G−Gr,
∑
j 6=i

vj
(s− λi)(s− λj)

cid
T
j 〉H2 .

H2-optimality of Gr(s) requires that

‖Gr −Gr‖H2 ≤ ‖G− Ĝr‖H2

for all rth-order port-Hamiltonian systems, Ĝr(s), in a neighborhood of Gr(s). This in
turn, implies

0 ≤ 2Re 〈G−Gr, Gr − Ĝr〉H2 + ‖Gr − Ĝr‖2H2
(16)

or

Re

e−ıθ 〈G−Gr,
∑
j 6=i

vj
(s− λi)(s− λj)

cid
T
j 〉H2

 ≤ ε

2

∥∥∥∥∥∥
∑
j 6=i

vj
(s− λi)(s− λj)

cid
T
j

∥∥∥∥∥∥
2

H2
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or ∣∣∣∣∣∣〈G−Gr,
∑
j 6=i

vj
(s− λi)(s− λj)

cid
T
j 〉H2

∣∣∣∣∣∣ ≤ ε

2

∥∥∥∥∥∥
∑
j 6=i

vj
(s− λi)(s− λj)

cid
T
j

∥∥∥∥∥∥
2

H2

.

The left-hand side is independent of ε, which can be taken arbitrarily small. Thus we
have

〈G−Gr,
∑
j 6=i

vj
(s− λi)(s− λj)

cid
T
j 〉H2 =0

∑
j 6=i

vj
λi − λj

〈G−Gr,

(
1

s− λi
− 1

s− λj

)
cid

T
j 〉H2 =0

∑
j 6=i

vj
λi − λj

[
cTi G(−λi)dj − cTi Gr(−λi)dj −

(
cTi G(−λj)dj − cTi Gr(−λj)dj

)]
=0

∑
j 6=i

vj

[
cTi G(−λi)dj − cTi G(−λj)dj

(−λi)− (−λj)
− cTi Gr(−λi)dj − cTi Gr(−λj)dj

(−λi)− (−λj)

]
=0.

Since vj was chosen arbitrarily, the conclusion holds for the case i 6= j.

Now for the case i = j, consider perturbations to Gr(s) of the form:

Ĝr(s) = B̃T
r Xr

(
sI− Λr − εe−ıθeieTi

)−1
X−1
r B̃r, (17)

where ε > 0 and θ is (as before) to be determined later. Ĝr(s) will have a port-
Hamiltonian realization for all ε sufficiently small. Then

Gr(s)− Ĝr(s) =

(
1

s− λi
− 1

s− (λi + ε e−ıθ)

)
cid

T
i

With some calculation, we find:

‖Gr − Ĝr‖2H2
=
ε2‖ci‖2‖di‖2

4(−Reλi)3
+O(ε3)

H2-optimality of Gr(s) again requires that

0 ≤ 2Re 〈G−Gr, Gr − Ĝr〉H2 + ‖Gr − Ĝr‖2H2
.

Defining for the moment, ∆(s) = cTi (G(s)−Gr(s))di, this means

0 ≤ 2Re
[
∆(−λi)−∆(−λi − ε e−ıθ)

]
+

ε2

4(−Reλi)3
+O(ε3) or

0 ≤ 2Re
(
ε e−ıθ∆′(−λi) +O(ε2)

)
+

ε2

4(−Reλi)3
+O(ε3) or

0 ≤ Re
(
e−ıθ∆′(−λi)

)
+O(ε)

If ∆′(−λi) 6= 0 this leads to a contradiction if we pick θ = arg(∆′(−λi)) − π. Thus,
∆′(−λi) = cTi G′(−λi)di − cTi G′r(−λi)di = 0 giving the conclusion for the case i = j.
�.
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Theorem 2. Suppose Gr is a solution to (11) and has simple poles. Using the notation
of Theorem 1, define left and right residuals as:

R = [G(−λ1)d1 −Gr(−λ1)d1, . . . , G(−λr)dr −Gr(−λr)dr]
L =

[
G(−λ1)T c1 −Gr(−λ1)T c1, . . . , G(−λr)T cr −Gr(−λr)T cr

]
Then

R

 cT1
...
cTr

+ L

 dT1
...
dTr

 = 0 (18)

Proof: Proceed as in Theorem 1 with Ãr = J̃r − R̃r and Xr such that ÃrXr = XrΛr
and Λr = diag(λ1, λ2, . . . , λr) lists the poles of Gr(s). Residue directions are defined as
in (13).

We consider perturbations to Gr(s) of the form:

Ĝr(s) =
(
B̃r + δB̃r

)T (
sI− Ãr

)−1 (
B̃r + δB̃r

)
=
(
B̃r + δB̃r

)T
Xr (sI− Λr)

−1 X−1
r

(
B̃r + δB̃r

)
(19)

which evidently has a port-Hamiltonian realization for all choices of δB̃r.

Observe that

Gr(s)− Ĝr(s) =− B̃T
r Xr (sI− Λr)

−1 X−1
r δB̃r

− δB̃T
r Xr (sI− Λr)

−1 X−1
r B̃r

− δB̃T
r Xr (sI− Λr)

−1 X−1
r δB̃r

= −
r∑
i=1

1

s− λi
ci δd

T
i −

r∑
i=1

1

s− λi
δci d

T
i −

r∑
i=1

1

s− λi
δci δd

T
i ,

where we have defined

[δc1, δc2, . . . , δcr] = δB̃T
r Xr and


δdT1
δdT2

...
δdTr

 = X−1
r δB̃r.

Notice that

XT
r Xr


δdT1
δdT2

...
δdTr

 =


δcT1
δcT2

...
δcTr

 .
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Since the poles of Gr are closed under conjugation, there is a permutation matrix, Π,
such that ΠXT

r = X∗r and Π2 = I. Suppose u = [υ1, υ2, . . . , υr]
T is an eigenvector of

the positive definite matrix X∗rXr: X∗rXru = µu. Then µ > 0, (ΠX∗rXrΠ) Πu = µΠu,
and (ΠX∗rXrΠ) u = X∗rXr u = µu. So,

XT
r Xru = ΠX∗rXru = µΠu = µu.

Pick an index 1 ≤ ` ≤ r, ε > 0, and a θ ∈ [0, 2π]. Then choose the perturbation so
that 

δdT1
δdT2

...
δdTr

 = ε e−ıθ u eT` ⇒


δcT1
δcT2

...
δcTr

 = ε e−ıθ µu eT`

so that, in particular, δdk = ε e−ıθ υk e` and δck = ε e−ıθ µυk e`.

We may directly compute

〈G−Gr, Gr − Ĝr〉H2 =−
r∑
i=1

cTi (G(−λi)−Gr(−λi)) δdi

−
r∑
i=1

δcTi (G(−λi) − Gr(−λi)) di −
r∑
i=1

δcTi (G(−λi)−Gr(−λi)) δdi

=− ε e−ıθ
r∑
i=1

υic
T
i (G(−λi)−Gr(−λi)) e`

− ε e−ıθ
r∑
i=1

µυi e
T
` (G(−λi)−Gr(−λi)) di

− ε2 e−ı2θ
r∑
i=1

µ |υi|2 eT` (G(−λi)−Gr(−λi)) e`

=− ε e−ıθeT` (µRu + Lu) +O(ε2)

and

‖Gr − Ĝr‖2H2
= ε2

∑
i,j

−1

λi + λj

∑
k 6=`

υici(k) υjcj(k)

+µ(υici(`) + υidi(`))(υjcj(`) + υjdj(`)) + µ2
∑
k 6=`

υidi(k) υjdj(k)

+O(ε3)

=ε2

∑
k 6=`

a∗kMak + µ(a` + b`)
∗M(a` + b`) + µ2

∑
k 6=`

b∗kMbk


︸ ︷︷ ︸

M > 0

+O(ε3)

= M ε2 +O(ε3),
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where ak = υk


c1(k)
c2(k)

...
cr(k)

, bk = υk


d1(k)
d2(k)

...
dr(k)

, and M =
[
−1

λi+λj

]
.

Note that M is a (positive definite) Cauchy matrix.

Choose θ = arg
(
eT` (µRu + Lu)

)
so that e−ıθeT` (µRu + Lu) =

∣∣eT` (µRu + Lu)
∣∣. Since

Gr is H2-optimal, (16) holds and so,∣∣eT` (µRu + Lu)
∣∣ ≤M ε+O(ε2).

Thus, eT` (µRu + Lu) = 0 and since this is true for each index ` = 1, . . . , r, we have
µRu+Lu = 0. The same argument can be made using each eigenvalue/eigenvector pair
of X∗rXr to construct a perturbation, which can then be summarized together as

RUdiag(µ1, . . . , µr) + LU = 0,

where U = [u1,u2, . . . ,ur] is the matrix of eigenvectors for X∗rXr. Indeed, we have

XT
r Xr U = Π X∗rXr U = Π U diag(µ1, . . . , µr) = Udiag(µ1, . . . , µr),

so we have in turn

RXT
r XrU + LU = 0 ⇒

(
RXT

r + LX−1
r

)
XrU = 0 ⇒ RXT

r + LX−1
r = 0.

Postmultiplying by B̃r and using (13) yields the conclusion. �

5 Optimal Second-order Modally-damped Systems

Let Qr ⊂ Hm×p2 be defined as the set of m×p matrix-valued transfer functions associated
with second-order, modally damped dynamical systems:

Qr =

Cr(s
2Mr + sDr + Kr)

−1Br

∣∣∣∣∣∣
Mr,Dr,Kr ∈ Rr×r SPD,
Br ∈ Rr×p,Cr ∈ Rm×r,
and DrM

−1
r Kr = KrM

−1
r Dr


(SPD means Symmetric Positive Definite).

Suppose Ĥr(s) = Ĉr(s
2M̂r + sD̂r + K̂r)

−1B̂r ∈ Qr solves∥∥∥H− Ĥr

∥∥∥
H2

= min
Hr∈Qr

‖H−Hr‖H2 . (20)

Let X̂ = [x̂1, x̂2, . . . , x̂r] ∈ Rr×r be a matrix of eigenvectors solving the generalized

eigenvalue problem K̂rx̂i = ω2
i M̂rx̂i, represented collectively as K̂rX̂ = M̂rX̂Ω2 for

12



Ω2 = diag(ω2
1, ω

2
2, . . . , ω

2
r ). Assume without loss of generality that eigenvectors are

normalized so that
X̂T K̂rX̂ = Ω and X̂TM̂rX̂ = Ω−1.

Since D̂rM̂
−1
r K̂r = K̂rM̂

−1
r D̂r, evidently M̂−1

r D̂r commutes with M̂−1
r K̂r and so may

be simultaneously diagonalized, implying for an appropriate choice of positive scalars
(damping ratios), {ξ1, ξ2, . . . , ξr},

D̂r X̂ = M̂r X̂ (2Ξ) with Ξ = diag(ξ1, ξ2, . . . , ξr).

Thus,

Ĥr(s) =Ĉr(s
2M̂r + sD̂r + K̂r)

−1B̂r

=Ĉr(s
2X̂−T Ω−1 X̂−1 + 2 s X̂−T Ξ X̂−1 + X̂−T Ω X̂−1)−1B̂r

= ĈrX̂(s2 Ω−1 + 2 sΞ + Ω)−1X̂T B̂r

=

r∑
k=1

ωk φk ck b
T
k

s2 + 2 ξk ωk s+ ω2
k

=

r∑
k=1

ωk φk ck b
T
k

(s− λ+
k )(s− λ−k )

;

the vector residues are defined so that

Ĉr X̂ · X̂T B̂r = [c1, c2, . . . , cr] diag(φ1, φ2, . . . , φr)[b1, b2, . . . , br]
T ;

where scale factors, φk ≥ 0, are introduced so that ‖ck‖ = ‖bk‖ = 1.

For reference note that:

1

(s− λ+)(s− λ−)
=

1

λ+ − λ−

(
1

s− λ+
− 1

s− λ−

)
(21)

1

(s− λ+)2(s− λ−)2
=

−2

(λ+ − λ−)3

(
1

s− λ+
− 1

s− λ−

)
(22)

+
1

(λ+ − λ−)2

(
1

(s− λ+)2
+

1

(s− λ−)2

)

s

(s− λ+)(s− λ−)
=

1

λ+ − λ−

(
λ+

s− λ+
− λ−

s− λ−

)
(23)

s

(s− λ+)2(s− λ−)2
=− λ+ + λ−

(λ+ − λ−)3

(
1

s− λ+
− 1

s− λ−

)
(24)

+
1

(λ+ − λ−)2

(
λ+

(s− λ+)2
+

λ−

(s− λ−)2

)

13



s2

(s− λ+)2(s− λ−)2
=

1

(λ+ − λ−)2

((
λ−

s− λ−

)2

+

(
λ+

s− λ+

)2
)

(25)

− 2 λ− λ+

(λ+ − λ−)3

(
1

s− λ+
− 1

s− λ−

)

Defining the auxiliary quantity ρk = ξk −
√
ξ2
k − 1, the poles are

λ+
k = −ξkωk + ωk

√
ξ2
k − 1 = −ωk

ρk
and

λ−k = −ξkωk − ωk
√
ξ2
k − 1 = −ωk ρk.

where ωk > 0 (as before) and either ρk is real with ρk ∈ (0, 1] or ρk is complex with
ρk = e−ıθ for θ ∈ (0, π2 ).

Lemma 2. Suppose G(s) ∈ Hm×p2 ; choose c ∈ Rm, b ∈ Rp; and let

λ± = −ξω ± ω
√
ξ2 − 1 for ξ, ω > 0 and ξ 6= 1.

Define

∆1(s) =
c bT

(s− λ+)(s− λ−)
∈ Hm×p2 and ∆2(s) =

c bT

(s− λ+)2(s− λ−)2
∈ Hm×p2 .

Then

‖∆1‖H2 =
‖c‖ · ‖b‖
2ω
√
ξω

and 〈G, ∆1〉H2
=

cTG(−λ+)b− cTG(−λ−)b

λ+ − λ−
.

‖s∆1‖H2 =
‖c‖ · ‖b‖
2ω
√
ξω

and 〈G, s∆1〉H2
=

cTG(−λ+)b− cTG(−λ−)b

λ+ − λ−
.

s2

(s− λ+)2(s− λ−)2
=

1

(λ+ − λ−)2

(
(λ+)2

(s− λ+)2
+

(λ−)2

(s− λ−)2

)
− 2 λ− λ+

(λ+ − λ−)3

(
1

s− λ+
− 1

s− λ−

)
(26)

〈G, ∆2〉H2
=

−1

(λ+ − λ−)2

(
cTG

′
(−λ+)b + cTG

′
(−λ−)b

)
− 2

(λ+ − λ−)3

(
cTG(−λ+)b− cTG(−λ−)b

)
.
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Proof: Notice that the function trace
(
G(−s)∆m(s)T

)
has singularities in the left half

plane only at λ+ and λ−. For any R > 0, define the semicircular contour in the left
halfplane:

ΓR = {z |z = ıω with ω ∈ [−R,R]} ∪
{
z

∣∣∣∣z = Reıθ with θ ∈
[
π

2
,
3π

2

]}
.

ΓR bounds a region that for sufficiently large R contains λ+ and λ− and so, by the
residue theorem (for m = 1, 2)

〈G, ∆m〉H2
=

1

2π

∫ ∞
−∞

trace
(
G(−ıω)∆m(ıω)T

)
dω

= lim
R→∞

1

2πı

∫
ΓR

trace
(
G(−s)∆m(s)T

)
ds

= res

[
cTG(−s)b

(s− λ+)m(s− λ−)m
, λ+

]
+ res

[
cTG(−s)b

(s− λ+)m(s− λ−)m
, λ−

]
.

For ∆1, consider first the case ξ 6= 1, so that λ− 6= λ+. One directly calculates:

〈G, ∆1〉H2
= res

[
cTG(−s)b

(s− λ+)(s− λ−)
, λ+

]
+ res

[
cTG(−s)b

(s− λ+)(s− λ−)
, λ−

]

= res

[
cTG(−s)b
λ+ − λ−

(
1

s− λ+
− 1

s− λ−

)
, λ+

]
+ res

[
cTG(−s)b
λ+ − λ−

(
1

s− λ+
− 1

s− λ−

)
, λ−

]

= res

[
cTG(−s)b
λ+ − λ−

(
1

s− λ+

)
, λ+

]
− res

[
cTG(−s)b
λ+ − λ−

(
1

s− λ−

)
, λ−

]

=
cTG(−λ+)b− cTG(−λ−)b

λ+ − λ−
.

Setting G = ∆1 in this expression, we find

cT∆1(−λ+)b =
cT c bTb

(−λ+ − λ+)(−λ+ − λ−)
=
‖c‖2 ‖b‖2

−4ξω · λ+

cT∆1(−λ−)b =
cT c bTb

(−λ− − λ+)(−λ− − λ−)
=
‖c‖2 ‖b‖2

−4ξω · λ−

Writing s2 + 2ξωs + ω2 = (s − λ+)(s − λ−), the last equality in each case comes from
noticing that regardless of whether λ± is real or a conjugate pair, in either case we have
that

(−λ+ − λ+)(−λ+ − λ−) = −4ξω · λ+ and

(−λ− − λ+)(−λ− − λ−) = −4ξω · λ−.
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So we may calculate,

‖∆1‖2H2
=

〈
∆1,

c bT

(s− λ+)(s− λ−)

〉
H2

=
cT∆1(−λ+)b− cT∆1(−λ−)b

λ+ − λ−

=
−‖c‖2 ‖b‖2

4ξω(λ+ − λ−)

(
1

λ+
− 1

λ−

)
=
‖c‖2 ‖b‖2

4ξω(λ+λ−)
=
‖c‖2 ‖b‖2

4ξω3

Now for the case that ξ = 1, λ+ = λ− = −ω and we have first

〈G, ∆1〉H2
= res

[
cTG(−s)b
(s+ ω)2

,−ω
]

= −cTG
′
(ω)b.

and likewise,

‖∆1‖2H2
= res

[
cT∆1(−s)b

(s+ ω)2
,−ω

]
= −cT∆1

′
(ω)b =

‖c‖2 ‖b‖2

4ω3
.

Pleasantly, both expressions match the general cases above as ξ → 1.

〈G, s∆1〉H2
= res

[
s cTG(−s)b

(s− λ+)(s− λ−)
, λ+

]
+ res

[
s cTG(−s)b

(s− λ+)(s− λ−)
, λ−

]

= res

[
cTG(−s)b
λ+ − λ−

(
λ+

s− λ+
− λ−

s− λ−

)
, λ+

]
+ res

[
cTG(−s)b
λ+ − λ−

(
λ+

s− λ+
− λ−

s− λ−

)
, λ−

]

= res

[
cTG(−s)b
λ+ − λ−

(
λ+

s− λ+

)
, λ+

]
− res

[
cTG(−s)b
λ+ − λ−

(
λ−

s− λ−

)
, λ−

]

= cTG(−λ+)b− cTG(−λ−)b.
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Now take ∆2 =
c bT

(s− λ+)2(s− λ−)2
, consider ξ 6= 1, and evaluate

〈G, ∆2〉H2
= res

[
cTG(−s)b

(s− λ+)2(s− λ−)2
, λ+

]
+ res

[
cTG(−s)b

(s− λ+)2(s− λ−)2
, λ−

]

= res

[
cTG(−s)b
(λ+ − λ−)2

1

(s− λ+)2
, λ+

]
− res

[
2cTG(−s)b
(λ+ − λ−)3

1

s− λ+
, λ+

]
+res

[
cTG(−s)b
(λ+ − λ−)2

1

(s− λ−)2
, λ−

]
+ res

[
2cTG(−s)b
(λ+ − λ−)3

1

s− λ−
, λ−

]

= −cTG
′
(−λ+)b

(λ+ − λ−)2
− 2

cTG(−λ+)b

(λ+ − λ−)3
− cTG

′
(−λ−)b

(λ+ − λ−)2
+ 2

cTG(−λ−)b

(λ+ − λ−)3

= −cTG
′
(−λ+)b + cTG

′
(−λ−)b

(λ+ − λ−)2
− 2

cTG(−λ+)b− cTG(−λ−)b

(λ+ − λ−)3
(27)

Set G = ∆2 in this expression to find,

‖∆2‖2H2
=

−1

(λ+ − λ−)2

(
cT∆2

′
(−λ+)b + cT∆2

′
(−λ−)b

+ 2

(
cT∆2(−λ+)b− cT∆2(−λ−)b

λ+ − λ−

))
=

1 + 4ξ2

32ξ3ω7
‖c‖2‖b‖2

Finally,

〈G, s∆2〉H2
= res

[
s cTG(−s)b

(s− λ+)2(s− λ−)2
, λ+

]
+ res

[
s cTG(−s)b

(s− λ+)2(s− λ−)2
, λ−

]

= res

[
cTG(−s)b
(λ+ − λ−)2

(
λ+

(s− λ+)2
+

λ−

(s− λ−)2

)
, λ+

]
− res

[
λ+ + λ−

(λ+ − λ−)3
cTG(−s)b

(
1

s− λ+
− 1

s− λ−

)
, λ+

]
+ res

[
cTG(−s)b
(λ+ − λ−)2

(
λ+

(s− λ+)2
+

λ−

(s− λ−)2

)
, λ−

]
− res

[
λ+ + λ−

(λ+ − λ−)3
cTG(−s)b

(
1

s− λ+
− 1

s− λ−

)
, λ−

]

=− 1

(λ+ − λ−)2

(
λ+cTG

′
(−λ+)b + λ−cTG

′
(−λ−)b

)
(28)

− λ+ + λ−

(λ+ − λ−)3
(
cTG(−λ+)b− cTG(−λ−)b

)
�

This lemma provides a useful collection of technical facts that aid in calculating necessary
optimality conditions.
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5.1 Perturbations in residues for second-order systems.

Necessary conditions typically are derived variationally by observing stationarity in error
norms under various categories of perturbations. Pick 1 ≤ k ≤ r, consider an arbitrary
δck ∈ Rm with ‖δck‖ = 1, and define a perturbation of Ĥr that involves a small variation
in the kth left vector residue in the direction of δck:

Ĥ(ε)
r = Ĥr −

(
ωk φk ck b

T
k

(s− λ+
k )(s− λ−k )

−
ωk φk (ck + εδck) b

T
k

(s− λ+
k )(s− λ−k )

)
= Ĥr + ε

ωk φk

(s− λ+
k )(s− λ−k )

δck b
T
k

Optimality of Ĥr implies that as ε→ 0:∣∣∣∣∣
〈

H− Ĥr, ε
ωk φk δck b

T
k

(s− λ+
k )(s− λ−k )

〉
H2

∣∣∣∣∣ = O(ε2),

which implies in turn,

0 =

∣∣∣∣∣
〈

H− Ĥr,
δck b

T
k

(s− λ+k )(s− λ−k )

〉
H2

∣∣∣∣∣
=

1

λ+k − λ
−
k

δcTk

((
H(−λ+k )− Ĥr(−λ+k )

)
bk −

(
H(−λ−k )− Ĥr(−λ−k )

)
bk
)
.

Equivalently, since δck is arbitrary,

(
H(−λ+k )−H(−λ−k )

)
bk =

(
Ĥr(−λ+k )− Ĥr(−λ−k )

)
bk, (29)

for each k = 1, . . . , r. Notice this is a “distributed” interpolation condition acting across pairs
of reduced order poles. We may pursue a similar analysis using perturbations in bk to find
analogous left interpolation conditions:

cTk
(
H(−λ+k )−H(−λ−k )

)
= cTk

(
Ĥr(−λ+k )− Ĥr(−λ−k )

)
, (30)

for each k = 1, . . . , r.
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5.2 Perturbations in poles for second-order systems.

Pick 1 ≤ k ≤ r and consider the effect of arbitrary (but small) perturbations in ξk and ωk. Su-
pressing k-dependence in ξk and ωk (likewise in λ±k and associated residues, φk, ck, and bk):

Ĥ(ε)
r = Ĥr −

(
ω φ c bT

s2 + 2ξωs+ ω2
− (ω + δω)φ c bT

s2 + 2(ξ + δξ)(ω + δω)s+ (ω + δω)2

)

= Ĥr −
ω φ c bT

s2 + 2ξωs+ ω2

1−
(
1 + δω

ω

)(
s2+2(ξ+δξ)(ω+δω)s+(ω+δω)2

s2+2ξωs+ω2

)


= Ĥr −
ω φ c bT

s2 + 2ξωs+ ω2

1−
(
1 + δω

ω

)
1 +

(
2(ξδω+ωδξ)s+2ωδω

s2+2ξωs+ω2

)
+O

(
(δω)2 + (δξ)2

)
= Ĥr −

ω φ c bT

s2 + 2ξωs+ ω2

(
1−

(
1 +

δω

ω

)(
1− 2(ξδω + ωδξ)s+ 2ωδω

s2 + 2ξωs+ ω2

))
+O

(
(δω)2 + (δξ)2

)
= Ĥr −

ω φ c bT

s2 + 2ξωs+ ω2

(
1−

(
1 +

δω

ω

)(
1− 2(ξδω + ωδξ)s+ 2ωδω

s2 + 2ξωs+ ω2

))
+O

(
(δω)2 + (δξ)2

)
= Ĥr −

ω φ c bT

s2 + 2ξωs+ ω2

(
−δω
ω

+
2(ξδω + ωδξ)s+ 2ωδω

s2 + 2ξωs+ ω2

)
+O

(
(δω)2 + (δξ)2

)
= Ĥr + (∆1(s)− 2ω2∆2(s))φ δω − 2 s∆2(s)ω φ (ξδω + ωδξ) +O

(
(δω)2 + (δξ)2

)
where δξ, δω are O(ε) as ε→ 0.

We consider two regimes of perturbations. First, for small ε suppose that δω = O(ε) varies

arbitrarily and that δξ covaries with δω in such a way that
δξ

ξ
= −δω

ω
. Then,

〈
H− Ĥr, Ĥr − Ĥ(ε)

r

〉
= −

〈
H− Ĥr, ∆1

〉
φ δω

+
〈
H− Ĥr, ∆2

〉
2ω2φ δω +O

(
(δω)2 + (δξ)2

)
(31)

Referring to Lemma 2, observe that either of the necessary conditions (29) or (30) implies
immediately, 〈

H− Ĥr, ∆1

〉
= 0.

Now, Theorem 1 together with (31) implies

0 =
〈
H− Ĥr, ∆2

〉
= − 1

(λ+ − λ−)2

(
cT
(
H′(−λ+)− Ĥ′r(−λ+)

)
b + cT

(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

− 2

(λ+ − λ−)3

(
cT
(
H(−λ+)− Ĥr(−λ+)

)
b− cT

(
H(−λ−)− Ĥr(−λ−)

)
b
)

= − 1

(λ+ − λ−)2

(
cT
(
H′(−λ+)− Ĥ′r(−λ+)

)
b + cT

(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

(32)
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Now, suppose that δξ = O(ε) varies arbitrarily as ε→ 0 and let δω = 0. Then,〈
H− Ĥr, Ĥr − Ĥ(ε)

r

〉
= −2

〈
H− Ĥr, s∆2

〉
φω2δξ +O

(
(δω)2 + (δξ)2

)
(33)

Theorem 1 together with (33) as ε→ 0 implies

0 =
〈
H− Ĥr, s∆2

〉
= − 1

(λ+ − λ−)2

(
λ+cT

(
H′(−λ+)− Ĥ′r(−λ+)

)
b + λ−cT

(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

− λ+ + λ−

(λ+ − λ−)3

(
cT
(
H(−λ+)− Ĥr(−λ+)

)
b− cT

(
H(−λ−)− Ĥr(−λ−)

)
b
)

= − 1

(λ+ − λ−)2

(
λ+cT

(
H′(−λ+)− Ĥ′r(−λ+)

)
b + λ−cT

(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

(34)

The conditions (32) and (34) can be summarized as:

[
1 1
λ+ λ−

] cT
(
H′(−λ+)− Ĥ′r(−λ+)

)
b

cT
(
H′(−λ−)− Ĥ′r(−λ−)

)
b

 =

(
0
0

)

Since λ+ 6= λ−, we find the bitangential condition: cTH′(−λ±)b = cT Ĥ′r(−λ±)b.

Reinstating the k-dependence, we find the further necessary conditions

cTkH′(−λ+k )bk = cTk Ĥ′r(−λ+k )bk and cTkH′(−λ−k )bk = cTk Ĥ′r(−λ−k )bk, (35)

for each k = 1, . . . , r.

6 Second-order Port-Hamiltonian Systems

We modify the set of second-order models that define Qr ⊂ Hm×p2 so that they are in addition,
port-Hamiltonian.

Introduce momentum degrees-of-freedom as pr = Mrẋr. Then the model systems in Qr may be
rewritten as (

ẋr
ṗr

)
=

[
0 I
−I −Dr

] [
Kr 0
0 M−1

r

](
xr
pr

)
+

[
0

Br

]
u (36)

yr =
[

Cr 0
]( xr

pr

)
(37)

Imposing port-Hamiltonian structure requires only changing the state-output map to

yr =
[

0 BT
r

] [ Kr 0
0 M−1

r

](
xr
pr

)
= BT

r ẋr (38)
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Define the set of p × p matrix-valued transfer functions associated with second-order, modally
damped dynamical systems with port-Hamiltonian structure:

Pr =

sBT
r (s2Mr + sDr + Kr)

−1Br

∣∣∣∣∣∣
Mr,Dr,Kr ∈ Rr×r SPD,
Br ∈ Rr×p,Cr ∈ Rm×r,
and DrM

−1
r Kr = KrM

−1
r Dr


We follow a directly analogous path of development as before.

Suppose Ĥr(s) = sB̂T
r (s2M̂r + sD̂r + K̂r)

−1B̂r ∈ Pr solves∥∥∥H− Ĥr

∥∥∥
H2

= min
Hr∈Pr

‖H−Hr‖H2 . (39)

Using the same state-space transformation introduced before, we may write now

Ĥr(s) =

r∑
k=1

ωk φk s bk b
T
k

s2 + 2 ξk ωk s+ ω2
k

=

r∑
k=1

ωk φk s bk b
T
k

(s− λ+k )(s− λ−k )
;

where scale factors, φk ≥ 0, are introduced so that ‖bk‖ = 1. Notice that Ĥr(s)
T = Ĥr(s).

6.1 Perturbations in residues: second-order port-Hamiltonian case.

Pick 1 ≤ k ≤ r, consider an arbitrary δbk ∈ Rm with ‖δbk‖ = 1, and define a perturbation of

Ĥr that involves a small variation in the kth vector residue in the direction of δbk:

Ĥ(ε)
r = Ĥr −

(
ωk φk s bk b

T
k

(s− λ+k )(s− λ−k )
− ωk φk s (bk + εδbk) (bk + εδbk)T

(s− λ+k )(s− λ−k )

)
= Ĥr + ε

ωk φk s

(s− λ+k )(s− λ−k )

(
δbk b

T
k + bk δb

T
k

)
+O(ε2)

Optimality of Ĥr implies that as ε→ 0:∣∣∣∣∣
〈

H− Ĥr, ε
ωk φk s

(
δbk b

T
k + bk δb

T
k

)
(s− λ+k )(s− λ−k )

〉
H2

∣∣∣∣∣ = O(ε2),

which implies in turn,

0 =

∣∣∣∣∣
〈

H− Ĥr,
s
(
δbk b

T
k + bk δb

T
k

)
(s− λ+k )(s− λ−k )

〉
H2

∣∣∣∣∣
=
(
δbTk

(
H(−λ+k )− Ĥr(−λ+k )

)
bk − δbTk

(
H(−λ−k )− Ĥr(−λ−k )

)
bk
)

+
(
δbTk

(
H(−λ+k )T − Ĥr(−λ+k )T

)
bk − δbTk

(
H(−λ−k )T − Ĥr(−λ−k )T

)
bk
)

=δbTk
((

H(−λ+k ) + H(−λ+k )T
)
bk −

(
H(−λ−k ) + H(−λ−k )T

)
bk

− 2
(
Ĥr(−λ+k )− Ĥr(−λ−k )

)
bk
)
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Denote the symmetric part of a p × p matrix M as symm(M) = 1
2 (M + MT ). Since δbk is

arbitrary,

(
symm

[
H(−λ+k )

]
− symm

[
H(−λ−k )

])
bk =

(
Ĥr(−λ+k )− Ĥr(−λ−k )

)
bk, (40)

for each k = 1, . . . , r.

6.2 Perturbations in poles: second-order port-Hamiltonian case.

Pick 1 ≤ k ≤ r and consider the effect of arbitrary (but small) perturbations in ξk and ωk. Su-
pressing k-dependence in ξk and ωk (likewise in λ±k and associated residues, φk, , and bk):

Ĥ(ε)
r = Ĥr −

(
ω φ s b bT

s2 + 2ξωs+ ω2
− (ω + δω)φ s b bT

s2 + 2(ξ + δξ)(ω + δω)s+ (ω + δω)2

)

= Ĥr −
ω φ s b bT

s2 + 2ξωs+ ω2

1−
(
1 + δω

ω

)
1 +

(
2(ξδω+ωδξ)s+2ωδω

s2+2ξωs+ω2

)


= Ĥr −
ω φ s b bT

s2 + 2ξωs+ ω2

(
1−

(
1 +

δω

ω

)(
1− 2(ξδω + ωδξ)s+ 2ωδω

s2 + 2ξωs+ ω2

))
+O

(
ε2
)

= Ĥr −
ω φ s b bT

s2 + 2ξωs+ ω2

(
−δω
ω

+
2(ξδω + ωδξ)s+ 2ωδω

s2 + 2ξωs+ ω2

)
+O

(
ε2
)

= Ĥr + φ δω (s∆1(s)− 2ω2 s∆2(s))− 2ω φ (ξδω + ωδξ) s2∆2(s) +O
(
ε2
)

where we take c = b in Lemma 2 and δξ, δω are O(ε) as ε→ 0.

We consider two regimes of perturbations. First, for small ε suppose that δω = O(ε) varies

arbitrarily and that δξ covaries with δω in such a way that
δξ

ξ
= −δω

ω
. Then,

〈
H− Ĥr, Ĥr − Ĥ(ε)

r

〉
= −φ δω

〈
H− Ĥr, s∆1

〉
+2ω2φ δω

〈
H− Ĥr, s∆2

〉
+O

(
ε2
)

(41)

Referring to Lemma 2, observe that the necessary condition (40) implies immediately,〈
H− Ĥr, s∆1

〉
= 0.

Now, Theorem 1 together with (41) implies Theorem 1 together with (33) as ε→ 0 implies

0 =
〈
H− Ĥr, s∆2

〉
= − 1

(λ+ − λ−)2

(
λ+bT

(
H′(−λ+)− Ĥ′r(−λ+)

)
b + λ−bT

(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

− λ+ + λ−

(λ+ − λ−)3

(
bT
(
H(−λ+)− Ĥr(−λ+)

)
b− bT

(
H(−λ−)− Ĥr(−λ−)

)
b
)

= − 1

(λ+ − λ−)2

(
λ+bT

(
H′(−λ+)− Ĥ′r(−λ+)

)
b + λ−bT

(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

(42)

22



Now, suppose that δξ = O(ε) varies arbitrarily as ε→ 0 and let δω = 0. Then,〈
H− Ĥr, Ĥr − Ĥ(ε)

r

〉
= −2φω2δξ

〈
H− Ĥr, s

2 ∆2

〉
+O

(
ε2
)

(43)

Theorem 1 together with (43) as ε→ 0 implies

0 =
〈
H− Ĥr, s

2 ∆2

〉
=

1

(λ+ − λ−)2

(
(λ+)2bT

(
H′(−λ+)− Ĥ′r(−λ+)

)
b + (λ−)2bT

(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

− 2λ+ λ−

(λ+ − λ−)3

(
bT
(
H(−λ+)− Ĥr(−λ+)

)
b− bT

(
H(−λ−)− Ĥr(−λ−)

)
b
)

=
1

(λ+ − λ−)2

(
(λ+)2 bT

(
H′(−λ+)− Ĥ′r(−λ+)

)
b

+ (λ−)2 bT
(
H′(−λ−)− Ĥ′r(−λ−)

)
b
)

(44)

The conditions (41) and (44) can be summarized as:

[
λ+ λ−

(λ+)2 (λ−)2

] bT
(
H′(−λ+)− Ĥ′r(−λ+)

)
b

bT
(
H′(−λ−)− Ĥ′r(−λ−)

)
b

 =

(
0
0

)

Since λ+ 6= λ−, we find the bitangential conditions: bTH′(−λ±)b = cT Ĥ′r(−λ±)b.

Reinstating the k-dependence, we find the further necessary conditions

bTkH′(−λ+k )bk = bTk Ĥ′r(−λ+k )bk and bTkH′(−λ−k )bk = bTk Ĥ′r(−λ−k )bk, (45)

for each k = 1, . . . , r.

7 Conclusions

We have derived necessary conditions that must be satisfied by the best H2-approximating
reduced-order model that is also constrained to have particular structural features such as being
port-Hamiltonian or second-order. Future work will address the construction of algorithms that
can be used to find such systems systematically.
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