
Max Planck Institute Magdeburg
Preprints

Sergey Dolgov, John W. Pearson, Dmitry V. Savostyanov,

Martin Stoll

Fast tensor product solvers for

optimization problems with fractional

differential equations as constraints

MPIMD/14-25 January 9, 2015

FÜR DYNAMIK KOMPLEXER

TECHNISCHER SYSTEME

MAGDEBURG

MAX−PLANCK−INSTITUT

Abstract

Fractional differential equations have recently received much attention within
computational mathematics and applied science, and their numerical treatment
is an important research area as such equations pose substantial challenges to ex-
isting algorithms. An optimization problem with constraints given by fractional
differential equations is considered, which in its discretized form leads to a high-
dimensional tensor equation. To reduce the computation time and storage, the
solution is sought in the tensor-train format. We compare three types of solution
strategies that employ sophisticated iterative techniques using either precondi-
tioned Krylov solvers or tailored alternating schemes. The competitiveness of
these approaches is presented using several examples.

Imprint:

Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg

Publisher:
Max Planck Institute for
Dynamics of Complex Technical Systems

Address:
Max Planck Institute for
Dynamics of Complex Technical Systems
Sandtorstr. 1
39106 Magdeburg

http://www.mpi-magdeburg.mpg.de/preprints/

http://www.mpi-magdeburg.mpg.de/preprints/

1 Introduction

While the study of derivatives of arbitrary order is a long-standing subject area [25],
its use in science and engineering has soared over recent years. Fractional calculus
is often used due to the inadequateness of traditional schemes to describe certain
phenomena, such as anomalous diffusion, anaelasticity [12] and viscoelasticity [38, 73].
The applications include electrical circuits [32, 60], electro-analytical chemistry [71],
biomechanics [23], and image processing [76].

Over the last decade many researchers have worked on efficient numerical schemes for
the discretization and solution of fractional differential equations (FDEs). Historically,
the finite difference-based discretization techniques are arguably the most popular
[42, 43, 58, 59, 60]. Adomian decomposition should be mentioned as a popular semi-
analytical approach [1], although its use is limited. Recently, (discontinuous) finite
element schemes for FDEs have also received considerable attention [13, 48, 75]. Since
the fractional differential operators are, in fact, integral operators, the matrix of the
corresponding linear system is usually dense, and the numerical complexity and storage
grow rapidly with the grid size, especially for the problems posed in higher dimensions
(e.g. three spatial plus a temporal dimension). To perform computations faster,
we compress the solution in the low-rank format, following the approach described
in [51, 37] and recently applied to fractional calculus in [62, 10].

Most commonly, the fractional calculus literature focuses on the solution of the
equation itself, the so-called ‘direct problem’. In this paper we consider the ‘inverse
problem’, namely the computation of the forcing term (right-hand side of the FDE),
that is best suited to describing a desired property or measured data. For this we study
an optimization problem with constraints given by FDEs. In the context of partial
differential equations (PDEs), problems of this type are often referred to as PDE-
constrained optimization problems and have been studied extensively over the last
decades (see [30, 72] for introductions to the field). Optimal control problems for FDEs
have previously been studied in literature such as [2, 3, 45, 46, 52, 61]. However, they
were mostly considered one-dimensional spatial domains, since the direct treatment of
higher dimensions was too expensive. To overcome computational challenges, in this
paper we rely on the recent advances in the development of numerical algorithms and
solvers, particularly on data-sparse low-rank formats.

The goal of our paper is to present efficient numerical methods that allow the fast
and accurate solution of the large optimization problem at hand. The paper is or-
ganized as follows. In Section 2.1 we recall some of the most important definitions
needed for fractional derivatives. This is followed by Section 2.2 where we introduce
the basic optimization problem subject to fractional differential equations posed in an
increasing number of dimensions, along with the discretization of both the objective
function and the differential equation. Section 3 presents three strategies that are well-
suited to solving the discretized problem. This is followed by a discussion of numerical
algorithms in Section 4 where we introduce the tensor-train format and several iter-
ative solvers, either of Krylov subspace type or using an alternating framework. The
effectiveness of our approach is shown in Section 5 where we compare our solvers using
several numerical experiments.

1

Another approach that has recently been studied by Burrage et al. is to consider
a matrix function approach to solve the discretized system (see [11] for details). Our
work here is motivated by some recent results in [59] where the discretization via finite
differences is considered in a purely algebraic framework. derivative, which in turn
leads to a tensor structured equation.

2 Fractional calculus and Grünwald formulae

In this section we briefly recall the concept of fractional derivatives, and use this to
state the matrix systems that result from discretizing the problems we consider using
a finite difference method. The literature on fractional derivatives is vast and we refer
to [14, 25, 27, 44, 56, 57] for general introductions to this topic.

2.1 The fractional derivative

In fractional calculus there are several definitions of fractional derivatives. The Caputo
and the Riemann-Liouville fractional derivatives [56] are among the most commonly
used in applications and we use this section to briefly recall their definitions.

For a function f(t) defined on an interval [a, b], the Caputo derivative of real order
α with n− 1 < α < n, n ∈ N, is defined as the following integral

D
C α
a t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(s)ds

(t− s)α−n+1
,

assuming that it is convergent (see [15, 25, 42, 56, 65] for more details). Based on
the discussion in [59], the Caputo derivative is frequently used for the derivative with
respect to time. The left-sided Riemann-Liouville derivative of real order α with
n− 1 < α < n, is defined by

D
RL α
a t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

f(s)ds

(t− s)α−n+1
,

for a < t < b. The right-sided Riemann-Liouville fractional derivative is given by

D
RL α
t b f(t) =

(−1)n

Γ(n− α)

(
d

dt

)n ∫ b

t

f(s)ds

(s− t)α−n+1
,

for a < t < b. Finally, the symmetric Riesz derivative of order α is the half-sum of the
left and right-side Riemann-Liouville derivative, i.e.,

D
R α

t f(t) =
1

2

(
D

RL α
a t f(t) + D

RL α
t b f(t)

)
.

In this work we do not advocate a particular method that is most suitable for the
description of a natural phenomenon: we simply want to illustrate that the above
formulations of FDEs, when coupled with certain types of discretization approaches,
lead to similar structures on the discrete level. Our goal is to give guidelines and offer
numerical schemes for the efficient and accurate solution of problems of various forms.

2

2.2 Model problems

In this section we introduce FDE-constrained optimization problems. Consider the
classical misfit problem, where we want to minimize the difference between the state y
and the desired state (or observation) ȳ, with an additional regularization representing
the cost of the control u.

The constraint which links the state to the control is given by the following FDE(
D

C α
0 t − D

R β
x

)
y(x, t) + u(x, t) = f(x, t), (1a)(

D
C α
0 t − D

R β1
x1
− D

R β2
x2

)
y(x1, x2, t) + u(x1, x2, t) = f(x1, x2, t), (1b)(

D
C α
0 t − D

R β1
x1
− D

R β2
x2
− D

R β3
x3

)
y(x1, x2, x3, t) + u(x1, x2, x3, t) = f(x1, x2, x3, t)

(1c)

in one, two, and three dimensions, respectively. We consider the FDEs in space-
time cylinder domains Q := Ω × [0, T], with Ω ⊆ Rd, d ∈ {1, 2, 3}. We also denote
supp (ȳ) = Qȳ and supp (u) = Qu and assume that both the observation and the
control are supported over the cylinders Qȳ = Ωȳ × [0, T] and Qu = Ωu × [0, T]. Our
cost function is, therefore

J(y, u) :=
1

2
‖y − ȳ‖2L2(Qȳ) +

γ

2
‖u‖2L2(Qu) , (2)

where γ is a regularization parameter indicating at what ratio one prioritizes minimiz-
ing u, and obtaining y that is close in some sense to the desired state ȳ.

We will follow the discretize-then-optimize approach for PDE-constrained optimiza-
tion problems [9, 28] (details on the numerical treatment of FDEs can be found in
[42, 43, 56, 58, 59]). We consider Ω = [0, 1]d and assume that Ωu and Ωȳ are also
cubes. Each function is discretized by collocation on a uniform tensor product grid in
space and time

xk(ik) = ikhk, ik = 1, . . . , nk, hk =
1

nk + 1
, k = 1, 2, 3,

t(m) = mτ, m = 1, . . . , nt, τ =
T

nt
.

(3)

After discretization, vectors containing values of functions y, ȳ, u, f on the grid are de-
noted also as y, ȳ, u, f , respectively. We assume zero boundary conditions, y(x1, . . . , xd, t) =
0 if xk ≤ 0, xk ≥ 1 or t ≤ 0. If the grid sizes are the same in all spatial directions, we
denote h = h1 = h2 = h3.

2.3 Grünwald-Letnikov formula

A classical method for the discretization of FDEs is based on the formula of Grünwald
and Letnikov. In particular, for the spatial derivative we use its shifted version [42, 43]

D
RL β

0 x y(x) ≈ 1

hβ

n∑
i=0

gβ,iy(x− (i− 1)h) (4)

3

The coefficients gβ,i are defined by

gβ,i =
Γ(i− β)

Γ(−β)Γ(i+ 1)
= (−1)i

(
β

i

)
,

and can be computed efficiently using the recurrent formula [56]: gβ,0 = 1, gβ,i =(
1− β+1

i

)
gβ,i−1 for i = 1, 2, . . . , n.

Collecting all degrees of freedom into one matrix, we obtain the discretization of the
spatial Riemann-Liouville derivative as follows

D
RL β

0 x y → h−β



gβ,1 gβ,0 0 0

gβ,2 gβ,1 gβ,0
. . .

...

gβ,3 gβ,2 gβ,1 gβ,0
. . .

...
...

. . . gβ,2 gβ,1
. . .

. . .
...

...
. . .

. . .
. . .

. . . gβ,0 0
...

. . .
. . .

. . . gβ,2 gβ,1 gβ,0
gβ,n gβ,n−1 gβ,3 gβ,2 gβ,1


︸ ︷︷ ︸

Tβ



y1

y2

y3

...

...

yn−1

yn


︸ ︷︷ ︸

y

. (5)

The matrix Tβ is a Toeplitz matrix, which we discuss later in more detail. As in
[59] we approximate the spatial derivative of order 1 ≤ β ≤ 2 using the symmetric
Riesz derivative taken as the half sum of the left- and right-sided Riemann-Liouville
fractional derivatives. The resulting differentiation matrix is given by

Lβ :=
1

2

(
Tβ + T>β

)
.

The discretization in time is done analogously, using the Grünwald–Letnikov for-
mula [56, 65]

D
C α
0 t y(t) ≈ 1

τα

nt∑
m=0

gα,my(t−mτ), (6)

and the Caputo derivative leads to a Toeplitz matrix Cα of the lower triangular form

Cα = τ−α



gα,0 0 0

gα,1 gα,0
. . .

...

gα,2 gα,1 gα,0
. . .

...
...

. . . gα,1 gα,0
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . gα,1 gα,0 0

gα,nt gα,nt−1 gα,2 gα,1 gα,0


. (7)

4

2.4 Problem structure

Since the spatial grids introduced on Ω, Ωȳ and Ωu have Cartesian product struc-
ture, e.g. these domains are cubes in Rd, the discretized differential operators in (1b)
and (1c) can be written using tensor-product notation,

D
R β1

x1
+ D

R β2
x2

→ L = Lβ1 ⊗ In2 + In1 ⊗ Lβ2 ,

D
R β1

x1
+ D

R β2
x2

+ D
R β3

x3
→ L = Lβ1 ⊗ In2 ⊗ In3 + In1 ⊗ Lβ2 ⊗ In3 + In1 ⊗ In2 ⊗ Lβ3 ,

(8)

for d = 2 and d = 3, respectively. Here and later In denotes an identity matrix of size
n.

Assuming that L denotes the discretization of spatial derivatives (8), we obtain the
discretization of the FDEs as follows

Ay +M3u = g, A = Cα ⊗ In − Int ⊗ L, (9)

where n denotes the total number of space mesh points, M3u is the discretization of the
control term, and g represents boundary conditions, initial conditions and additional
forcing terms. Note that vectors y and g are of the size N = nnt, where n = n1n2

for a two-dimensional problem and n = n1n2n3 for a three-dimensional problem. The
vector u is formally of a smaller size, since we only consider its non-zero elements,
which are all on Qu ⊆ Q. Denoting the numbers of grid points on Ωu as n′, and hence
the number of grid points in Qu is N ′ = n′nt, we conclude that M3 is the N × N ′
matrix. In our case of the collocation discretization, M3 contains unitary rows at
positions, corresponding to the grid points in Qu.

Using standard integration rules, we discretize the cost function (2) as follows

J(y, u) =
1

2
(y − ȳ)

>
M1 (y − ȳ) +

γ

2
u>M2u, (10)

where M1 and M2 contain the quadrature weights used to evaluate the norm. We
use a trapezoidal rule, that coincides with a rectangular rule due to zero boundary
conditions. We make the vector ȳ of size N . Since the function ȳ(x1, x2, x3, t) is
defined only on Ωȳ, we populate ȳ by zeros at the remaining points, lying in Ω\Ωȳ.
Let us denote by θȳ ∈ RN a binary vector, containing 1’s at indices belonging to Ωȳ.
Then

M1 = τh1 · · ·hd · diag (θȳ) , and M2 = τh1 · · ·hd · IN ′ . (11)

A standard Lagrangian approach results in the following discrete functional which
needs to be minimized:

Λ(y, u, p) = J(y, u) + p>V > (Ay +M3u− g) (12)

with p corresponds to the discretized adjoint variable p. The matrix V is used to asso-
ciate p with a grid function (see [9]), and is written similarly to (11), V = τh1 · · ·hd ·IN .

5

To obtain the required optimality conditions, we differentiate Λ with respect to y, u
and p. This leads to the following first order, Karush-Kuhn-Tucker (KKT), system: M1 0 A>V

0 γM2 M>3 V
V >A V >M3 0


︸ ︷︷ ︸

A

yu
p

 =

M1ȳ
0

V >g

 =:

f1

f2

f3

 , (13)

For the sake of simplicity we merge the matrix V into both A and M3 and proceed
with the following system matrix:

A =

M1 0 A>

0 γM2 M>3
A M3 0

 .
Note that the invertibility of the matrix follows from the constraint block [A M3]
having full-rank, and the fact that the (1, 1)-block is positive definite on the kernel of
the constraints, i.e.,[
−u>M>3 A−> u>

] [M1 0
0 γM2

] [
−A−1M3u

u

]
= u>M>3 A

−>M1A
−1M3u+γu>M2u > 0

(see [8]). There are various ways to solve the saddle point system and in the next
section we discuss several approaches.

3 Solution strategies

In this section we discuss possible methods to solve the system (13). The classical
monolithic approach is not applicable in our case: a direct solver is prohibitively
expensive due to the problem size. Therefore, we consider three types of iterative
methods: a low-rank Minres method applied to (13) and alternating iterative methods
applied to two variants of Schur complements.

3.1 Krylov solver and preconditioning

For linear systems the use of iterative methods of Krylov type [64] is well established.
For standard saddle point problems in particular this is a method of choice, and is
considered state of the art when the problem is of very high dimension (see [8, 22]).
Such a Krylov solver proceeds by building up a Krylov subspace

Kl(A, r0) = span
{
r0,Ar0, . . . ,Al−1r0

}
,

in terms of the initial residual vector r0. The solution at step l is then computed in
some optimal way within the Krylov subspace Kl(A, r0).

As the convergence can sometimes be very slow the problem is modified using a
preconditioning matrix P, i.e.,

Ay = f ⇔ P−1Ay = P−1f.

6

We again refer to [8, 22] for a detailed overview of preconditioners for saddle point
problems. In this paper, we follow a result presented in [47], where it was shown that
a good strategy when developing preconditioners for a saddle point system,[

Φ ΨT

Ψ 0

]
y = f,

is based on efficient and cheap to evaluate approximations Φ̃ and S̃ of the (1, 1)-block
Φ and the (negative) Schur complement S := ΨΦ−1Ψ>, respectively. This leads to
preconditioners of the form

P =

[
Φ̃ 0

0 S̃

]
or P =

[
Φ̃ 0

Ψ −S̃

]
.

For our problem, we commence with the approximation of the following (1, 1)-block:

Φ =

[
M1 0
0 γM2

]
.

In the case of full observation and control, Ωȳ = Ωu = Ω, all Mi, i = 1, 2, 3, are simply
scaled identity matrices. They can be easily inverted, so Φ may be “approximated”
exactly. For the Schur complement S = ΨΦ−1Ψ> with the constraint matrix Ψ =
[A M3] it is typically much harder to find a robust approximation. For this we study
the structure of the Schur complement further:

S = AM−1
1 A> +

1

γ
M3M

−1
2 M>3 . (14)

The authors have recently obtained robust Schur complement approximations using a
matching approach [53, 54, 70] that in our case leads to

S̃ = ÃM−1
1 Ã>, (15)

with Ã = −A + Ĩ and Ĩ = Int ⊗ 1√
γ In. The term Ĩ is chosen so that the outer term

in the above Schur complement approximation accurately reflects the second term of
the exact Schur complement, that is ĨM−1

1 Ĩ> ≈ 1
γM3M

−1
2 M>3 .

Before discussing the efficient solution of the block Ã, which is needed for the efficient
evaluation of the Schur complement preconditioner, we briefly analyze the effective-
ness of our Schur-complement approximation. It is clear that the effectiveness of our
solver for the matrix system depends to a large extent on how well the exact Schur
complement as given in (14) is represented by our approximation (15). We measure

this by considering the eigenvalues of the preconditioned Schur complement S̃−1S, or
(following [55]), by examining the Rayleigh quotient

R :=
v>Sv

v>S̃v
,

for any non-zero v ∈ RN .

7

Theorem 1 Consider the FDE-constrained control problem (1)–(2) with Grünwald-
Letnikov discretizations (5), (7) on the same cubic domain Ω = Ωȳ = Ωu for the

observation, control and system state. Then it holds that λ(S̃−1S) ∈ [1
2 , 1).

Proof. From Ω = Ωȳ = Ωu it follows that M1 = M2 = M3 = τhdIN . Following [53],
we write

R =
a>1 a1 + a>2 a2

(a1 + a2)>(a1 + a2)
,

where a1 = 1√
τhd

(
C>α ⊗ In − Int ⊗ L>

)
v, a2 =

√
τhd

γ v, using the form of M1, M2,

M3. We first note that a>2 a2 = τhd
γ v>v > 0. This means that we may write

1

2
(a1 − a2)>(a1 − a2) ≥ 0 ⇔ a>1 a1 + a>2 a2 ≥

1

2
(a1 + a2)>(a1 + a2) ⇔ R ≥ 1

2
.

To prove the upper bound for R, we now consider the quantity

a>1 a2 + a>2 a1 =
1
√
γ
v>
(
(Cα + Cα)> ⊗ In − Int ⊗ (L+ L>)

)
v.

It has been shown in [10, Lemma 1] that the matrix Int ⊗ L is negative semi-definite
– we can therefore write that v>

(
Int ⊗ (L+ L>)

)
v = 2v> (Int ⊗ L) v < 0, using the

symmetry of L.
The matrix Cα+C>α is symmetric positive definite for α < 1. This can be argued by

the strict diagonal dominance as follows. It is clear that the coefficient gα,k is positive
for k = 0 and negative for all k = 1, 2, . . . , if α < 1, so we need to show that

∑nt
k=0 gαk >

0. This follows from the binomial expansion (1 + z)α =
∑∞
k=0

(
α
k

)
zk: applying this

(convergent) sequence at z = −1 and using the properties of gαk gives
∑nt
k=0 gαk >∑∞

k=0 gαk =
∑∞
k=0

(
α
k

)
(−1)k = 0. Hence, we have that v>

(
(Cα + C>α)⊗ In

)
v > 0,

using the standard property of Kronecker product matrices that the eigenvalues of
K1 ⊗K2 are equal to those of K1 multiplied by those of K2 [41, Chapter 13].

Combining these findings gives us that a>1 a2 + a>2 a1 > 0. We therefore have that

R =
a>1 a1 + a>2 a2

a>1 a1 + a>2 a2 + a>1 a2 + a>2 a1
<
a>1 a1 + a>2 a2

a>1 a1 + a>2 a2
= 1.

The general case of incomplete observation or control is analytically much more
challenging, but there are heuristic techniques [54] to augment the matrices M1 and

M3 and define fairly good (from computational experience) approximations Φ̃ and S̃.

3.2 First Schur Complement

This approach requires the invertibility of (1, 1)-block and is mainly concerned with
solving the (negative) Schur complement matrix

S = AM−1
1 A> +M3 (γM2)

−1
M>3 .

8

It proceeds by solving the following three systems

−Sp = f3 −AM−1
1 f1 −M3 (γM2)

−1
f2

(γM2)u = f2 −M>3 p
M1y = f1 −A>p

(16)

The disadvantage of this approach is that the invertibility of both observation and
control matrix is required for the existence of S. However, when this is indeed the case,
the matrices M1 and M2 are often simply scaled identities, and their inversion does
not lead to computational difficulties. As we observe through numerical experiments,
this scheme is superior when both observation and control are defined on the whole
domain.

3.3 Second Schur Complement

We now allow M1 and M2 to have different sizes, so that M3 becomes a rectangular
matrix. In contrast to M1, the matrix M2 can be assumed to be non-singular, since
it corresponds to the regularization term. Therefore, the following decomposition can
be verified straightforwardly:

A =

I −M1A
−1M3 M1

0 γM2 0
0 0 A

0 0 M1A
−1M3 (γM2)

−1
M>3 +A>

0 I (γM2)
−1
M>3

I A−1M3 0

 . (17)

The matrix A specifies the underlying PDE model, and is also invertible. Using this
factorization the solution of (13) can be computed as follows. We first cast the left
factor of the Schur complement to the right-hand side via solving

Af̃3 = f3, (γM2) f̃2 = f2, Ag2 = M3f̃2

and computing f̃1 = f1 + M1g2 −M1f̃3. Note that if f2 = 0 as in (13), it is trivially
observed that g2 = 0. Now we solve the following systems:(

M1A
−1M3 (γM2)

−1
M>3 +A>

)
p = f̃1,

(γM2)u = f2 −M>3 p,
Ay = f3 −M3u.

(18)

Since the matrix M2 is often easily invertible, i.e., it is a scaled identity for our prob-
lem, and the matrix A has Kronecker-product structure, the action of their inverses
by vectors can be computed efficiently using tensor product algorithms.

The computation of p is more complicated: we have to assemble the Schur comple-
ment first, which itself requires matrix inversion. We cast this problem as the solution
of a larger linear system: we assemble Â = A⊗ IN and solve

Âs = vec
(
M3 (γM2)

−1
M>3

)
, s = vec(S), (19)

9

where vec(·) stretches matrix entries to a vector. Now the first matrix in (18) reads(
M1S +A>

)
.

In tensor product representations, the storage complexity of Â is not much higher
than that of A. A certain difficulty arises from the storage of s: while A has a
convenient tensor product structure, its inversion may consume a considerable amount
of memory even in a compressed form. This occurs, for example, if the control is given
on the entire domain, and the right-hand side in (19) is an identity matrix. Fortunately,
in practically interesting cases of a small control domain, the column size of M3 is also
small. The right-hand side in (19) is now a low-rank matrix, which yields smaller
storage requirements for s to achieve the same accuracy.

4 Numerical algorithms

We now wish to discuss solvers for the matrix systems (13)–(19). While for the one-
dimensional PDE the problem has similarities to saddle point problems involving ma-
trix equations of Sylvester-type [68], the higher-dimensional setup requires the use of
more specialized tensor solvers. In particular we discuss the tensor-train format in-
troduced in [49]. We first introduce the tensor-train decomposition and then discuss
possible solvers.

4.1 The tensor-train decomposition

In a one-dimensional problem, where we separate the spatial and time variable, a
suitable approach for the FDE problem is a matrix based low-rank decomposition of
Krylov vectors. While this is an important case that we discuss in the next section
in some more detail, in higher dimensions even low-rank factors become infeasible.
Further data compression can be achieved with more advanced high-dimensional tensor
product decompositions. In this paper we use the simple, but robust, Tensor Train
(TT) format and its extension, the Quantized Tensor Train (QTT) decomposition,
that we now introduce.

The TT format is derived by applying the low-rank approximation recurrently [49].
Given a d-index array y = [y(i1, . . . , id)], with indices varying in ranges ik = 1, . . . , nk,
k = 1, . . . , d, we may reshape a tensor y into a matrix Y1 ∈ Rn1×n2···nd by the grouping
of indices. To do this we introduce the notation

i2 . . . id = i2 + (i3 − 1)n2 + · · ·+ (id − 1)n2n3 · · ·nd−1, (20)

and define Y1(i1, i2 . . . id) = y(i1, . . . , id) for all admissible index values. Since Y1 is a
matrix, we may apply the low-rank singular value decomposition (SVD):

Y1 ≈ U1Σ1V
>
1 , where U1 ∈ Rn1×r1 , V1 ∈ Rn2···nd×r1 .

The first factor U1 is of moderate dimension, and can be stored as y
(1)
α1 (i1) = U1(i1, α1),

where α1 = 1, . . . , r1. The remaining matrix Σ1V
>
1 depends on indices α1 and i2 . . . id.

10

Now we regroup these indices as follows:

Y2(α1i2, i3 . . . id) = Σ1(α1, α1)V >1 (α1, i2 . . . id),

and compute the next SVD,

Y2 ≈ U2Σ2V
>
2 , where U2 ∈ Rr1n2×r2 , V2 ∈ Rn3···nd×r2 . (21)

Again, U2 can be reshaped to a moderately-sized 3D tensor y
(2)
α1,α2(i2) = U2(α1i2, α2),

and the decomposition continued for Σ2V
>
2 . Finally, we arrive at the TT format:

y(i1, . . . , id) ≈
r1,...,rd−1∑

α1,...,αd−1=1

y(1)
α1

(i1)y(2)
α1,α2

(i2) · · ·y(d−1)
αd−2,αd−1

(id−1)y(d)
αd−1

(id), (22)

with the total storage estimateO(dnr2), where r & rk are called TT ranks, and n & nk.
A similar construction is introduced for discretized operators in high dimensions.

Given a matrix A =
[
A(i1 . . . id, j1 . . . jd)

]
∈ R(n1···nd)×(n1···nd), we decompose it as

A(i1 . . . id, j1 . . . jd) =

R1,...,Rd−1∑
β1,...,βd−1=1

A
(1)
β1

(i1, j1)A
(2)
β1,β2

(i2, j2) · · ·A(d)
βd−1

(id, jd), (23)

which is consistent with the Kronecker product A = A(1) ⊗A(2) in the case d = 2 and
R1 = 1, and allows a natural multiplication with (22), returning the result in the same
form.

In the course of computing the matrix-by-vector product f = Ay, the TT ranks
of A and y are multiplied, i.e. rk(f) = Rk(A)rk(y), k = 1, . . . , d − 1. In many
cases they are unnecessarily large for achieving the required accuracy. However, as
soon as f is already written in the format, its SVD re-compression steps, e.g. (21),
can be implemented without high-dimensional tensors appearing. Only QR and SVD
decompositions of nr × r matrices are involved, cf. Section 4.2. The total complexity
of this procedure is O(dnr3), which opens up the possibility of using any standard
iterative method, such as Minres, as soon as r remains moderate during the course
of the iterations.

The multi-index concept (20) allows us to compress even “one-dimensional” matrices
and vectors, which lack a method for separating variables at first glance. Let us
consider y = [y(i)] ∈ Rn, with n = 2l. Then we may write i in the binary coding,

i = i1 . . . il = i1 + 2(i2 − 1) + · · ·+ 2l−1(il − 1), is ∈ {1, 2}, s = 1, . . . , l.

As a result, a vector y is reshaped to an l-dimensional tensor y, i.e. y(i1, . . . , il) = y(i),
and the TT approximation can be applied to y. The resulting TT format was called
the Quantized TT (QTT) [35], cf. the term quantizer in video compression. If the TT
ranks of y are moderate, we may claim a logarithmic reduction of the total storage,
O(lr2) = O(log n).

For many elementary functions and operators, their TT formats can be written an-
alytically, for example, the discretized Laplace operator [34], the sine, exponential and

11

polynomial functions, sampled on uniform grids in one [35, 50] and many dimensions
[16, 36].

A very important class of matrices, admitting low-rank QTT approximations, are
Toeplitz matrices [33]. Given a vector of Toeplitz coefficients [gα,k] (see Section 2.2)
in the QTT format with the rank bound r, the Toeplitz matrices Cα, Lβ can be ana-
lytically constructed in the QTT format with rank bound 2r. This gives us theoretical
support that at least the input data in our problem (13) is well-representable in tensor
formats.

4.2 Tensor product Krylov methods

For expository purposes we start the discussion by considering the case with one spatial
and one temporal dimension, which leads to a matrix valued problem. Following this
we discuss the more general tensor-valued equation and the corresponding solvers.

Matrix case

It was recently noted [70] that the vectors y, u, p ∈ Rnnt for space-time saddle point
problems can be written as

y = vec(Y) = vec([y1, . . . , ynt]),

u = vec(U) = vec([u1, . . . , unt]),

p = vec(P) = vec([p1, . . . , pnt]).

Note that we can now perform any iterative scheme in matrix form for the unknowns
rather than in vector form. This can best be seen by exploiting the identity

(−Cα ⊗ In + Int ⊗ L) vec(Y) = vec(−InY C>α + LY I>nt),

and then neglecting the vec operator on the right-hand-side. Additionally one can
now use a low-rank decomposition, for instance via the singular value decomposition
(SVD), such that Y = Y1Y

>
2 , U = U1U

>
2 , and P = P1P

>
2 are the solutions obtained

using a low-rank Krylov method. The main ingredients of such a scheme are that the
right-hand side and the initial guess are decomposed into low-rank form, which is then
maintained throughout the iteration. In more detail, assume that the initial residual
is defined by

RY = WY V
>
Y with WY ∈ Rn×r1 , VY ∈ Rnt×r1 , (24)

RU = WUV
>
U with WU ∈ Rn×r2 , VU ∈ Rnt×r2 , (25)

RP = WPV
>
P with WP ∈ Rn×r3 , VP ∈ Rnt×r3 , (26)

where ri � n. Every Krylov scheme now performs matrix-vector multiplications of
A and the initial residual given in (24)–(26). It is easy to see that this involves the

12

following multiplications:

(first block-row)
[
M1xWY L>WP −WP

]  V >Y
V >P
V >P Cα

 , (27)

(second block-row)
[
γM2xWU M>3xWP

] [V >U
V >P

]
, (28)

(third block-row)
[
LWY −WY M3xWU

]  V >Y
V >Y C

>
α

V >U

 , (29)

where we denote M1 = Int⊗M1x, M2 = Int⊗M2x, M3 = Int⊗M3x, with matrices Mix,
i = 1, 2, 3 corresponding to the spatial domains Ωȳ,Ωu. Since we always consider the
full time interval [0, T] in both observation and control domains, this decomposition
is possible.

The expressions above show that a matrix-vector product in matrix form can be
written as the product of a left factor and a right factor. We discuss this here in some
more detail. The expression (29) represents the third equation of the KKT conditions.
It is also clear that the two factors have an increased rank compared to the original
factors, for instance VU and WU . Hence a truncation of all the factors after the matrix-
vector products, via a truncated SVD or a QR decomposition, is used to construct new
factors {

W̃P , ṼP

}
= Tε

[LWY −WY M3xWU

]
,

 V >Y
V >Y C

>
α

V >U

 .

The construction of such a truncation function Tε for the matrix case is further de-
scribed in [40, 70]. We have now shown that it is possible to maintain the initial
low-rank structure throughout a Krylov method. We now briefly discuss the tensor
case.

Tensor case

The previously discussed matrix setup is of course a special case of the more general
tensor problem.

As we noted, algebraic operations (matrix, scalar products and additions) and the
SVD re-compression procedure in the TT format allows to rewrite any classical iter-
ative method, such that it keeps all vectors in the tensor format, and performs only
structured operations [4, 17, 40]. Let us denote the compression (or truncation) pro-
cedure from a vector y to a vector ỹ ≈ y as

ỹ = Tε(y),

where by ε we denote the truncation accuracy in the Frobenius norm. In particular,
the TT-Minres algorithm can be written as shown in Algorithm 1.

Again the convergence behavior of the Minres algorithm depends on the system
parameters and, in order to achieve robust convergence, we need to construct a suitable
preconditioner.

13

Require: Right-hand side f , initial vector y in the TT format, matrix A as a MatVec

procedure g = Tε(Ay), preconditioner P (possibly identity), accuracy ε.
Ensure: Improved solution y.
1: Start: compute v2 = Tε(f −Ay), z1 = Tε(Pz2), γ1 =

√
〈z1, v2〉.

2: Initialize c1 = c2 = γ0 = 1, s1 = s2 = 0, η = γ1, v1 = w1 = w2 = [0, . . . , 0]
>

.
3: Iterations:
4: for j = 1, 2, . . . ,m do
5: z1 = z1/γ1, v3 = Tε(Az1).

6: δ = 〈z1, v3〉, v3 = Tε
(
v3 − δ

γ1
v2 − γ1

γ0
v1

)
. {Orthogonalize the Krylov vector}

7: z2 = Tε(Pv3), γ2 =
√
〈z2, v3〉.

8: α0 = c1δ − c0s1γ1, α1 =
√
α2

0 + γ2
2 , α2 = s1δ + c0c1γ1, α3 = s0γ1.

9: c0 = c1, c1 = α0/α1, s0 = s1, s1 = γ2/α1.
10: w3 = 1

α1
Tε (z1 − α3w1 − α2w2). {Orthogonalize the preconditioned vector}

11: y = Tε (y + c1ηw3). {Correct the solution}
12: η = −s1η, γ0 = γ1, γ1 = γ2, v1 = v2, v2 = v3, z1 = z2, w1 = w2, w2 = w3.
13: if |η| < ε

√
〈b,Pb〉 then Stop.

14: end for

Algorithm 1: TT-Minres

Preconditioning

We have now established the use of a low-rank or tensor Krylov method and have previ-
ously discussed block-preconditioners. It is now crucial to evaluate the preconditioners
P given by the block-diagonal matrix/tensor in Section 3.1.

In the matrix case, the inverse of S̃ can be approximated by employing low-rank
methods for Sylvester equations to approximately solve for Ã and Ã>. Note that
both of these operations mean approximately solving Sylvester-type equations, and
computing one matrix multiplication.

The solution of these matrix equations is of crucial importance in many areas of
science and engineering. While direct methods such as the Bartels–Stewart algorithm
[24] are suitable for moderate matrix sizes, larger problems require the use of iterative
schemes. Additionally the storage demand for the solution matrix is often vast, and
hence low-rank methods have become a standard tool to approximate the solution
of Sylvester equations [68]. The efficient use of alternating direction implicit (ADI)
methods was established over the last decade [5, 6, 7, 69]. The ADI scheme often gives
very good approximations but requires a set of shift parameters to guarantee conver-
gence, which can be difficult to obtain. Hackbusch and Grasedyck suggest the use of
a multigrid scheme [26] that maintains the low-rank nature of the solution throughout
the iteration. More reliable is the Krylov-plus-inverted-Krylov (KPIK) method, first
developed in [21, 67] for Lyapunov equations and later adapted for the case of Sylvester
equations [68]. This method approximates the solution of the Sylvester equation in
an extended Krylov subspace that involves two sequences with each of the system

14

matrices Cα and (L− 1√
γ In) in

Cα ⊗ In − Int ⊗ (L− 1
√
γ
In).

Additionally, the sequence requires the inverse or approximate inverse of both Cα and
(L− 1√

γ In). Since they are Toeplitz matrices, we can employ fast iterative solvers using

circulant preconditioners, following [10].
In the tensor case, for the matrix Ã, as well as for Schur complement approaches in

Section 3, we require an efficient tensor product solver, which is discussed next.

4.3 Alternating solvers

It is often observed that Krylov vectors may require much larger TT ranks than the
solution of the problem, and hence we now introduce methods that provide better
handles on the rank-growth of the approximate solution. Alternating iterative tensor
algorithms avoid this problem by directly seeking the elements of the tensor format for
the solution. The Alternating Least Squares method (see [39] and references there) was
developed to fit given data to a low-rank model. The Density Matrix Renormalization
Group (DMRG) algorithm [74] was initially proposed for solution of ground state
eigenvalue problems in quantum physics, and then extended to linear systems [19, 29,
31].

Given a TT format (22) for the approximate solution y, we may collect its first,
resp. last, k TT factors into the interface matrices,

Y (1:k)(i1 . . . ik, αk) =

r1,...,rk−1∑
α1,...,αk−1=1

y(1)
α1

(i1)y(2)
α1,α2

(i2) · · ·y(k)
αk−1,αk

(ik),

Y (k:d)(αk−1, ik . . . id) =

rk,...,rd−1∑
αk,...,αd−1=1

y(k)
αk−1,αk

(ik) · · ·y(d)
αd−1

(id),

(30)

where Y (1:k) ∈ Rn1···nk×rk and Y (k:d) ∈ Rrk−1×nk···nd . We then comprise the frame
matrix,

Y6=k = Y (1:k−1) ⊗ Ink ⊗
(
Y (k+1:d)

)>
∈ Rn1···nd×rk−1nkrk . (31)

Note that the column size of the frame matrix is exactly equal to the number of
elements in the TT block y(k). Therefore, the TT format (22) can be seen as a linear
map, induced by the frame matrix, i.e. y = Y6=ky

(k), where we denote by y(k) the

vector of elements of the k-th TT block, y(k)(αk−1ikαk) = y
(k)
αk−1,αk(ik).

Now let us consider Ay = f as an overdetermined system on y(k), provided the TT
format (22) is inserted instead of y, i.e. AY6=ky

(k) = f . A simple way to resolve this
system is to project it onto the frame matrix. We solve

Aky
(k) = fk, Ak = Y >6=kAY6=k, fk = Y >6=kf. (32)

15

Using the orthogonalizations of the TT blocks via the QR decompositions of their
matrix reshapings, we can always make the frame matrix orthogonal [66], that is
Y >6=kY6=k = I. This ensures the stability of the problem, i.e. cond(Ak) ≤ cond(A).
Iterating for all dimensions k = 1, . . . , d (hence the name “alternating”), we obtain
the simple one-block DMRG, or Alternating Linear Scheme (ALS) [29] algorithm.

However in this scheme all frame matrices, and hence all TT blocks, have fixed sizes,
prescribed by the TT ranks of the initial guess. This is very inconvenient: in most
cases it is difficult to predict TT ranks of the solution for a given accuracy, and we
would like to determine them adaptively. Another problem is the local convergence of
the ALS method [63]: the result is highly dependent on the initial guess and may give
an unsatisfactory approximation.

There are two principal ways to solve the first (technical) problem of the TT rank
adaptivity during the iterative process. Note that the main issue is how to increase the
ranks; to decrease them, it is sufficient to perform the SVD re-compression procedure,
as pointed out in Section 4.1. One way to increase the ranks gives the DMRG algorithm
in its initial, two-block version [74]. Instead of one block y(k), we update both y(k) and
y(k+1) at each step. We consider the two-block frame matrix

Y6=k,k+1 = Y (1:k−1) ⊗ Ink ⊗ Ink+1
⊗
(
Y (k+2:d)

)>
∈ Rn1···nd×rk−1nknk+1rk+1 , (33)

and solve effectively the two-dimensional problem

Ak,k+1y
(k,k+1) = fk,k+1, Ak,k+1 = Y >6=k,k+1AY6=k,k+1, fk,k+1 = Y >6=k,k+1f. (34)

The new superblock y(k,k+1) is then reshaped to a matrix Y 〈k,k+1〉 ∈ Rrk−1nk×nk+1rk+1 ,
and the low-rank decomposition Y 〈k,k+1〉 ≈ UΣV > is computed. The new rank r′k =
rankε(Y

〈k,k+1〉) is likely to differ from rk. After the SVD is computed, we use its factors
to rewrite y(k) and y(k+1), and replace rk := r′k. This maintains the orthogonality of
the frame matrices automatically.

This method has become the state-of-the-art in the simulation of quantum states of
spin chains due to its impressively fast convergence. It is enough to start from a random
low-rank initial guess and perform each SVD with the target threshold ε: the ranks
are determined adaptively to this tolerance. However, the outlined quantum state
problem is the extreme eigenvalue problem for a Hermitian matrix. For linear systems
with non-symmetric matrices, even this two-block DMRG method may converge to an
incorrect solution.

Another way to increase TT ranks is to enrich TT blocks explicitly. Suppose we
are iterating k = 1, . . . , d, then, after the solution of (32), we may expand

y(k)(ik) :=
[
y(k)(ik) z

(k)
k (ik)

]
, y(k+1)(ik+1) :=

[
y(k+1)(ik+1)

0

]
, (35)

where z
(k)
k ∈ Rrk−1×nk×ρk is some auxiliary tensor, and the zero-block in y(k+1) has

the corresponding sizes ρk×nk+1×rk+1. This step does not change the whole solution
y. However, when we proceed to the next block y(k+1), the interface matrix Y (1:k) and

16

Require: Matrix A, right-hand side f , initial guesses y and z in the TT formats.
Ensure: Improved solution y in the TT format.
1: while not converged or iteration limit is not hit do
2: Orthogonalize y and z s.t. Y (k:d) and Z(k:d) are orthogonal for k = 2, . . . , d.
3: for k = 1, . . . , d do
4: Build and solve (32) for the TT block y(k).

5: Update the residual block z(k) =
(
Z(1:k−1) ⊗ Ink ⊗

(
Z(k+1:d)

)>)>
(f −Ay).

6: if k < d then

7: Build the enrichment z
(k)
k =

(
Y (1:k−1) ⊗ Ink ⊗

(
Z(k+1:d)

)>)>
(f −Ay).

8: Perform the expansion (35).
9: Orthogonalize y(k) and z(k) s.t. Y (1:k) and Z(1:k) are orthogonal.

10: end if
11: end for
12: end while

Algorithm 2: AMEn method

the frame matrix Y6=k+1 carries z
(k)
k , so the Galerkin reduction (32) in the step k + 1

is performed to a wider basis than in the ALS method. This can not only increase the

TT rank by ρk, but also facilitate the convergence, if we select the augmentation z
(k)
k

properly.
The idea [20] is to combine the alternating iteration with the steepest descent

method. The latter updates the solution by adding the scaled residual, y := y + zh,
where z ≈ f −Ay and h is a scalar weight. If y and z are defined by their TT formats,
the summation is computed as

y(i1 . . . id) + hz(i1 . . . id) =
[
y(1)(i1) z(1)(i1)

] [y(2)(i2)
z(2)(i2)

]
· · ·
[
y(d)(id)
hz(d)(id)

]
.

Note that the first factor here has the same form as the enrichment of y(k) in (35);
therefore, (35) performs the first step of the TT format addition. This is sufficient,
since in the next step we solve (32) and recover correct z-related entries in y(k+1) that
minimize the energy function if A = A> > 0. Due to this property, the new method
was called AMEn (alternating minimal energy).

To compute z
(k)
k in practice, it is sufficient to provide a very rough approximation

of the residual. We prepare some initial guess for z in the TT format with ranks
ρ1, . . . , ρd−1 and update it towards f − Ay by the secondary ALS iteration solving
‖z − (f − Ay)‖2 → min. The entire procedure is summarized in Algorithm 2. Notice
also that after the enrichment (35) we need to orthogonalize y(k) explicitly in order to
make the frame matrices orthogonal.

In most cases, the enrichment ranks ρk . ρ . 10 are sufficient. To make the
computational complexity in Lines 4,5,7 independent of d, we reuse some intermediate
data during the subsequent iteration k = 1, . . . , d (see [18, 19, 20] for details).

17

5 Numerical results

We solve the problem (13) in the QTT format for different inputs and parameters,
and compare three procedures: the first Schur Complement scheme (16), where the
AMEn Algorithm 2 is applied to solve linear systems; the Second Schur Complement
scheme (18), again with the AMEn solver; and the Minres Algorithm 1 with the
preconditioner (15). Below we refer to these methods as “SC1”, “SC2” and “MR”,
respectively. In the MR approach, the linear systems with the matrices Ã and Ã>

are also solved using the AMEn method. The three components y, u and p and the
blocks in the matrix (13) are kept in separate TT formats. Since the matrix A has
considerable TT ranks (up to 20), it is not efficient to multiply it by vectors exactly
and then perform the SVD truncation. Instead, we approximate the matrix-by-vector
product iteratively using a special variant of Algorithm 2, where A = I and f = Ãy.
Further implementation details are given in the Appendix.

As a widely used error indicator, we consider the relative discrepancy of the state
vector y in the Frobenius norm. Given some reference vector y?, we denote

E(y?) =
‖y − y?‖2
‖y?‖2

. (36)

The examples were implemented on a base of the TT-Toolbox package1 and con-
ducted on one core of the MPI otto cluster, an Intel Xeon X5650 CPU at 2.67GHz,
in Matlab R2012a.

5.1 Complete data, two-dimensional space

In the first test both observation and control are defined on the whole domain [0, 1]2.
Therefore, M1 and M3 are identity matrices, and both Schur complements are well de-
fined. We investigate their performance and compare with the TT-Minres approach.

The constraint problem is the equation (1b) in 2 spatial variables plus time, with
α = 0.5, β1 = 1.5, β2 = 1.5 and f = 0. The level-l discretization grid contains
2l × 2l × 22l points, lying uniformly in space and time, i.e.,

x1(i) = ih, x2(j) = jh, t(k) = kτ,

i, j = 1, . . . , 2l, k = 1, . . . , 22l, h =
1

2l + 1
, τ = h2.

The target function is

ȳ(x1, x2, t) = 10 cos(10x1) sin(x1x2).

We vary the grid level l, the regularization parameter γ and the tensor approximation
tolerance ε. Note that we use the same threshold ε both for the tensor approximation
and also as the stopping tolerance for our numerical schemes.

1http://github.org/oseledets/TT-Toolbox, version Nov 10, 2014

18

http://github.org/oseledets/TT-Toolbox

Table 1: Complete data test. Left: CPU times (sec.), TT ranks and iterations vs. grid
level l. Right: discrepancies between solutions computed by SC2, Minres,
Full and SC1 schemes.

l SC1 SC2 MR Full SC2 MR Full
time rank time rank time rank iter time E(ySC1)

3 0.596 10 1.396 9 2.980 13 9 0.552 1.47e-6 2.24e-7 2.51e-7
4 0.489 12 1.532 14 4.823 20 11 7.695 2.45e-6 3.11e-7 2.90e-7
5 1.021 18 4.103 21 11.45 26 15 232.3 7.07e-6 5.97e-7 5.64e-7
6 2.280 22 11.69 27 24.70 36 15 7513 5.06e-5 8.63e-7 8.36e-7
7 5.061 25 27.61 36 83.99 49 15 – 2.00e-4 9.14e-7 –
8 10.46 28 55.45 41 245.7 62 15 – 8.16e-4 1.18e-6 –
9 18.90 29 99.94 45 984.9 78 17 – 2.41e-3 2.04e-6 –
10 28.03 29 175.1 51 3494 100 17 – 1.03e-2 5.27e-6 –
11 47.49 29 257.8 55 33005 255 25 – 2.18e-2 2.52e-5 –

Performance with respect to the grid size

We fix γ = 10−6, ε = 10−6, and vary the grid size in the range l = 3, . . . , 11. The
results are shown in Table 1. It can be seen that the iteration numbers for Minres are
rather robust with respect to the varying mesh-sizes. Nevertheless, the rank increase
with each refinement slows the method down significantly. The SC2 approach also
suffers from a rank increase but less significantly than the Minres approach. As this
is the most benign case with full observation and control domain, the SC1 method
performs outstandingly with almost no increase in the ranks for the final refinements.
We further compare the solutions of the three different approaches and can see that
the Minres and SC1 approach show the best coincidence.

To demonstrate the importance of the QTT compression, we also compare our ap-
proaches with the “Full” scheme, where (13) is solved via classical Minres with the full
storage of all vectors. Toeplitz matrices in A were multiplied by vectors via the FFT,
and the linear systems with Ã and Ã> from (15) were solved using the bicgstab
method. We observe a good agreement of the solutions, but the CPU time grows
dramatically and prevents calculations for l > 6.

Performance with respect to the regularization parameter (Table 2)

In the second experiment we examine the behavior of the methods with respect to the
regularization parameter γ. The grid level is l = 7, and ε = 10−6. We can see that
the computed state approaches the desired state further when γ gets smaller. Notice
that the CPU times of all methods decrease. It is reasonable that (13) becomes easier
to solve: since all domains coincide, in the limit γ → 0 we would just copy y = ȳ, i.e.
solve the linear system with the identity matrix. This is clearly reflected by the SC1
and MR methods. However, the SC2 is slower: its bottleneck is the inversion of A,
which is performed independently of γ.

19

Table 2: Complete data test. Left: CPU times (sec.) and discrepancies with the
observation data. Right: discrepancies with SC1.

γ SC1 SC2 MR SC2 MR
time E(ȳ) time E(ȳ) time E(ȳ) E(ySC1) E(ySC1)

10−2 23.91 9.33e-1 31.56 9.33e-1 4884 9.33e-1 4.53e-5 4.12e-5
10−4 14.47 3.31e-1 26.97 3.31e-1 707.0 3.31e-1 1.39e-4 6.94e-6
10−6 5.226 9.53e-2 27.72 9.53e-2 88.38 9.53e-2 1.76e-4 9.51e-7
10−8 1.354 5.27e-3 29.51 5.29e-3 17.18 5.27e-3 4.23e-4 1.18e-6
10−10 1.217 5.75e-5 31.26 4.28e-4 5.531 5.75e-5 4.24e-4 9.91e-7
10−12 1.189 1.57e-6 29.43 3.78e-4 2.450 5.75e-7 3.78e-4 1.48e-6

Table 3: Complete data test. Left: CPU times (sec.) of three methods vs. tensor
approximation tolerance ε. Right: discrepancies of SC2 and Minres with
SC1.

ε SC1 SC2 MR ‖ySC2−ySC1‖
‖ySC1‖

‖yMR−ySC1‖
‖ySC1‖

10−2 0.728 1.471 3.400 2.50e-1 7.06e-3
10−4 1.449 4.899 9.869 1.38e-2 1.01e-4
10−6 4.962 27.53 75.07 1.99e-4 9.11e-7
10−8 17.26 163.6 504.1 1.18e-6 8.57e-9
10−10 37.34 880.2 2846 3.76e-9 6.27e-10

Performance with respect to the approximation threshold (Table 3)

Finally, we fix l = 7, γ = 10−6, and vary ε from 10−1 to 10−10; we show the results in
Table 3. It is not surprising that all methods require more computing time to obtain
the desired accuracy. Note that ε is here the tolerance both for the tensor truncation
and for the stopping criterion of the iterative solvers. The discrepancies demonstrate
almost perfect linear dependence on ε.

5.2 Incomplete data, two-dimensional space

We now investigate the following more challenging scenario, reducing the observation

and control domains to Ωȳ = Ωu =
[

3
8 ,

5
8

]2
. Consequently, the first Schur Complement

scheme is not applicable, and we test the second approach. Other parameters are the
same as in the previous example.

Performance with respect to the grid size

The first parameter that we vary is the grid level l. The regularization parameter is
γ = 10−6, the approximation tolerance ε = 10−6, and the fractional orders are α = 0.5,
β1 = β2 = 1.5.

In this example, the Minres method converges very slowly, such that we could not

20

Table 4: Incomplete data test. Left: CPU times (sec.), TT ranks and iterations vs.
grid level l. Right: solution errors.

l SC2 MR Full SC2 MR Full
time rank time rank iter time E(y?) E(ȳ) E(y?) E(y?)

3 1.081 23 5.247 44 11 5.521 4.25e-7 2.42e-3 2.27e-4 8.31e-9
4 2.426 26 27.88 138 15 124.1 1.69e-6 9.12e-3 1.49e-4 8.93e-9
5 7.039 42 1018 752 17 3542 3.34e-6 1.82e-2 3.68e-4 3.53e-5
6 20.96 56 – – 1.33e-5 2.98e-2 – –
7 54.19 64 – – 4.29e-5 3.62e-2 – –
8 120.0 72 – – 3.21e-4 3.76e-2 – –
9 223.7 75 – – 1.28e-3 3.76e-2 – –
10 414.4 76 – – 4.25e-3 3.78e-2 – –
11 743.7 81 – – 1.05e-2 3.94e-2 – –

proceed for grids larger than l = 5. We observe low iteration numbers but the rank
increase is too dramatic for further mesh-levels.

To estimate the error in the solution, we compute the reference solution y? using
the second Schur Complement scheme with a smaller threshold ε? = 10−8. As an
important indicator for the incomplete observation and control, we also demonstrate
the deviation of the solution y from the prescribed data ȳ on the observation domain.
The results are shown in Table 4.

A weakness of the Schur Complement scheme is the growth of the error, asymptot-
ically by a factor 3 from level to level. This is because the condition number of the
system matrix grows like (2l)β , and so does the error when we compute the approxi-
mate inverse matrix in (19). This can be verified by solving (19) with a higher accuracy
(say, 10−8), while all other steps in (18) are performed with the same ε = 10−6. For

l = 9, it gives ‖ySC2−y?‖
‖y?‖ ≈ 1.58e-5 in 667 seconds. So, the loss of accuracy can be re-

moved by using a smaller tolerance. The computation time increases, but still remains
on a reasonable level.

Performance with respect to the regularization parameter (Table 5)

When the solution is controlled on a part of the domain, the influence of the regular-
ization parameter γ becomes more interesting numerically. As previously, we fix the
grid level to l = 7 and set ε = 10−6. The reference solution is computed with the
threshold ε? = 10−8. We omit the experiment with Minres, since it would require
very large TT ranks, and instead only investigate SC2.

In this test, the part M1A
−1M3 (γM2)

−1
M>3 of the Schur complement matrix in

(18) is indefinite. For small γ the whole Schur complement may become indefinite,
which makes the calculations difficult. Therefore, we are limited by the range of γ we
can experiment with. However, the scheme is quite reliable for γ ≥ 10−7. The solution
error is almost stable, and the complexity grows moderately. The discrepancy decays
asymptotically proportional to

√
γ, as expected.

21

Table 5: Incomplete data test. Left: CPU times (sec.) of the SC2 method vs. regu-
larization parameter γ. Right: solution errors.

γ time rank E(y?) E(ȳ)
10−1 37.66 44 1.65e-6 9.95e-1
10−2 41.62 47 1.01e-5 9.61e-1
10−4 47.02 52 3.67e-5 3.48e-1
10−6 54.65 64 4.40e-5 3.62e-2
10−7 74.23 68 6.42e-5 9.66e-3

Performance with respect to α and β (Fig. 1)

Since the order of a fractional derivative is a continuous quantity, it is interesting
to test the algorithms for a range of orders. In particular, in the first test we vary
α ∈ [0.1, 1] and β1 = β2 ∈ [1.1, 2]. We show two-dimensional plots of computation
times, TT ranks and errors in Fig 1.

It is interesting that TT ranks and CPU times increase not with the total differen-
tiation order, but towards 1 in both directions. The condition number of the Caputo
matrix Cα grows monotonously with α ∈ (0, 1]. The Caputo matrix is close to the
identity when α is small and turns to the standard first-order difference at α = 1.
However, the Riemann-Liouville matrix Lβ behaves differently: at β = 1, the matrix
is equal to the scaled second-order difference, L1 = h

2L2. When β > 1, the matrix Lβ
depends continuously on β, so the condition number is minimal near β = 1.2. This
inconsistency makes the problem harder to solve when β approaches 1. Even more
difficult are the cases β < 1 and α > 1: the matrices Cα and Lβ become indefinite,
and the tensor product solver struggles.

Nevertheless, for parabolic cases α ∈ (0, 1] and β ∈ (1, 2], our scheme is fairly robust.
The bottom left plot in Fig. 1 shows that the error remains at the level 10−4–10−5

for the entire range of orders of differentiation. The deviation from the target vector
(Fig. 1, bottom right) is also reasonable: the closer the orders are to zero, the closer
the operators are to identities, and hence they impose a less severe constraint to the
optimization of the distance ‖y − ȳ‖.

Performance with respect to β1 and β2 (Fig. 2)

We now fix α = 0.5, and vary β1, β2 within the range [1.1, 2]. The layout of Fig. 2 is
the same as in Fig. 1, only the CPU times are now presented without the logarithmic
scale, since they do not vary as strongly. Again, both CPU times and TT ranks
increase towards 1. As opposed to the picture w.r.t. α and β, there is an anisotropy
w.r.t. β1 and β2, since the target function ȳ(x1, x2) is not symmetric w.r.t. x1 and x2.
Both error indicators behave similarly to those in the previous figure.

22

Figure 1: Incomplete data test. CPU times, TT ranks and errors vs. α (x axis) and β
(y axis).

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

log10 (CPU time, sec.)

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

maximal TT rank

40

60

80

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

log10 E(y?)

−5.5

−5

−4.5

−4

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

log10 E(ȳ)

−2.5

−2

−1.5

−1

5.3 Three-dimensional problem, incomplete data

To verify the applicability of our technique to a significantly larger problem, we solve
the problem (1c) in a three-dimensional space domain plus time. We set Ω = [0, 1]3,
α = 0.5, β1 = β2 = β3 = 1.5, and f = 0. The target function is given by

ȳ(x1, x2, x3, t) = e−64r2

, r2 = (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2.

On discretization level l we use the uniform 2l × 2l × 2l × 22l grid. The observation

and control domains are Ωȳ = Ωu =
[

3
8 ,

5
8

]3
, with the regularization and stopping

tolerances given by γ = ε = 10−6.
In this example, the Minres method would be prohibitive computationally due to

the large TT ranks, so we investigate only the SC2 approach. In Table 6 we show the
performance w.r.t. the grid size. Again, the reference solution y? is obtained by the
SC2 method with accuracy ε? = 10−8. We observe that the behavior is qualitatively
the same as for the 2D problem with incomplete data. We see that the TT ranks stabi-
lize, and the CPU time tends to a linear growth with l, but the accuracy of the solution
deteriorates proportionally to the condition number of the system matrix, because so

23

Figure 2: Incomplete data test. CPU times, TT ranks and errors vs. β1 (x axis) and
β2 (y axis).

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

CPU time, sec.

40

60

80

100

120

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

maximal TT rank

50

60

70

80

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

log10 E(y?)

−5

−4.8

−4.6

−4.4

−4.2

−4

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

log10 E(ȳ)

−2.5

−2

−1.5

−1

does the accuracy of the matrix inversion in the Schur complement. Nevertheless, at
moderate grid levels (e.g. 7) the results are satisfactory, considering the fact that the
full problem of size 235 with a dense matrix is intractable.

In Fig. 3 we show volumetric plots of the solution, control and Lagrange multiplier
vectors at the final time t = 1, computed at the grid level l = 5. We see a good
agreement with the target solution. An interesting feature is the anisotropic structure
of the control. The 1.5-order fractional derivative possesses some properties of the
convection first-order operator. In particular, a positive force is exerted on the left
side of the center (the peak of the Gaussian): the (inverse) fractional operator moves
it to the right, towards the centered Gaussian distribution.

6 Conclusions

We have presented numerical algorithms for the optimization of an objective function
subject to a fractional differential equation constraint. For this we discussed the dis-
cretization of the differential equation via the well-known Grünwald-Letnikov finite
difference method. Using a classical Lagrangian approach we obtained a saddle point

24

Table 6: 3D test. Left: CPU times (sec.) and TT ranks of the SC2 method vs. grid
level l. Right: solution errors.

l time rank E(y?) E(ȳ)
3 1.253 21 4.58e-7 1.05e-2
4 5.425 43 2.22e-6 8.02e-3
5 19.96 71 9.43e-6 6.60e-3
6 61.11 83 7.62e-5 8.11e-3
7 135.5 85 4.84e-4 9.05e-3
8 302.8 86 2.27e-3 9.38e-3
9 583.6 86 9.92e-3 1.20e-2
10 941.6 86 5.54e-2 4.58e-2
11 1132 85 2.11e-1 1.73e-1

system of vast dimensionality representing the first order optimality conditions. We
showed that these systems have an inherent tensor product structure. For the efficient
solution of these systems we discussed three possible approaches. Two of these meth-
ods are variations of a Schur complement approach, and the third is a preconditioned
Krylov subspace solver. As the storage requirements are too large for all practically
relevant scenarios when using a more fundamental approach, we then introduced algo-
rithms working with a compressed storage format. Namely we utilized a tensor train
method, which was also amendable for a tensorized Minres solver as well as alter-
nating tensor solvers. We then illustrated the performance of these solvers on various
setups and showed their competitiveness for vast system dimensions.

Appendix. Implementation of the TT solvers

The AMEn Algorithm 2 for solution of linear systems is provided by the procedure
amen solve2.m in the TT-Toolbox, and for the fast approximation of products Ay and
A>y within Minres we used the procedure amen mv.m.

Despite the progress made using these methods, tensor product algorithms still re-
quire some parameter tuning for better performance. We used the Frobenius norm
of the error between two consecutive iterations as an error measure. This is spec-
ified by passing the parameters ‘trunc norm’,‘fro’ to amen solve2. To address
the ill conditioning of S in (16), for the SC1 method we take local restart = 100,
max full size = 2500 and tol exit = 5ε. the first two parameters increase the
accuracy of the solver for (32), and the third parameter removes unnecessary itera-
tions near a tolerance of ε by stopping at 5ε. Since the TT ranks of A−1 are rather
large, we set kickrank = 10 for (19). This allows to increase the ranks faster and
have fewer iterations. The Schur complement S in (18) is also ill-conditioned, and we
set local restart = 100 for this stage. Finally, in the preconditioning stage of the
Minres method, we start the AMEn algorithm using the given right-hand side as the
initial guess, as Ã is reasonably close to the identity matrix.

25

References

[1] G. Adomian, Solving Frontier problems of Physics: The decomposition method,
Kluwer Academic Publishers, 1994.

[2] O. P. Agrawal, A general formulation and solution scheme for fractional opti-
mal control problems, Nonlinear Dynam., 38 (2004), pp. 323–337.

[3] T. Akbarian and M. Keyanpour, A new approach to the numerical solution of
fractional order optimal control problems, Appl. Appl. Math., 8(2) (2013), pp. 523–
534.

[4] J. Ballani and L. Grasedyck, A projection method to solve linear systems in
tensor format, Numerical Linear Algebra with Applications, 20 (2013), pp. 27–43.

[5] U. Baur and P. Benner, Factorized solution of Lyapunov equations based on
hierarchical matrix arithmetic, Computing, 78 (2006).

[6] P. Benner and P. Kürschner, Computing real low-rank solutions of Sylvester
equations by the factored ADI method, MPI Magdeburg Preprint MPIMD/13-05,
May 2013.

[7] P. Benner, R.-C. Li, and N. Truhar, On the ADI method for Sylvester equa-
tions, J. Computat. Appl. Math., 233 (2009), pp. 1035–1045.

[8] M. Benzi, G. Golub, and J. Liesen, Numerical solution of saddle point prob-
lems, Acta Numer., 14 (2005), pp. 1–137.

[9] M. Benzi, E. Haber, and L. Taralli, A preconditioning technique for a
class of PDE-constrained optimization problems, Adv. Comput. Math., 35 (2011),
pp. 149–173.

[10] T. Breiten, V. Simoncini, and M. Stoll, Fast iterative solvers for fractional
differential equations, Submitted, (2014).

[11] K. Burrage, N. Hale, and D. Kay, An efficient implicit FEM scheme for
fractional-in-space reaction-diffusion equations, SIAM Journal on Scientific Com-
puting, 34 (2012), pp. A2145–A2172.

[12] M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids,
Rivista del Nuovo Cimento, 1 (1971), pp. 161–198.

[13] W. Deng and J. S. Hesthaven, Local discontinuous galerkin methods for frac-
tional diffusion equations, ESAIM: Math. Model. Num., 47 (2013), pp. 1845–1864.

[14] K. Diethelm, The analysis of fractional differential equations: an application-
oriented exposition using differential operators of Caputo type, Lecture Notes in
Mathematics, Springer, 2004.

26

[15] K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, Algorithms for the
fractional calculus: a selection of numerical methods, Comput. Method Appl. M.,
194 (2005), pp. 743–773.

[16] S. Dolgov and B. Khoromskij, Two-level QTT-Tucker format for optimized
tensor calculus, SIAM J. on Matrix An. Appl., 34 (2013), pp. 593–623.

[17] S. V. Dolgov, TT-GMRES: solution to a linear system in the structured tensor
format, Russ. J. Numer. Anal. Math. Model., 28 (2013), pp. 149–172.

[18] , Tensor product methods in numerical simulation of high-dimensional dy-
namical problems, PhD thesis, University of Leipzig, 2014.

[19] S. V. Dolgov and I. V. Oseledets, Solution of linear systems and matrix
inversion in the TT-format, SIAM J. Sci. Comput., 34 (2012), pp. A2718–A2739.

[20] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy meth-
ods for linear systems in higher dimensions, SIAM J Sci. Comput., 36 (2014),
pp. A2248–A2271.

[21] V. Druskin and L. Knizhnerman, Extended Krylov subspaces: approximation
of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19
(1998), pp. 755–771.

[22] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative
Solvers: with Applications in Incompressible Fluid Dynamics, Numerical Mathe-
matics and Scientific Computation, Oxford University Press, New York, 2005.

[23] A. Freed and K. Diethelm, Fractional calculus in biomechanics: a 3D vis-
coelastic model using regularized fractional-derivative kernels with application to
the human calcaneal fat pad, Biomech. Model. Mechanobiol., 5 (2006), pp. 203–
215.

[24] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore,
MD, third ed., 1996.

[25] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential
equations of fractional order, in Fractals and Fractional Calculus in Continuum
Mechanics, A. Carpinteri and F. Mainardi, eds., Springer, 1997, pp. 223–276.

[26] L. Grasedyck and W. Hackbusch, A multigrid method to solve large scale
Sylvester equations, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 870–894.

[27] R. Hilfer, P. Butzer, U. Westphal, J. Douglas, W. Schneider, G. Za-
slavsky, T. Nonnemacher, A. Blumen, and B. West, Applications of frac-
tional calculus in physics, vol. 5, World Scientific, 2000.

27

[28] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE
Constraints, Mathematical Modelling: Theory and Applications, Springer-Verlag,
New York, 2009.

[29] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme
for tensor optimization in the tensor train format, SIAM J. Sci. Comput., 34
(2012), pp. A683–A713.

[30] K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems
and applications, vol. 15 of Advances in Design and Control, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2008.

[31] E. Jeckelmann, Dynamical density–matrix renormalization–group method,
Phys. Rev. B, 66 (2002), p. 045114.

[32] I. Jesus, J. Machado, and J. Cunha, Fractional electrical impedances in
botanical elements, J. Vib. Control, 14 (2008), pp. 1389–1402.

[33] V. Kazeev, B. Khoromskij, and E. Tyrtyshnikov, Multilevel Toeplitz matri-
ces generated by tensor-structured vectors and convolution with logarithmic com-
plexity, SIAM J. Sci. Comput., 35 (2013), pp. A1511–A1536.

[34] V. A. Kazeev and B. N. Khoromskij, Low-rank explicit QTT representation
of the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl., 33 (2012),
pp. 742–758.

[35] B. N. Khoromskij, O(d log n)–Quantics approximation of N–d tensors in high-
dimensional numerical modeling, Constr. Approx., 34 (2011), pp. 257–280.

[36] B. N. Khoromskij and I. V. Oseledets, DMRG+QTT approach to computa-
tion of the ground state for the molecular Schrödinger operator, Preprint 69, MPI
MIS, Leipzig, 2010.

[37] , Quantics-TT collocation approximation of parameter-dependent and
stochastic elliptic PDEs, Comput. Methods Appl. Math., 10 (2010), pp. 376–394.

[38] R. Koeller, Applications of fractional calculus to the theory of viscoelasticity,
J. Appl. Mech., 51(2) (1984), pp. 299–307.

[39] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM
Rev., 51 (2009), pp. 455–500.

[40] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with
tensor product structure, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1688–1714.

[41] A. J. Laub, Matrix Analysis for Scientists and Engineers, Society for Industrial
and Applied Mathematics (SIAM), 2005.

28

[42] M. Meerschaert and C. Tadjeran, Finite difference approximations for frac-
tional advection–dispersion flow equations, J. Comput. Appl. Math., 172 (2004),
pp. 65–77.

[43] , Finite difference approximations for two-sided space-fractional partial dif-
ferential equations, Appl. Numer. Math., 56 (2006), pp. 80–90.

[44] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and
Fractional Differential Equations, John Wiley & Sons, 1993.

[45] G. M. Mophou, Optimal control of fractional diffusion equation, Comput. Math.
Appl., 61 (2011), pp. 68–78.

[46] G. M. Mophou and G. M. N’Guérékata, Optimal control of a fractional dif-
fusion equation with state constraints, Comput. Math. Appl., 62 (2011), pp. 1413–
1426.

[47] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning
for indefinite linear systems, SIAM J. Sci. Comput., 21 (2000), pp. 1969–1972.

[48] R. H. Nochetto, E. Otárola, and A. J. Salgado, A pde approach to
fractional diffusion in general domains: a priori error analysis, arXiv preprint
arXiv:1302.0698, (2013).

[49] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011),
pp. 2295–2317.

[50] , Constructive representation of functions in low-rank tensor formats, Con-
str. Approx., 37 (2013), pp. 1–18.

[51] I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov, Linear
algebra for tensor problems, Computing, 85 (2009), pp. 169–188.

[52] N. Özdemir and D. Avci, Optimal control of a linear time-invariant space-time
fractional diffusion process, J. Vib. Control, 20 (2014).

[53] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust pre-
conditioners for time-dependent PDE-constrained optimization problems, SIAM
J. Matrix Anal. Appl., 33 (2012), pp. 1126–1152.

[54] J. W. Pearson and A. J. Wathen, A new approximation of the Schur com-
plement in preconditioners for PDE-constrained optimization, Numer. Linear Al-
gebra Appl., 19 (2012), pp. 816–829.

[55] , Fast iterative solvers for convection-diffusion control problems, Electron.
Trans. Numer. Anal., 40 (2013), pp. 294–310.

[56] I. Podlubny, Fractional Differential Equations: an Introduction to Fractional
Derivatives, Fractional Differential Equations, to Methods of their Solution and
some of their Applications, vol. 198, Access Online via Elsevier, 1998.

29

[57] , Fractional Differential Equations, Academic Press, 1999.

[58] , Matrix approach to discrete fractional calculus, Fract. Calc. Appl. Anal., 3
(2000), pp. 359–386.

[59] I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, and B. Vina-
gre Jara, Matrix approach to discrete fractional calculus II: partial fractional
differential equations, J. Comput. Phys., 228 (2009), pp. 3137–3153.

[60] I. Podlubny, I. Petraš, B. Vinagre, P. O’leary, and L. Dorčák, Ana-
logue realizations of fractional-order controllers, Nonlinear Dynam., 29 (2002),
pp. 281–296.

[61] M. R. Rapaić and Z. D. Jeličić, Optimal control of a class of fractional heat
diffusion systems, Nonlinear Dynam., 62(1–2) (2010), pp. 39–51.

[62] J. A. Roberts, D. V. Savostyanov, and E. E. Tyrtyshnikov, Superfast
solution of linear convolutional Volterra equations using QTT approximation, J.
Comput. Appl. Math., 260 (2014), pp. 434–448.

[63] T. Rohwedder and A. Uschmajew, On local convergence of alternating
schemes for optimization of convex problems in the tensor train format, SIAM
J. Num. Anal., 51 (2013), pp. 1134–1162.

[64] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2003.

[65] S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives,
Gordon and Breach Science Publishers Yverdon, 1993.

[66] U. Schollwöck, The density-matrix renormalization group in the age of matrix
product states, Annals of Physics, 326 (2011), pp. 96–192.

[67] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix
equations, SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288.

[68] , Computational methods for linear matrix equations, tech. rep., Università
di Bologna, March 2013.

[69] D. C. Sorensen and A. C. Antoulas, The Sylvester equation and approximate
balanced reduction, Linear Algebra Appl., 351–352 (2002), pp. 671–700.

[70] M. Stoll and T. Breiten, A low-rank in time approach to PDE-constrained
optimization, to appear in SIAM J. Sci. Comp.

[71] C. Tarley, G. Silveira, W. dos Santos, G. Matos, E. da Silva, M. Bez-
erra, M. Miró, and S. Ferreira, Chemometric tools in electroanalytical chem-
istry: methods for optimization based on factorial design and response surface
methodology, Microchemical Journal, 92 (2009), pp. 58–67.

30

[72] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Meth-
ods and Applications, American Mathematical Society, 2010.

[73] C. Wex, A. Stoll, M. Fröhlich, S. Arndt, and H. Lippert, How preser-
vation time changes the linear viscoelastic properties of porcine liver, Biorheology,
50 (2013), pp. 115–131.

[74] S. R. White, Density-matrix algorithms for quantum renormalization groups,
Phys. Rev. B, 48 (1993), pp. 10345–10356.

[75] Q. Xu and J. S. Hesthaven, Stable multi-domain spectral penalty methods for
fractional partial differential equations, J. Comput. Phys., 257 (2014), pp. 241–
258.

[76] P. Yi-Fei, Application of fractional differential approach to digital image process-
ing, Journal of Sichuan University (Engineering Science Edition), 39(3) (2007),
pp. 124–132.

31

Figure 3: 3D test. y (top left), ȳ (top right), u (bottom left) and p (bottom right) at
the final time.

32

Max Planck Institute Magdeburg Preprints

	Introduction
	Fractional calculus and Grünwald formulae
	The fractional derivative
	Model problems
	Grünwald-Letnikov formula
	Problem structure

	Solution strategies
	Krylov solver and preconditioning
	First Schur Complement
	Second Schur Complement

	Numerical algorithms
	The tensor-train decomposition
	Tensor product Krylov methods
	Alternating solvers

	Numerical results
	Complete data, two-dimensional space
	Incomplete data, two-dimensional space
	Three-dimensional problem, incomplete data

	Conclusions

