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Abstract

This paper improves the inexact Kleinman-Newton method for solving alge-
braic Riccati equations by incorporating a line search and by systematically in-
tegrating the low-rank structure resulting from ADI methods for the approxi-
mate solution of the Lyapunov equation that needs to be solved to compute the
Kleinman-Newton step. A convergence result is presented that tailors the con-
vergence proof for general inexact Newton methods to the structure of Riccati
equations and avoids positive semi-definiteness assumptions on the Lyapunov
equation residual, which in general do not hold for low-rank approaches. In the
convergence proof of this paper, the line search is needed to ensure that the
Riccati residuals decrease monotonically in norm. In the numerical experiments,
the line search can lead to substantial reduction in the overall number of ADI
iterations and, therefore, overall computational cost.

1 Introduction

We present improvements of the inexact Kleinman–Newton method for the solution of
large-scale continuous-time algebraic Riccati equations (CARE)

R(X) = CTC +ATX +XA−XBBTX = 0 (1.1)

with C ∈ Rp×n, A ∈ Rn×n, X = XT ∈ Rn×n, B ∈ Rn×r, and p + r � n. The
algorithmic improvements consist of incorporating a line search and of systematically
integrating the low-rank structure resulting from ADI methods for the solution of the
Lyapunov equation

(A(k))TX(k+1) +X(k+1)A(k) = −CTC −X(k)BBTX(k), (1.2)

where
A(k) = A−BBTX(k),

which has to be approximately solved in the k-th iteration. The paper is motivated
by the recent work of Feitzinger et al. [9] who propose and analyze inexact Kleinman–
Newton methods without line search, by Benner and Byers [2] who incorporate line
search into the exact Kleinman–Newton method, and by the recent work of Benner
et al. [3, 5] on algorithmic improvements of low-rank ADI methods. The convergence
result in [9] makes positive semi-definiteness assumptions on the difference between
certain matrices and the residual of the Lyapunov equation that are in general not
valid when the Lyapunov equation is solved with low-rank methods like, e.g., the low-
rank ADI iteration [7]. Our convergence result follows the theory of general inexact
Newton methods, but uses the structure of Riccati equations. We add the inexact
solution of the Lyapunov equation to [2] and incorporate the low-rank structure.

Our convergence proof makes use of the fact that the Riccati residuals decrease
monotonically in norm, which is ensured by the line search. There is no proof that
the inexact Kleinman–Newton, low-rank ADI iteration converges globally without line
search. On test examples resulting from the finite element approximation of LQR
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problems governed by an advection diffusion equation, the incorporation of a line search
into the inexact Kleinman–Newton, low-rank ADI iteration can lead to substantial
reduction in the overall number of ADI iterations and, therefore, overall computational
cost.

The paper is organized as follows. In the next section, we recall a basic existence
and uniqueness result for the unique symmetric positive semi-definite stabilizing solu-
tion of the CARE (1.1). Section 3 introduces the inexact Kleinman–Newton method
with line search and presents the basic convergence result. The basic ingredients of
ADI methods that are needed for this paper are reviewed in Section 4. Section 5 dis-
cusses the efficient computation of various quantities like the Newton residual using
the low-rank structure. As a result, the computational cost of our overall algorithm
is proportional to the total number of ADI iterations used; in comparison the cost
of other components, such as execution of the line search, are negligible. Finally, we
demonstrate the contributions of the various improvements on the overall performance
gains in Section 6. As mentioned before, in our numerical tests, our improved inexact
Kleinman–Newton method is seven to twelve times faster than the exact Kleinman–
Newton method without line search.

Notation. Throughout the paper we consider the Hilbert space of matrices in Rn×n
endowed with the inner product 〈M,N〉 = tr

(
MTN

)
=
∑n
i,j=1MijNij and the cor-

responding (Frobenius) norm ‖M‖F = (〈M,M〉)1/2 = (
∑n
i,j=1M

2
ij)

1/2. Furthermore,
given real symmetric matrices M,N , we write M � N if and only if M −N is positive
semi-definite, and M � N if and only if M −N is positive definite. The spectrum of
a symmetric matrix M is denoted by σ(M).

2 The Riccati Equation

We recall an existence and uniqueness result for the continuous-time Riccati equation
(1.1).

Definition 1 Let A ∈ Rn×n, B ∈ Rn×r, and C ∈ Rp×n. The pair (A,B) is called
stabilizable if there exists a feedback matrix K ∈ Rn×r such that A − BKT is stable,
which means that A − BKT has only eigenvalues in the open left half complex plane
C−. The pair (C,A) is called detectable if (AT , CT ) is stabilizable.

Notice that (A,B) is stabilizable if and only if (A,BBT ) is stabilizable and (C,A) is
detectable if and only if (CTC,A) is detectable. Furthermore, we always use the word
stable as defined in [15], whereas, in other literature, this is usually called asymptoti-
cally stable. Since, as in [15], asymptotically stable is the required property in all our
applications we do not need to distinguish between stable and asymptotically stable
and, therefore, simply use stable everywhere.

Assumption 2 The matrices A ∈ Rn×n, B ∈ Rn×r, and C ∈ Rp×n are given such
that (A,B) is stabilizable and (C,A) is detectable.
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If Assumption 2 holds, there exists a unique symmetric positive semi-definite solution
X(∗) of the CARE (1.1) which is also the unique stabilizing solution. This follows from
Theorems 8.5.1 and 9.1.2 (see also p. 244) in [15].

Furthermore, it can be shown that all symmetric positive semi-definite solutions of
the CARE (1.1) are stabilizing.

Theorem 3 If Assumption 2 holds, every symmetric solution X(∗) � 0 of the CARE
(1.1) is stabilizing.

Proof. Let X = XT � 0 solve the CARE (1.1). We show that A−BBTX is stable
by contradiction.

Assume that µ is an eigenvalue of A− BBTX with Re (µ) ≥ 0 and let v ∈ Cn\{0}
be a corresponding eigenvector. The CARE (1.1) can be written as

(A−BBTX)TX +X(A−BBTX) = −CTC −XBBTX. (2.1)

Multiply (2.1) with vH from the left and v from the right. The left-hand side of (2.1)
yields

2 Re (µ) vHXv ≥ 0, since X = XT � 0,

whereas the right-hand side of (2.1) yields

−vHCTCv − vHXBBTXv ≤ 0, since CTC � 0 and XBBTX � 0.

Hence, left- and right-hand sides of (2.1) multiplied by vH from the left and v from
the right are equal to zero, that is vHXv = 0 and vHCTCv+vHXBBTXv = 0, which
yields Cv = 0 and BTXv = 0. Since (A − BBTX)v = µv, it follows that v is an
eigenvector of A with eigenvalue µ and Re (µ) ≥ 0.

The Hautus-Popov Test for Detectability, e.g., [12, Sec. 80.3], states that (C,A) is
detectable if and only if Ax = λx, x 6= 0 and Re (λ) ≥ 0 implies Cx 6= 0. Thus, the
existence of v 6= 0 and Re (µ) ≥ 0 with Av = µv contradicts the detectability of (C,A)
by the Hautus-Popov test.

�

3 The Inexact Kleinman–Newton Method with Line
Search

This section introduces the inexact Kleinman–Newton method with line search and
gives a convergence result. The fundamental ideas are identical to what is well known
for inexact Newton methods, see, e.g., Kelley [13, Sec. 8.2], but are tailored to the struc-
ture of the Riccati equations. The presentation of the basic algorithm in Section 3.1
combines ideas from general inexact Newton methods, from Kleinman–Newton with
inexactness, see, e.g., Feitzinger et al. [9], and Kleinman–Newton with line search, see,
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e.g., Benner and Byers [2]. In Section 3.3, we will show that the assumptions made in
Feitzinger et al. [9], to ensure convergence of the inexact Kleinman Newton method,
are in general not valid if low-rank Lyapunov solvers are used to compute the inexact
Kleinman–Newton step, and we will present an alternative convergence result that
follows more closely that of general inexact Newton methods.

3.1 Derivation of the Method

We want to compute the symmetric, positive semi-definite, stabilizing solution X(∗)

of the CARE (1.1). The operator R : Rn×n → Rn×n defined in (1.1) is twice Fréchet
differentiable with derivatives given by

R′(X)N = (A−BBTX)TN +N(A−BBTX), (3.1a)

R′′(X)(N1, N2) = −N1BB
TN2 −N2BB

TN1. (3.1b)

Since R is quadratic in X, the 2nd order Fréchet derivative is independent of X and
R(Y ) can be expressed via a Taylor series as

R(Y ) = R(X) +R′(X)(Y −X) +
1

2
R′′(X)(Y −X,Y −X). (3.2)

The CARE (1.1) can be solved using Newton’s method, which in this context is
referred to as the Kleinman–Newton method [14]. Given an approximate symmetric
solution X(k) of (1.1), the new Kleinman–Newton iterate is given by

R′(X(k))X(k+1) = R′(X(k))X(k) −R(X(k)). (3.3)

Equation (3.3) is the Lyapunov equation (1.2). Instead of solving (3.3) for the new
iterate, one could solve R′(X(k))S(k) = −R(X(k)) for the step S(k) = X(k+1) −X(k).
While the latter equation may be favorable in cases where the Lyapunov equation is
solved using direct methods (see, e.g., [2, p. 101]), (3.3) is favorable when the Lyapunov
equation is solved inexactly using iterative methods. The right hand side in (3.3) is
−X(k)BBTX(k) − CTC = −GGT , where G = [CT | X(k)B] ∈ Rn×(p+r). As we will
see later, this low-rank factorization (p + r � n) is important when the Kleinman–
Newton method is combined with low-rank approximation methods. Expressions of
R(X(k)) which lead themselves to the application of low-rank approximation methods,
and which are equal toR(X(k)) in the exact Kleinman–Newton method, fail when used
in an inexact Kleinman–Newton method as shown in Feitzinger et al. [9].

If Assumption 2 holds, then the special structure of R allows one to prove global
convergence of the Kleinman–Newton method: If the initial iterate X(0) is symmetric
and stabilizing, then the Kleinman–Newton method is well defined (i.e., (1.2) has a
unique solution), the iterates generated by the Kleinman–Newton method converge
with a q-quadratic convergence rate, and satisfy X(1) � X(2) � . . . � X(∗) � 0; see,
e.g., Kleinman [14] or Lancaster and Rodman [15, Sec. 9.2].

Even though the Kleinman–Newton method exhibits global convergence, it was ob-
served by Benner and Byers [2] that a line search improves its efficiency. Especially
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in the first iteration of the Kleinman–Newton method, the residual may increase dra-
matically if no line search is used. For large scale problems, the Newton equation (the
Lyapunov equation) (3.3) is solved iteratively, and the residual error in the Lyapunov
equation has to be controlled appropriately to ensure convergence. We integrate the
inexact solution of (3.3) and a line search into the Kleinman–Newton method. As we
have mentioned before, the fundamental ideas are identical to what is well known for
inexact Newton methods, see, e.g., Kelley [13, Sec. 8.2].

Given a symmetric X(k) ∈ Rn×n and α > 0, ηk ∈ (0, 1), we compute a symmetric
step S(k) ∈ Rn×n with∥∥∥R′(X(k))S(k) +R(X(k))

∥∥∥
F
≤ ηk

∥∥∥R(X(k))
∥∥∥
F

(3.4)

and then compute the next iterate

X(k+1) = X(k) + λkS
(k),

where the step size λk > 0 is such that the sufficient decrease condition∥∥∥R(X(k) + λkS
(k)
)∥∥∥

F
≤ (1− λkα)

∥∥∥R(X(k)
)∥∥∥

F
(3.5)

is satisfied and the step size λk is not unnecessarily small.
If we define the Newton step residual

R′(X(k))S(k) +R(X(k)) = L(k+1), (3.6)

then (3.4) reads ∥∥∥L(k+1)
∥∥∥
F
≤ ηk

∥∥∥R(X(k))
∥∥∥
F
. (3.7)

Using the definition (1.1), (3.1a), and

X̃(k+1) = X(k) + S(k),

the equation (3.6) is equivalent to

(A(k))T X̃(k+1) + X̃(k+1)A(k) = −X(k)BBTX(k) − CTC + L(k+1) (3.8a)

and the new iterate is

X(k+1) = (1− λk)X(k) + λkX̃
(k+1). (3.8b)

The Riccati residual at X(k+1) = X(k) + λkS
(k) can be expressed using (3.2) and

(3.6) as

R(X(k) + λkS
(k)) = R(X(k)) + λkR′(X(k))S(k) +

λ2
k

2
R′′(X(k))(S(k), S(k))

= (1− λk)R(X(k)) + λkL
(k+1) − λ2

kS
(k)BBTS(k). (3.9)
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Algorithm 1 Inexact Kleinman-Newton Method with Line Search

Input: A, B, C, stabilizing initial iterate X(0), tolNewton > 0, η̄ ∈ (0, 1) and α ∈
(0, 1− η̄).

Output: Approximate solution of the CARE (1.1).
1: for k = 0, 1, . . . do
2: if ‖R(X(k))‖ ≤ tolNewton then
3: Return X(k) as an approximate solution of the CARE (1.1).
4: end if
5: Set A(k) =

(
A−BBTX(k)

)
, G =

[
CT |X(k)B

]
.

6: Select ηk ∈ (0, η̄].

7: Compute an approximate solution X̃(k+1) of the Lyapunov equation such that

(A(k))T X̃(k+1) + X̃(k+1)A(k) = −GGT + L(k+1)

and ‖L(k+1)‖F ≤ ηk‖R(X(k))‖F .

8: Set S(k) = X̃(k+1) −X(k).
9: Compute λk > 0 such that ‖R(X(k) + λkS

(k))‖F ≤ (1− λkα)‖R(X(k))‖F .
10: Set X(k+1) = X(k) + λkS

(k).
11: end for

Therefore, if ηk ≤ η̄ < 1 and α ∈ (0, 1− η̄), then (3.7) and (3.9) imply

‖R(X(k) + λS(k))‖F
≤ (1− λ)‖R(X(k))‖F + λ‖L(k+1)‖F + λ2‖S(k)BBTS(k)‖F

≤ (1− λ+ λη̄)‖R(X(k))‖F + λ2 ‖S(k)BBTS(k)‖F
‖R(X(k))‖F

‖R(X(k))‖F

≤ (1− αλ)‖R(X(k))‖F

for all λ with

0 < λ ≤ (1− α− η̄)
‖R(X(k))‖F

‖S(k)BBTS(k)‖F
. (3.10)

In particular, the sufficient decrease condition (3.5) is satisfied for all λk with (3.10).
In the actual computation of the step size λk we use (3.9) which implies that

f(λ) = ‖R(X(k) + λS(k))‖2F (3.11)

= (1− λ)2α(k) + λ2β(k) + λ4δ(k) + 2λ(1− λ)γ(k) − 2λ2(1− λ)ε(k) − 2λ3ζ(k)

is a quartic polynomial with

α(k) = ‖R(X(k))‖2F , δ(k) = ‖S(k)BBTS(k)‖2F ,
β(k) = ‖L(k+1)‖2F , ε(k) = 〈R(X(k)), S(k)BBTS(k)〉,
γ(k) = 〈R(X(k)), L(k+1)〉, ζ(k) = 〈L(k+1), S(k)BBTS(k)〉.

(3.12)
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The derivative is f ′(λ) = 〈R(X(k) +λS(k)),−R(X(k)) +L(k+1)−2λS(k)BBTS(k)〉. In
particular, using the Cauchy–Schwarz inequality and (3.7), we find f ′(0) < 0, which
again confirms that S(k) is a descent direction.

Remark 4 If the current iterate X(k) is symmetric positive semi-definite, if the so-
lution X̃(k+1) of (3.8a) is symmetric positive semi-definite, and if λk ∈ (0, 1], then

X(k+1) = X(k) + λk(X̃(k+1) −X(k)) is also symmetric positive semi-definite.

The basic inexact Kleinman–Newton method with line search is summarized in
Algorithm 1.

3.2 Line Search

There are many possibilities to compute a step size λk that satisfies the sufficient
decrease condition (3.5). We review two. In both cases, the representation (3.11) of
the Riccati residual as a quartic polynomial can be used for the efficient implementation
of the respective procedure.

3.2.1 Armijo Rule

Given β ∈ (0, 1), the Armijo rule in its simplest form selects λk = β`, where ` is the
smallest integer such that the sufficient decrease condition (3.5) is satisfied. See Kelley
[13, Sec. 8.2] for more details. Since the sufficient decrease condition (3.5) is satisfied
for all step sizes with (3.10) and ` is the smallest integer such that λk = β` satisfies
(3.5), the step size λk generated by the Armijo rule satisfies

λk > β(1− α− η̄)
‖R(X(k))‖F

‖S(k)BBTS(k)‖F
. (3.13)

Using the structure of the CARE (1.1) we can bound the right hand side in (3.13).

Theorem 5 Assume that A(k) is stable and let rk denote the rank of S(k). If the
forcing parameter ηk that controls the size of the Lyapunov residual, see (3.7), satisfies
ηk ≤ η̄ < 1, then the step size generated by the Armijo rule obeys

λk >
β(1− α− η̄)

rk(1 + η̄)2

1

‖BBT ‖F ‖R(X(k))‖F
∫∞

0
‖ exp(A(k)t)‖22 dt

. (3.14)

Proof. First we bound the step S(k), the solution of (3.6). Since A(k) is stable, the

step is given by S(k) =
∫∞

0
exp((A(k))T t)

(
L(k+1) − R(X(k))

)
exp((A(k))t) dt. There-

fore,

‖S(k)‖2 ≤ ‖L(k+1) −R(X(k))‖2
∫ ∞

0

‖ exp(A(k)t)‖22 dt

and

‖S(k)‖F ≤
√
rk‖L(k+1) −R(X(k))‖F

∫ ∞
0

‖ exp(A(k)t)‖22 dt,
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since for a square matrix M with rank r, ‖M‖2 ≤ ‖M‖F ≤
√
r‖M‖2.

The bound on S(k), (3.6), (3.7), and ηk ≤ η̄ < 1 imply

‖S(k)BBTS(k)‖F ≤ ‖BBT ‖F ‖S(k)‖2F

≤ rk(1 + η̄)2‖BBT ‖F ‖R(X(k))‖2F
∫ ∞

0

‖ exp(A(k)t)‖22 dt.

Inserting this into (3.13) gives the desired lower bound (3.14).
�

Remark 6 If A(k) is a normal matrix with spectral abscissa α(A(k)) := max{Re (µ) :
µ ∈ σ(A(k))}, then ‖ exp(A(k)t)‖2 ≤ exp(tα(A(k))). If α(A(k)) < 0, then∫ ∞

0

‖ exp(A(k)t)‖22 dt ≤ 1/(2|α(A(k))|).

Otherwise we can use the ε-pseudospectrum σε(A
(k)) of A(k) and the ε-pseudospectral

abscissa αε(A
(k)) := sup{Re (µ) : µ ∈ σε(A

(k))}. If σε(A
(k)) has a boundary with

finite arc length Lε,k, then

‖ exp(A(k)t)‖2 ≤
Lε,k exp(t αε(A

(k)))

2πε
ε > 0, t ≥ 0

[22, p. 139], and, if αε(A
(k)) < 0, then∫ ∞

0

‖ exp(A(k)t)‖22 dt ≤
L2
ε,k

8π2ε2|αε(A(k))|
.

3.2.2 Exact Line Search

Equation (3.11) shows thatR(X(k)+λS(k)) is quadratic in λ. Hence, minλ>0 ‖R(X(k)+
λS(k))‖2F corresponds to the minimization of the quartic polynomial (3.11). For the
Kleinman–Newton method with exact Lyapunov equation solves, L(k+1) = 0, the exact
line search is analyzed by Benner and Byers [2]. In particular, they show that there is
a local minimum λk ∈ (0, 2], and that if A(k) is stable and X(k+1) is computed with a
step length λk ∈ (0, 2], then A(k+1) is also stable. However, both results are no longer
true, in general, for the inexact case.

3.3 Convergence

Feitzinger et al. [9] extend the convergence results for the Kleinman–Newton method
with step size λk = 1 to the inexact case, provided the Lyapunov residual L(k+1)

satisfies certain positive semi-definiteness assumptions. The first result establishes the
well-posedness of the inexact Kleinman–Newton method.
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Theorem 7 ([9, Thm. 4.3]) Let X(k) be symmetric and positive semi-definite such
that A−BBTX(k) is stable and

L(k+1) � CTC (3.15)

holds. Then

(i) the iterate X(k+1) = X̃(k+1) of the inexact Kleinman–Newton method with step-
size λk = 1 is well defined, symmetric and positive semi-definite,

(ii) and the matrix A−BBTX(k+1) is stable.

We will use the low-rank ADI method, see, e.g., [16], to approximately solve the
Lyapunov equation, see Section 4. This means that in our algorithm L(k+1), X(k),
and other matrices are low-rank. In particular, we will see in Section 4 (see equation
(4.4)), L(k+1) = W (k+1)(W (k+1))T = FGGT FT , where F is a matrix with spectrum
inside the unit ball and G = [CT |X(k)B].

Lemma 8 If M,N are symmetric positive semi-definite matrices with M � N , then
ker (M) ⊂ ker (N) and range (N) ⊂ range (M).

Proof. Assume there exists v ∈ ker (M) with v /∈ ker (N), then vTMv − vTNv =

−vTNv < 0, which contradicts M � N . Hence, range (M)
⊥

= ker (M) ⊂ ker (N) =

range (N)
⊥

and, consequently, range (N) ⊂ range (M).
�

The definition of G and application of the previous lemma give that CTC � L(k+1) =
FGGT FT implies range

(
FCT

)
⊂ range (FG) ⊂ range

(
CT
)
⊂ range (G). However,

the invariance property range (FG) ⊂ range
(
CT
)
, or even range

(
FCT

)
⊂ range

(
CT
)
,

is typically not satisfied. Recall that CT ∈ Rn×p while FG ∈ Rn×(p+r) for k > 1.
Therefore, in general CTC 6� L(k+1).

Under an additional semidefiniteness condition on the Lyapunov residual, Feitzinger
et al. [9] prove quadratic convergence of the inexact Kleinman–Newton method.

Theorem 9 ([9, Thm. 4.4]) Let Assumption 2 be satisfied and let X(0), symmetric
and positive semi-definite, be such that A−BBTX(0) is stable. Let (3.15) hold for all
k ∈ N, and let X(k) be the iterates of the inexact Kleinman–Newton method with step
size λk = 1. If

0 � L(k+1) � (X(k+1) −X(k))BBT (X(k+1) −X(k)) (3.16)

hold for all k ∈ N, then the iterates of inexact Kleinman–Newton (3.8) with step size
λk = 1 satisfy

(i) limk→∞X(k) = X∞ and 0 � X∞ � · · · � X(k+1) � X(k) � · · · � X(1),

(ii) (A−BBTX∞) is stable and X∞ is the maximal solution of R(X) = 0,
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(iii) ‖X(k+1) −X∞‖F ≤ c‖X(k) −X∞‖2F , k ∈ N.

The condition (3.16) implies the monotonicity 0 � · · · � X(k+1) � X(k) � · · · �
X(1), which implies convergence of the sequence of the iterates. See the proof of [9,
Thm. 4.4]. It is also interesting to note that under the condition (3.16), the inex-
act Kleinman–Newton method convergences q–quadratically, independent of how the
forcing parameter ηk in (3.4) is chosen. Unfortunately, the semidefiniteness condition
(3.16) implies range (FG) ⊂ range

(
(X(k+1) −X(k))B

)
, which is generally not satis-

fied. Therefore, the convergence analysis in [9] is not applicable if the low-rank ADI
method, or any other low-rank solver, is used to approximately solve the Lyapunov
equation.

Our convergence proof follows that of inexact Newton methods, see, e.g., Kelley
[13, Sec. 8.2]. First, we prove ‖R(X(k))‖F → 0 and then we use the structure of the
Riccati equations to argue convergence of {X(k)}. In particular, Benner and Byers [2,
Lem. 6] prove that if (A,B) is controllable and {R(X(k))} is bounded, then {X(k)} is
also bounded. Since controllability of (A,B) implies stabilizability of (A,B), the as-
sumption of controllability is stronger than Assumption 2. Guo and Laub [10] removed
the controllability assumption and showed that if (A,B) is stabilizable, {R(X(k))} is
bounded, and the matrices A(k) are stable, then {X(k)} is also bounded.

The papers [14] on exact Kleinman–Newton, [2] on Kleinman–Newton with line
search and [9] on inexact Kleinman–Newton contain proofs that the matrices A(k)

corresponding to the iterates X(k) are stable, provided that A(0) is stable. This implies
the unique solution of the Lyapunov equation (1.2) and, therefore, the well-posedness
of the respective method. Since the definiteness assumption in [9, Thm. 4.3] typically
does not hold in the low-rank case, there is no result yet on the well-posedness of the
inexact Kleinman–Newton method and we have to assume existence of X̃(k+1) such
that (3.8a) and (3.7) are satisfied.

Theorem 10 Let Assumption 2 be satisfied and assume that for all k there exists a
symmetric positive semi-definite X̃(k+1) such that (3.8a) and (3.7) hold.

(i) If the step sizes are bounded away from zero, λk ≥ λmin > 0 for all k, then
‖R(X(k))‖F → 0.

(ii) If, in addition to (i), the matrices A(k) are stable for k ≥ K0, and X(k) � 0 for
all k ≥ K0, then X(k) → X(∗), where X(∗) � 0 is the unique stabilizing solution of the
CARE.

Proof. (i) The first part is a standard line search argument. The sufficient decrease
condition (3.5) implies that for any integer K,

‖R(X(0))‖F ≥ ‖R(X(0))‖F − ‖R(X(K+1))‖F

=

K∑
k=0

‖R(X(k))‖F − ‖R(X(k+1))‖F ≥
K∑
k=0

λkα‖R(X(k))‖F ≥ 0.

Taking the limit K →∞ and using λk ≥ λmin > 0 implies ‖R(X(k))‖F → 0.

10



(ii) If the matrices A(k) are stable for k ≥ K0 and {R(X(k))} is bounded, [10,
Lem. 2.3] guarantees that {X(k)} is bounded. Hence, {X(k)} has a converging subse-
quence. For any converging subsequence limj X

(kj) � 0 and 0 = limj ‖R(X(kj))‖F =
‖R(limj X

(kj))‖F . Since the symmetric positive semi-definite solution of the CARE
(1.1) is unique and stabilizing, every converging subsequence of {X(k)} has the same
limit X(∗). Therefore, the entire sequence converges.

�

Remark 11 1. If the step size λk ∈ (0, 1], then X(k) � 0 for all k, see Remark 4.

2. Lower bounds for the step size computed by the Armijo rule are established in
Theorem 5. In particular if{

‖R(X(k))‖F
∫ ∞

0

‖ exp(A(k)t)‖22 dt
}
k∈N

, (3.17)

is bounded, the step size is bounded away from zero. Since ‖R(X(k))‖F <
‖R(X(0))‖F , the sequence (3.17) is bounded, if

∫∞
0
‖ exp(A(k)t)‖22 dt is bounded,

which is a condition on the uniform stability of the matrices A(k), k ∈ N.

As it is well known for inexact Newton methods (see, e.g., Kelley [13, Sec. 8.2]), the
specific choice of the forcing parameter ηk in (3.4) determines the rate if convergence.
In particular, if ηk → 0 the inexact Kleinman Newton method converges superlinearly
(under the assumptions of Theorem 10) and if ηk = O(‖R(X(kj))‖F ), the convergence
is quadratic.

4 ADI Method

To compute the new iterate X(k+1) within the Kleinman–Newton method one has to
solve the Lyapunov equation (1.2). A powerful approach to solve such large-scale Lya-
punov equations with low-rank right-hand sides is the alternating directions implicit
(ADI) method, see, e.g., [7, 16]. In this section, we review the basic ingredients of
the ADI method combined with recent algorithmic improvements from [3, 5, 4]. To
simplify the notation, we drop the index k and write (1.2) in a more general form as

FX +XFT = −GGT (4.1)

with G :=
[
CT |X(k)B

]
∈ Rn×(p+r) and F = (A − BBTX(k))T ∈ Rn×n. We assume

that F is stable. The original low-rank ADI method computes a low-rank solution
factor Ẑ ∈ Cn×(`(p+r)) such that ẐẐH ≈ X ∈ Rn×n is the approximated solution of
the Lyapunov equation (4.1); see, e.g., [7]. For given ADI shifts {q1, . . . , q`} ∈ C−, the
low-rank ADI method successively computes

V̂1 = (F + q1I)−1G ∈ Cn×(p+r), (4.2a)

V̂` = V̂`−1 − (q` + q`−1)(F + q`I)−1V̂`−1 ∈ Cn×(p+r), ` ≥ 2. (4.2b)
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Algorithm 2 real low-rank ADI method [5]

Input: F,G, tolADI, shifts q` ∈ C−.
Output: Z such that ZZT ≈ X solves Eq. (4.1).

1: Set ` = 1, Z = [ ], W0 = G.
2: while ‖WT

`−1W`−1‖F > tolADI do
3: Solve V = (F + q`I)−1W`−1.
4: if Im (q`) = 0 then
5: W` = W`−1 − 2q`V

6: Ṽ =
√
−2q` V

7: else
8: γ` = 2

√
−Re (q`), δ` = Re (q`) / Im (q`)

9: W`+1 = W`−1 + γ2
` (Re (V ) + δ` Im (V ))

10: Ṽ =
[
γ` (Re (V ) + δ` Im (V )) | γ`

√
(δ2
` + 1) Im (V )

]
11: ` = `+ 1
12: end if
13: Z =

[
Z | Ṽ

]
14: ` = `+ 1
15: end while

In the `-th iteration, the approximate low-rank solution factor is

Ẑ` =
[√
−2 Re (q1)V̂1, . . . ,

√
−2 Re (q`)V̂`

]
∈ Cn×(`·(p+r)). (4.3)

We use two important modifications of the original ADI method, which are due to
Benner et al. [3, 5, 4]. The first reorganizes the computation of the V̂`’s to obtain a
low-rank representation of the Lyapunov residual in the ADI iterations. The second
exploits the fact that the ADI shifts need to occur either as a real number q` ∈ R− or
as a pair of complex conjugate numbers q` ∈ C−, q`+1 = q`, to write all matrices in
the ADI iterations as real matrices. We summarize the main ideas.

In [4, Sec. 4.2], Benner et al. introduced a novel low-rank residual formulation for
ADI. For ` ≥ 2 the identity (4.2b) can be written as

V̂` = (I − (q` + q`−1)(F + q`I)−1)V̂`−1 = (F − q`−1I)(F + q`I)−1V̂`−1

=
( ∏̀
j=2

(F − qj−1I)(F + qjI)−1
)

(F + q1I)−1G.

Because (F ±qI) and (F + q̂I)−1 commute for all q, q̂ ∈ C\σ(F ), these products can
be regrouped to yield

V̂` = (F + q`I)−1
( `−1∏
j=1

(F − qjI)(F + qjI)−1
)
G =: (F + q`I)−1Ŵ`−1.
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By definition of Ŵ` (and setting Ŵ0 = G),

Ŵ` = (F − q`I)V̂` = (F − q`)(F + q`I)−1Ŵ`−1

= (I − 2 Re (q`) (F + q`I)−1)Ŵ`−1 = Ŵ`−1 − 2 Re (q`) V̂` ∈ Cn×(p+r).

Moreover,

Ŵ` = (F − q`I)V̂` =
∏̀
j=1

(F − qjI)(F + qjI)−1G = F̂G

with F̂ = F̂(F, q1, . . . , q`) :=
∏`
j=1(F − qjI)(F + qjI)−1 an analytic matrix function

depending on F and the ADI shifts q1, . . . , q`. Using this formulation, which is math-
ematically equivalent to the original algorithm in [7, 16], Benner et al. [4, Sec. 4.2]
show that the Lyapunov residual after ADI step `, can be written as

L` = FẐ`Ẑ
H
` + Ẑ`Ẑ

H
` F

T +GGT = Ŵ`Ŵ
H
` = F̂GGT F̂H ∈ Rn×n.

Using the low-rank structure L` = Ŵ`Ŵ
H
` , Ŵ` ∈ Cn×(p+r), of the Lyapunov residual

together with the commonly known result that the eigenvalues σ(Ŵ`Ŵ
H
` ) \ {0} =

σ(ŴH
` Ŵ`)\{0}, see, e.g., [11, Theorem 1.32], leads to an efficient way to compute and

accumulate the Lyapunov residual and its spectral or Frobenius norm to control the
accuracy of the ADI iteration [4].

The previous versions of the low-rank ADI method compute complex low-rank fac-
tors V̂`, Ŵ` ∈ Cn×(p+r), Ẑ` ∈ Cn×(`(p+r)). To avoid complex arithmetic and storage
of complex matrices as much as possible, Benner et al. [3, 5] introduced a reformu-
lated low-rank ADI iteration, where they exploit the fact that the ADI shifts need
to occur either as a real number q` ∈ R− or as a pair of complex conjugate numbers
q` ∈ C−, q`+1 = q`. The resulting low-rank ADI iteration works with real low-rank
factors V`,W` ∈ Rn×(p+r), Z` ∈ Rn×(`(p+r)). The real low-rank ADI method is shown
in Algorithm 2. The approximate solution of the Lyapunov equation (4.1) is

X ≈ Z`ZT` ∈ Rn×n.

The corresponding Lyapunov residual has a real low-rank representation

L` = W`W
T
` = FGGTFT ∈ Rn×n, (4.4)

where F(F, q1, . . . , q`) ∈ Rn×n is an analytic matrix function depending on F and the

ADI shifts q1, . . . , q`. Notice that F ≡ F̂ iff {qi}`i=1 = {qi}`i=1, i.e., the ADI shifts are
closed under complex conjugation. See, e.g., [7, 5] for details.

5 Low-Rank Residual Newton-ADI Method

Using Algorithm 2 as the inner loop to solve the Lyapunov equations in Line 5 of
Algorithm 1, we arrive at an algorithm for the Kleinman-Newton method, where the
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low-rank structure can be used to efficiently compute residuals and the quartic function
(3.11) that arises in the line search computation.

As we have seen in (4.4) in the previous section (we now keep track of the Kleinman-
Newton iteration counter k), the Lyapunov residual is

L
(k+1)
` = W

(k+1)
` (W

(k+1)
` )T ,

where ` is the iteration counter in the inner ADI iteration and W
(k+1)
` ∈ Rn×(p+r).

Since ‖L(k+1)
` ‖2F is the sum of the squares of the eigenvalues of L

(k+1)
` and

σ(W
(k+1)
` (W

(k+1)
` )T ) \ {0} = σ((W

(k+1)
` )TW

(k+1)
` ) \ {0},

the norm ‖L(k+1)
` ‖2F can be efficiently computed by solving a small (p + r) × (p + r)

eigenvalue problem.

5.1 Norm of the Difference of Outer Products

Let W ∈ Rn×m and K ∈ Rn×p with m+p� n be generic matrices. We frequently need
to compute Frobenius or 2-norms of the difference WWT −KKT . This can be done
efficiently using the indefinite low-rank factorization WWT −KKT = UDUT ∈ Rn×n,
where

U =
[
W K

]
and D =

[
Im 0
0 −Ip

]
.

For the spectrum we have σ(UDUT ) \ {0} = σ(UTUD) \ {0} (see, e.g., [11, Theorem
1.32]). Since UTUD is a small (m+p)×(m+p) matrix, its spectrum can be computed
efficiently and we can use

‖WWT −KKT ‖2 = max{|λ| : λ ∈ σ(WWT −KKT )} = max{|λ| : λ ∈ σ(UTUD)},

‖WWT −KKT ‖2F =
∑

λi∈σ(WWT−KKT )

λ2
i =

∑
λi∈σ(UTUD)

λ2
i .

Notice that since UTUD is not symmetric, max{|λ| : λ ∈ σ(UTUD)} 6= ‖UTUD‖2
and

∑
λi∈σ(UTUD) λ

2
i 6= ‖UTUD‖2F .

5.2 Low-Rank Riccati Residual and Feedback Accumulation

Recall that X̃(k+1) = X(k) + S(k). Consider

S(k)B = X̃(k+1)B −X(k)B =: K̃(k+1) −K(k) =: ∆K̃(k+1) ∈ Rn×r, (5.1)

which defines the change of the feedback K corresponding to the trial solution X̃(k+1)

of (3.8a).
The key ingredient to use the line search idea efficiently for large-scale problems are

the low-rank formulations of the Lyapunov and Riccati residuals. Recall from (4.4)
that

L(k+1) = W (k+1)(W (k+1))T (5.2a)
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and assume that

R(X(k)) = W (k)(W (k))T −∆K(k)(∆K(k))T = U (k)D(U (k))T (5.2b)

with

D =

[
Ir+p 0

0 −Ir

]
and U (k) =

[
W (k) |∆K(k)

]
∈ Rn×(2r+p). (5.2c)

For k = 0 and X(0) = 0, (5.2) holds with W (0) = CT and ∆K(0) = 0. We call a factor-
ization of the form (5.2b) an indefinite low-rank factorization (compare Section 5.1).

If one uses (5.2) and the feedback change (5.1), than (3.9) implies

R(X(k+1)) = R(X(k) + λkS
(k))

= (1− λk)U (k)D(U (k))T + λkW
(k+1)(W (k+1))T − λ2

k∆K̃(k+1)
(

∆K̃(k+1)
)T

= (1− λk)
(
W (k)(W (k))T −∆K(k)(∆K(k))T

)
+ λkW

(k+1)(W (k+1))T

− λ2
k∆K̃(k+1)

(
∆K̃(k+1)

)T
=

[ [√
(1− λk)W (k) |

√
λW (k+1)

] [√
(1− λk)∆K(k) |λk∆K̃(k+1)

] ]

×
[
I(s+1)(p+r) 0

0 −I(s+1)r

]

×

[ [√
(1− λk)W (k) |

√
λkW

(k+1)
] [√

(1− λk)∆K(k) |λk∆K̃(k+1)
] ]T

, (5.3)

where s ∈ {0, 1, . . . , } is the number of iterations immediately before the k-th iteration
in which the step size was less than one. See below for more details.

If λk = 1, then X(k+1) = X̃(k+1), ∆K(k+1) = ∆K̃(k+1) and (5.3) simplifies to

R(X(k+1)) = R(X̃(k+1))

= W (k+1)(W (k+1))T −∆K(k+1)(∆K(k+1))T =: U (k+1)D(U (k+1))T (5.4)

with U (k+1) =
[
W (k+1) |∆K(k+1)

]
, which is of the form (5.2b). If λk ∈ (0, 1), we can

redefine

W (k+1) ←
[√

(1− λk)W (k) |
√
λkW

(k+1)
]
∈ Rn×(s+1)(p+r),

∆K(k+1) ←
[√

(1− λk)∆K(k) |λk∆K̃(k+1)
]
∈ Rn×(s+1)r,

D ←
[
I(s+1)(p+r) 0

0 −I(s+1)r

]
.

After this redefinition, (5.4) holds. Notice that if λk < 1, the sizes of W (k+1) and
∆K(k+1) grow. As mentioned before, their sizes depend on the number s ∈ {0, 1, . . . , }
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of iterations immediately before the k-th iteration in which the step size was less than
one, i.e., on s ∈ {0, 1, . . . , } with λk−s−1 = 1, λk−s < 1, λk < 1.

The representation (5.4) can be used to compute the Riccati residual ‖R(X(k) +
λkS

(k))‖F in dependence of λk efficiently (see Section 5.1). It is important to mention
that we need to keep U (k) ∈ Rn×((s+1)(2r+p)) to perform the line search; it is not
sufficient to just keep ‖R(X(k))‖F .

The trial iterate X̃(k+1) is computed by Algorithm 2 iteratively and, consequently,
the trial feedback K̃(k+1) = X̃(k+1)B ∈ Rn×r can already be computed during the
execution of Algorithm 2. Let ` be the iteration counter in Algorithm 2. We have

K̃
(k+1)
` = X̃

(k+1)
` B =

[
Ṽ1 . . . Ṽ`

]
Ṽ

T
1
...

Ṽ T`

B
 =

∑̀
j=1

Ṽj(Ṽ
T
j B)

= K̃
(k+1)
`−1 + Ṽ`(Ṽ

T
` B), K̃

(k+1)
0 = 0.

If we define ∆K̃
(k+1)
0 = −K(k), then

∆K̃
(k+1)
` = K̃

(k+1)
` −K(k) = K̃

(k+1)
`−1 + Ṽ`(Ṽ

T
` B)−K(k) = ∆K̃

(k+1)
`−1 + Ṽ`(Ṽ

T
` B).

Thus, the feedback change can be assembled efficiently during the ADI iteration. The
low-rank Riccati residual factor for the k+1-st Riccati step after ` ADI steps can

be written as U
(k+1)
` = [W` | ∆K̃

(k+1)
` ] ∈ Rn×(2r+p). The Riccati residual norm

‖R(X
(k+1)
` )‖F can be computed easily during the ADI iteration by computing the

eigenvalues of the small matrix (U
(k+1)
` )TU

(k+1)
` D, see Section 5.1.

5.3 Low-Rank Line Search Implementation

To compute the step size as discussed in Section 3.2 for large-scale problems, we need
to compute the quartic polynomial (3.11). We can compute the coefficients defined in
(3.12) efficiently.

The coefficient α(k) = ‖R(X(k)‖2F can be computed using (5.2b) (see Section 5.1).
Similarly, β(k) = ‖L(k+1)‖2F = ‖W (k+1)(W (k+1))T ‖2F can be computed efficiently
as shown at the beginning of this section. Instead of using eigenvalues of M,N ∈
Rn×n, we can use the property tr (MN) = tr (NM) and, for symmetric matrices M ,
tr
(
M2
)

=
∑
i,j(Mij)

2, and compute

β(k) = ‖W (k+1)(W (k+1))T ‖2F = tr
(
W (k+1)(W (k+1))TW (k+1)(W (k+1))T

)
= tr

(
(W (k+1))TW (k+1)(W (k+1))TW (k+1)

)
= ‖(W (k+1))TW (k+1)‖2F .

Similarly, with ∆K̃(k+1) = S(k)B ∈ Rn×r,

δ(k) = ‖∆K̃(k+1)(∆K̃(k+1))T ‖2F = ‖(∆K̃(k+1))T∆K̃(k+1)‖2F .
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Application of trace identities gives

γ(k) = 〈R(X(k)), L(k+1)〉 = tr
(
U (k)D(U (k))TW (k+1)(W (k+1))T

)
= tr

(
(U (k))TW (k+1)(W (k+1))TU (k)D

)
= tr

([
(W (k))TW (k+1)

(∆K(k))TW (k+1)

] [
(W (k+1))TW (k) | − (W (k+1))T∆K(k)

])
=
∑
i,j

[
(W (k))TW (k+1)

(∆K(k))TW (k+1)

]
ij

[
(W (k))T (W (k+1))
−(∆K(k))TW (k+1)

]
ij

=
∑
i,j

((
(W (k))TW (k+1)

)
ij

)2

−
∑
i,j

((
∆K(k))TW (k+1)

)
ij

)2

and, analogously,

ε(k) = 〈R(X(k)), S(k)BBTS(k)〉 = tr
(
U (k)D(U (k))T∆K̃(k+1)(∆K̃(k+1))T

)
=
∑
i,j

((
(W (k))T∆K̃(k+1)

)
ij

)2

−
∑
i,j

((
(∆K(k))T∆K̃(k+1)

)
ij

)2

.

Finally,

ζ(k) = 〈L(k+1), S(k)BBTS(k)〉 = tr
(
W (k+1)(W (k+1))T∆K̃(k+1)(∆K̃(k+1))T

)
=
∑
i,j

((
(W (k+1))T∆K̃(k+1)

)
ij

)2

.

After choosing λk appropriately, the next iterate X(k+1) (3.8b) and the feedback

K(k+1) can be computed. Using a low-rank ADI method (see Section 4), X̃(k+1) =

Z̃(k+1)
(
Z̃(k+1)

)T
as low-rank approximation of the solution of (3.8a) and the low-rank

approximations of the previous iterate X(k) = Z(k)(Z(k))T are used.

X(k+1) = X(k) + λkS
(k) = (1− λk)X(k) + λkX̃

(k+1)

= (1− λk)Z(k)
(
Z(k)

)T
+ λkZ̃

(k+1)
(
Z̃(k+1)

)T
=
[√

1− λk Z(k) |
√
λk Z̃

(k+1)
] [√

1− λk Z(k) |
√
λk Z̃

(k+1)
]T
. (5.5)

K(k+1) = X(k+1)B = (1− λk)X(k)B + λkX̃
(k+1)B

= (1− λk)K(k) + λkK̃
(k+1). (5.6)

Notice that the size of Z(k) and Z̃(k+1) depends on the number of ADI steps that
are needed to solve (3.8a). Although (5.5) might be very large, it is important to
mention that it only needs to be computed at the end of the Newton iteration, because
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the previous iterate X(k) enters the right-hand side of (3.8a) only as product with
the input matrix B from the right. This means one only needs the inexpensively
accumulated feedback K(k+1) = X(k+1)B in Eq. (5.6) to proceed with the Newton
iteration. Furthermore, typically, a line search will only be necessary in the first few
Newton steps, so that (5.5) might never be used after the first few iterations and

instead simply X(k+1) = X̃(k+1) = Z̃(k+1)(Z̃(k+1))T is used.

5.4 Complete Implementation

We conclude this section with a summary of the resulting algorithm and some com-
ments on the line search and the convergence of the inexact Kleinman-Newton method
with line search.

We perform a line search if after reaching the condition (3.7) at ADI step ` it holds

that ‖R(X̃
(k+1)
` )‖ > (1−α)‖R(X(k))‖. We also perform a line search in the following

cases:

a) Before reaching the condition (3.7), the actual step ` ≥ 2 yields

‖L`‖F > ‖L1‖F ,

i.e., the norm of the Lyapunov residual exceeds the norm of the initial Lyapunov
residual.

b) The number of ADI steps ` exceeds the maximal number of allowed ADI steps
without reaching the condition (3.7).

If the conditions in a) or b) are observed, it indicates that the ADI method does
not converge, e.g., because the matrix A(k) is not stable. Although condition (3.7) is
violated, we perform a line search, since the cost of its execution is small, and accept
X(k+1) = X(k) + λkS

(k) if the sufficient decrease condition (3.5) is fulfilled.
If the line search method determines a λk that is too small, we switch to an ‘exact’

Kleinman-Newton method, i.e., we use Algorithm 1 with ADI Algorithm 2 with toler-
ance tolADI = 10−1tolNewt as the inner solver. Since we cannot guarantee stability of
A(k), it is not guaranteed that Algorithm 2 converges. If we observe that Algorithm 2
does not converge, we restart the entire process using the ‘exact’ Kleinman-Newton
method as described above. During the ‘exact’ Kleinman-Newton scheme, the algo-
rithm switches back to the inexact scheme as soon as the Riccati residual shows the
expected convergence behavior.

We note that in the numerical example studies in the next section, the ADI Algo-
rithm always reached the required tolerance, i.e., condition (3.7) was always achieved,
and the line search was always successful.

The inexact Kleinman-Newton method with line search and a real low-rank ADI
method as inner solver is summarized in Algorithm 3. The residual R(X̃(k+1)) =

U
(k+1)
` D(U

(k+1)
` )T is accumulated during the ADI iteration. In practice, the factor U

of the indefinite low-rank decomposition of the Riccati residual in lines 20, 28, and 32
is never assembled explicitly since norm computation and line search directly use W
and ∆K.
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Algorithm 3 inexact Kleinman-Newton-ADI method with line search

Input: A,B,C, initial feedback K(0), tolNewt, η̄ ∈ (0, 1), and α ∈ (0, 1− η̄).
Output: K(k+1) (optional: Z(k+1) such that Z(k+1)(Z(k+1))T is a stabilizing approx-

imate solution of the CARE (1.1)).

1: Set k = 0, res
(0)
Newt = ‖CTC +K(0)

(
K(0)

)T ‖.
2: while

(
res

(k)
Newt > tolNewt · res

(0)
Newt

)
do

3: Set A(k) =
(
AT −K(k)BT

)
, G =

[
CT |K(k)

]
.

4: Compute ADI shifts {q`}
nmax,ADI

`=1 ⊂ C− and choose ηk ∈ (0, η̄].
5: Set ` = 1, W0 = G, ∆K0 = −K(k) (optional Z = [ ]).

6: while
(
‖W`W

T
` ‖F > ηkres

(k)
Newt

)
do

7: V =
(
A(k) + q`I

)−1
W`−1

8: if Im (q`) = 0 then
9: W` = W`−1 − 2q` V

10: Ṽ =
√
−2q` V

11: ∆K` = ∆K`−1 + Ṽ
(
Ṽ TB

)
12: else
13: γ = 2

√
−Re (q`), δ = Re (q`) / Im (q`)

14: W`+1 = W`−1 + γ2(Re (V ) + δ Im (V ))

15: Ṽ =
[
γ (Re (V ) + δ Im (V )) | γ

√
(δ2 + 1) Im (V )

]
16: ` = `+ 1

17: ∆K` = ∆K`−2 + Ṽ
(
Ṽ TB

)
18: end if
19: (optional Z =

[
Z | Ṽ

]
)

20: U` = [W` |∆K`]
21: ` = `+ 1
22: end while
23: if ‖U`DUT` ‖F > (1− α)res

(k)
Newt then

24: Choose λk ∈ (0, 1) using Armijo or exact line search.
25: ∆K`−1 = λk∆K`−1

26: W (k+1) =
[√

1− λkW (k) |
√
λkW

(k+1)
]

27: ∆K(k+1) =
[√

1− λk∆K(k) |∆K`−1

]
28: U (k+1) =

[
W (k+1) |∆K(k+1)

]
29: (optional Z(k+1) =

[√
1− λkZ(k) |

√
λkZ

]
)

30: else
31: W (k+1) = W`, ∆K(k+1) = ∆K`−1

32: U (k+1) = U`
33: (optional Z(k+1) = Z)
34: end if
35: K(k+1) = K(k) + ∆K`−1

36: res
(k+1)
Newt = ‖U (k+1)D

(
U (k+1)

)T ‖F
37: k = k + 1
38: end while
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6 Numerical experiments

Consider the infinite dimensional optimal control problem

minimize
1

2

∫ ∞
0

(
γ

∫
ΩO

x̃(ξ, t)dξ

)2

+ u2(t) dt,

subject to
∂x̃

∂t
(ξ, t) = ∆x̃(ξ, t) + 20

∂x̃

∂ξ2
(ξ, t) + 100x̃(ξ, t) + f(ξ)u(t), ξ ∈ Ω, t > 0,

x̃(ξ, t) = 0, ξ ∈ ∂Ω, t > 0,

with Ω = (0, 1)d, d ∈ 2, 3, ΩO ⊂ Ω, γ > 0, and

f(ξ) :=

{
100 ξ ∈ ΩC ,

0 else,

where ΩC = (0.1, 0.3)× (0.4, 0.6) if d = 2 and ΩC = (0.1, 0.3)× (0.4, 0.6)× (0.1, 0.3) if
d = 3. For d = 2, this example was also used by Feitzinger et al. [9] and by Morris and
Navasca [20].1 We use piecewise linear finite elements to discretize the optimal control
problem. More specifically, we use P1 finite elements on a uniform triangulation. If
d = 2, Ω = (0, 1)2 is divided into squares of size h× h and each square is divided into
two triangles. If d = 3, Ω = (0, 1)3 is divided into cubes of size h×h×h and each cube
is divided into six tetrahedra. We use mesh sizes h such that the mesh is aligned with
the boundaries of ΩO and of ΩC . This leads to the linear quadratic control problem

Minimize
1

2

∫ ∞
0

y(t)T y(t) + u2(t) dt, (6.1a)

subject to Eẋ(t) = Ax(t) +Bu(t), t > 0, (6.1b)

y(t) = γCx(t), t > 0, (6.1c)

where E ∈ Rn×n is the symmetric positive definite mass matrix, A ∈ Rn×n, B ∈ Rn×1,
C ∈ R1×n, x(t) ∈ Rn, u(t) ∈ Rr, and y(t) ∈ R, where n is proportional to 1/h2.

For the output, we consider the cases ΩO = Ω and ΩO = ΩC . If ΩO = Ω, then
the finite element discretization results in the output matrix C = eTE, where e is the
vector of all ones, and if ΩO = ΩC , then the finite element discretization results in the
output matrix C = BT /100.

The matrix E−1A is stable and, therefore, for this LQR problem (6.1) the Assump-
tion 2 is satisfied. It is a basic result, see, e.g., [18], that u∗(t) = −Kx∗(t) with

1Both papers [9] and [20] use a central finite difference method on a uniform grid with mesh size h =
1/(n+ 1). Feitzinger et al. [9] use the output matrix C = [0.1, . . . , 0.1] and γ = 1, and Morris and
Navasca [20] use the output matrix C = BT and γ = 1. These output matrices correspond to scaled
versions of the outputs resulting from ΩO = Ω and ΩO = ΩC , respectively, in the PDE model.
In fact, if ΩO = Ω = (0, 1)2, the finite difference spatial discretization of the objective function
is γ

∫
Ω x̃(ξ, t)dξ ≈ γ h2

∑n
i,j=1 xij(t) = γCx(t) where xij(t) ≈ x̃((ih, jh), t), i, j = 1, . . . , n, and

C = [h2, . . . , h2] ∈ R1×n2
. This output matrix C scaled by 1/(10h2) corresponds to the output

matrix in [9]. If ΩO = ΩC ⊂ (0, 1)2, then the finite difference spatial discretization of the
objective function leads to the output matrix (h2/100)BT , which is the output matrix in [20]
scaled by 100/h2.
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K = BTXE minimizes the cost functional (6.1a) with X as stabilizing solution of the
generalized CARE

γ2CTC +ATXE + ETXA− ETXBBTXE = 0. (6.2)

The extension of our results for the solution of CARE (1.1) to the generalized CARE (6.2)
with nonsingular E is straightforward.

A γ � 1 increases the effect that ‖R(X(1))‖F � ‖R(X(0))‖F . The ADI shifts
are computed following the V -shifts idea in [6]. In all computations the mesh size is
h = 1/30. This leads to matrix sizes n = 841 in the 2D case and n = 24, 389 in the
3D case.

We apply the Kleinman-Newton-ADI method either ‘exactly’ or inexactly. In the
latter case we either use the forcing parameter ηk in (3.4) given by ηk = 1/(k3+1) or by
ηk = min{0.1, 0.9‖R(X(k))‖F }. The first choice leads to superlinear convergence, while
the second results in quadratic convergence (under the assumptions of Theorem 10). In
all cases the Kleinman-Newton-ADI method is stopped when the normalized residual
‖R(X(k))‖/‖CTC‖ drops below tolNewt = 10−12. In the ‘exact’ Kleinman-Newton-
ADI method, the ADI tolerance is set to tolADI = tolNewt/10. We apply all methods
without line search (’no LS’), i.e., set λk = 1 in all iterations, and with line search. If
the sufficient decrease condition (3.5) is not satisfied for λk = 1, then we compute a
step size using a simple implementation of the Armijo rule with β = 0.5, cf. Section
3.2.1.

The performances of the various Kleinman-Newton-ADI methods are summarized
in Tables 1 to 7. In all tables, # Newt. is the total number of (inexact) Newton
steps executed before the stopping criterion ‖R(X(k))‖/‖CTC‖ < tolNewt = 10−12

is satisfied, # ADI is the total number of ADI iterations executed, and # LS is
the total number of times the step size λk was chosen to be less than one. The
entry ’no LS’ indicates that the algorithm was run without line search, i.e., that
λk = 1, ∀k. In all variations of the Kleinman-Newton-ADI method, the execution
times are essentially proportional to the total number of ADI steps performed. Due
to the low-rank structure, the execution times for other algorithm components, such
as line search, are negligible compared to the execution of one ADI iteration.

In all examples shown, the exact and inexact versions of the Kleinman-Newton
methods converged, and the inexact versions of the Kleinman-Newton method signifi-
cantly outperform the exact version. We note that although in all examples the inexact
Kleinman-Newton method without line search converged, there is no convergence proof
to guarantee this (unless the conditions on the Lyapunov residual in Feitzinger et al.
[9] can be satisfied, which is not the case when low-rank ADI methods are used).

The line search performed differently for the outputs ΩO = ΩC (C = BT /100) (see
Tables 1, 3) and ΩO = Ω (C = eTE) (see Tables 5, 7). In the example ΩO = ΩC
(C = BT /100), the line search is active, i.e., λk 6= 1, in at most the first two iterations
and it is only active if γ � 1. In this example, using the line search always resulted
in fewer Newton iterations and led to fewer ADI iterations overall.

In the example ΩO = Ω (C = eTE), the line search is active, i.e., λk 6= 1, in more
iterations. The line search is active in the first iterations and if λk = 1 in one iteration
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k, it is equal to one on all subsequent iterations. In the 2D case with γ = 1 (Table 6a),
the line search leads to significantly more Newton and ADI iterations. In this case,∥∥R(X(k) + S(k))

∥∥
F
�
∥∥R(X(k))

∥∥
F

for the first iterations, and a small step size λk
is needed to satisfy the sufficient decrease condition (3.5). This leads to small steps
initially and a substantial increase in Newton iterations. It may be possible to improve
the performance of the inexact Kleinman-Newton method with line search by refining
the forcing parameter ηk, i.e., the choice of Lyapunov residual tolerances. This is part
of future research.

In all other cases, using the line search leads to fewer Newton iterations and mostly
fewer ADI iterations. Notice that the line search enforces the monotonicity∥∥∥R(X(k+1))

∥∥∥
F
<
∥∥∥R(X(k))

∥∥∥
F

which can result in a significantly smaller right hand side in (3.4), i.e., a smaller Lya-
punov equation solver tolerance, compared to when no line search is used. Therefore,
using a line search can require more ADI iterations per Newton iteration; compare
Table 6b (’superlinear’), Table 8b (’inexact’), and Table 8c (’quadratic’).

7 Conclusions

We have presented an efficient implementation of the inexact Kleinman-Newton method
with a low-rank ADI subproblem solver. On the theoretical side, we presented a conver-
gence proof which is based on convergence proofs for general inexact Newton methods.
Because of the low-rank case and lack of positive semi-definiteness conditions, like the
one in Theorem 7 [9, Thm. 4.3], it is not possible to ensure that all iterates are stabiliz-
ing if the initial iterate is stabilizing. This was not an issue in our numerical example.
In our convergence proof, the line search is needed to ensure that the Riccati residuals
decrease monotonically in norm. Although in our numerical examples, the inexact
Kleinman-Newton method with a low-rank ADI subproblem solver always converged
when used without line search, there is no guarantee for this and we have observed
other examples where the inexact Kleinman-Newton method without line search failed.
The numerical example showed that the line search can lead to substantial reduction
in the overall number of ADI iterations and, therefore, overall computational cost, but
there is one case where the line search results in substantially more Kleinman-Newton
iterations and in a substantially higher number of total ADI iterations. Possible im-
provements by changing the forcing parameter, i.e., the choice of Lyapunov residual
tolerances, is part of future research. We have begun numerical experiments with the
computation of feedback controls for incompressible Navier-Stokes flows, similar to
[1], where stability of iterates can be an issue. A detailed report of these tests, and
comparisons with other large-scale Riccati solvers, like [8, 21, 19, 17], is part of future
research.
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Table 1: Performance of the various Kleinman-Newton-ADI methods for the 2D prob-
lem with output ΩO = ΩC (C = BT /100). Overall the inexact Kleinman-
Newton-ADI with forcing parameter ηk = min{0.1, 0.9‖R(X(k−1))‖F }
(quadratic) performs the best, although in some cases other choices of forcing
terms lead to slightly fewer ADI iterations. For γ � 1 the line search can
lead to significant savings.

(a) Comparison for γ = 1

Method # Newt. # ADI # LS

exact tolADI = 10−13 3 105 no LS
3 105 0

inexact
superlinear

5 83 no LS
5 83 0

quadratic
4 62 no LS
4 62 0

(b) Comparison for γ = 102

Method # Newt. # ADI # LS

exact tolADI = 10−13 7 227 no LS
6 202 1

inexact
superlinear

7 75 no LS
6 69 1

quadratic
7 77 no LS
6 73 1

(c) Comparison for γ = 104

Method # Newt. # ADI # LS

exact tolADI = 10−13 13 376 no LS
7 186 2

inexact
superlinear

13 88 no LS
8 80 2

quadratic
13 56 no LS
7 52 2
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Table 3: Performance of the various Kleinman-Newton-ADI methods for the 3D prob-
lem with output ΩO = ΩC (C = BT /100). The inexact Kleinman-Newton-
ADI with forcing parameter ηk = min{0.1, 0.9‖R(X(k−1))‖F } (quadratic)
performs the best. For γ � 1 the line search can lead to significant savings.

(a) Comparison for γ = 1

Method # Newt. # ADI # LS

exact tolADI = 10−13 2 67 no LS
2 67 0

inexact
superlinear

5 79 no LS
5 79 0

quadratic
4 67 no LS
4 67 0

(b) Comparison for γ = 102

Method # Newt. # ADI # LS

exact tolADI = 10−13 4 143 no LS
4 143 0

inexact
superlinear

5 86 no LS
5 86 0

quadratic
4 66 no LS
4 66 0

(c) Comparison for γ = 104

Method # Newt. # ADI # LS

exact tolADI = 10−13 10 279 no LS
6 177 2

inexact
superlinear

10 85 no LS
7 81 2

quadratic
10 72 no LS
6 58 2

(d) Comparison for γ = 106

Method # Newt. # ADI # LS

exact tolADI = 10−13 16 499 no LS
6 164 1

inexact
superlinear

16 90 no LS
7 55 1

quadratic
16 49 no LS
6 46 1
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Table 5: Performance of the various Kleinman-Newton-ADI methods for the 2D prob-
lem with output ΩO = Ω (C = eTE). The inexact Kleinman-Newton-ADI
with forcing parameter ηk = min{0.1, 0.9‖R(X(k−1))‖F } (quadratic) per-
forms the best.

(a) Comparison for γ = 1

Method # Newt. # ADI # LS

exact tolADI = 10−13 5 190 no LS
15 577 11

inexact
superlinear

6 82 no LS
15 181 11

quadratic
6 80 no LS
15 130 11

(b) Comparison for γ = 102

Method # Newt. # ADI # LS

exact tolADI = 10−13 13 425 no LS
9 326 5

inexact
superlinear

13 110 no LS
10 121 5

quadratic
14 96 no LS
10 86 5

(c) Comparison for γ = 104

Method # Newt. # ADI # LS

exact tolADI = 10−13 20 636 no LS
8 224 4

inexact
superlinear

20 128 no LS
9 105 4

quadratic
21 83 no LS
8 82 4
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Table 7: Performance of the various Kleinman-Newton-ADI methods for the 3D prob-
lem with output ΩO = Ω (C = eTE). The inexact Kleinman-Newton-ADI
with forcing parameter ηk = min{0.1, 0.9‖R(X(k−1))‖F } (quadratic) per-
forms the best. Line search always reduced the number of Newton iterations.

(a) Comparison for γ = 1

Method # Newt. # ADI # LS

exact tolADI = 10−13 3 117 no LS
3 117 0

inexact
superlinear

6 116 no LS
6 116 0

quadratic
4 73 no LS
4 73 0

(b) Comparison for γ = 102

Method # Newt. # ADI # LS

exact tolADI = 10−13 8 289 no LS
7 254 3

inexact
superlinear

9 93 no LS
8 107 3

quadratic
9 72 no LS
7 78 3

(c) Comparison for γ = 104

Method # Newt. # ADI # LS

exact tolADI = 10−13 16 476 no LS
9 265 5

inexact
superlinear

16 123 no LS
10 113 5

quadratic
16 63 no LS
9 75 5

(d) Comparison for γ = 106

Method # Newt. # ADI # LS

exact tolADI = 10−13 22 707 no LS
9 258 4

inexact
superlinear

22 119 no LS
9 82 4

quadratic
23 77 no LS
9 72 4
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