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Abstract

The eigenproblem for complex J-symmetric matrices HC =
[
A C
D −AT

]
, A, C =

CT , D = DT ∈ Cn×n is considered. A proof of the existence of a transformation
to the complex J-symmetric Schur form proposed in [16] is given. The complex
symplectic unitary QR decomposition and the complex symplectic SR decomposition
are discussed. It is shown that a QR-like method based on the complex symplectic
unitary QR decomposition is not feasible here. A complex symplectic SR algorithm
is presented which can be implemented such that one step of the SR algorithm can
be carried out in O(n) arithmetic operations. Based on this, a complex symplectic
Lanczos method can be derived. Moreover, it is discussed how the 2n× 2n complex
J-symmetric matrix HC can be embedded in a 4n× 4n real Hamiltonian matrix.

Keywords. Complex J-symmetric eigenproblem, real Hamiltonian matrix, complex
Hamiltonian matrix, structure-preserving, SR algorithm.

1 Introduction

The basic algebraic structures and properties of the following classes of matrices

HC ∈ C2n×2n J-symmetric JHC = (JHC)T

HH ∈ C2n×2n J-Hermitian JHH = (JHH)H

(complex Hamiltonian)

H ∈ R2n×2n real Hamiltonian JH = (JH)H = (JH)T

are well-known, see, e.g., [7, 13, 14]. Here J =
[

0 I
−I 0

]
and I is the n × n identity

matrix. XT denotes transposition, Y = XT , yij = xji, no matter whether X is real
or complex, while XH denotes conjugate transposition, Y = XH , yij = xji. In case
H ∈ R2n×2n, the structures coalesce, A is J-symmetric and J-Hermitian. Each of
the three classes of matrices forms a Lie algebra. The eigenvalues of real Hamiltonian
matrices H and of complex J-symmetric matrices HC display a symmetry [14]: they
appear in pairs (λ,−λ). If x is the right eigenvector corresponding to λ, Bx = λx,
than Jx is the left eigenvector corresponding to the eigenvalue −λ of B = H or B =
HC , (Jx)TB = −λ(Jx)T . Moreover, the matrices in these two classes can always be

written in block form
[
A C
D −AT

]
with C = CT , D = DT , where either A,C,D ∈ Rn×n or

A,C,D ∈ Cn×n. In contrast, complex Hamiltonian matrices have a block form
[
A C
D −AH

]
with A,C = CH , D = DH ∈ Cn×n; the eigenvalues display the symmetry (λ,−λ).

A particular instance of the J-symmetric eigenproblem arises in the context of esti-
mating the absorption spectra in molecules and solids using the Bethe-Salpeter equations
[17, 18] for determining electronic excitation energies. Solving the Bethe-Salpeter equa-
tions numerically, the eigenvalue problem HBSx = λx for complex matrices

HBS =

[
A −DH

D −AT
]
∈ C2n×2n, A = AH , D = DT ∈ Cn×n (1)
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arises. The matrices HBS belong to the slightly more general class of matrices of complex
J-symmetric matrices

HC =

[
A C
D −AT

]
∈ C2n×2n, A,C = CT , D = DT ∈ Cn×n. (2)

As already discussed, the eigenvalues of HC display the symmetry (λ,−λ). Clearly,
HBS inherits these properties. There is even more structure in the eigenvalues and
eigenvectors of HBS .

Theorem 1. Eigenvalues of HBS that are real or purely imaginary appear in pairs
(λ,−λ), other eigenvalues appear in quadruples (λ,−λ, λ,−λ). Moreover, for λ ∈ C,
HBSx = λx implies HBSKx = −λKx and HBSy = −λy implies HBSKy = λKy with

K =

[
0 I
I 0

]
.

For λ ∈ R, it follows that HBSx = λx implies HBSKx = −λKx (as −λ = −λ).

Proof. The equation HBSx = λx reads

Ax1 −DHx2 = λx1

Dx1 −ATx2 = λx2

for x = [ x1x2 ] , x1, x2 ∈ Cn. Reversing the order of the two equations, multiplying by −1
and taking the conjugate of each equation yields

−DHx1 +Ax2 = −λx2
−ATx1 +Dx2 = −λx1

(recall that D = DT , hence D = DH and, as A = AH , we have A = AT ). This is the
same as HBSKx = −λKx.

An analogous argument shows that HBSy = −λy implies HBSKy = λKy.

In this paper, we analyze structure-preserving methods for solving the eigenproblem
for HC , and thus also for HBS .

Numerical algorithms for the real Hamiltonian eigenproblem are a well-studied field
of research, see, e.g., [8] for an overview. It is of particular interest to use structure-
preserving methods which guarantee that the computed eigenvalues come in pairs. This
is, due to rounding errors, not necessarily the case when using standard eigensolvers
like the QR method [12]. A backward stable structure-preserving algorithm for the
real Hamiltonian eigenproblem has been proposed in [3, 4]. The complex Hamiltonian
eigenproblem is dealt with, e.g., in [5]. In [19] it is noted, that the eigenproblem for (1)

is equivalent to a real Hamiltonian eigenproblem with H =
[
Im(A+D) Re(A+D)

Re(D−A) −Im(A+D)T

]
. [19]

discusses structure-preserving parallel algorithms for solving this special eigenproblem.
The only algorithm for solving the eigenproblem for complex J-symmetric matrices

HC which we could find in the literature is a Jacobi algorithm [16]. It transforms HC to
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its complex J-symmetric Schur form from which the eigenvalues can be read off. Much
to our surprise, the existence of the transformation to complex J-symmetric Schur form
has not been proved in the literature. In Section 3 we fill this gap using a result on the
structured Jordan canonical form of complex J-symmetric matrices from [15].

The Jacobi algorithm [16] is inherently structure-preserving (that is, each iterate is
complex J-symmetric). Section 4 briefly summarizes our findings on other structure-
preserving algorithms. The structure-preserving algorithms are based on similarity
transformations with complex symplectic matrices SC ∈ C2n×2n defined by the prop-
erty STCJSC = J. These matrices form the automorphism group associated with the
Lie algebra of complex J-symmetric matrices. The similarity transformation S−1

C HCSC
yields a complex J-symmetric matrix.

Most structure-preserving algorithms are based on suitable matrix decompositions
which can replace the standard QR decomposition in the QR algorithm. Hence, in Sec-
tion 2 the decomposition of general 2n × 2n matrices into the product of a complex
symplectic and another suitable matrix is considered. In particular, the complex sym-
plectic unitary QR decomposition and the complex symplectic SR decomposition are
discussed which are the basis for the algorithms considered in Section 4. In Section
4.1 it is discussed why a QR-like method based on the complex symplectic unitary QR
decomposition is not feasible here. Section 4.2 presents the complex symplectic SR algo-
rithm which is analogous to the SR algorithm for real Hamiltonian matrices [9]. Based
on this, a complex symplectic Lanczos method can be derived which projects the large,
sparse 2n× 2n complex J-symmetric matrix HC onto a small, dense 2k× 2k complex J-
symmetric J-Hessenberg matrix. This 2k× 2k complex J-symmetric matrix is uniquely
determined by 4k− 1 parameters. Using these 4k− 1 parameters, one step of the SR al-
gorithm can be carried out in O(k) arithmetic operations (compared to O(k3) arithmetic
operations when working on the actual matrix). Moreover, the complex J-symmetric
structure, which will be destroyed in the numerical process due to roundoff errors when
working with a complex J-symmetric matrix, will be forced by working just with the
parameters. Finally, in Section 4.3 it is discussed how the 2n×2n complex J-symmetric
matrix HC can be embedded in a 4n× 4n real Hamiltonian matrix. Hence, any method
for solving the Hamiltonian eigenproblem can be used to solve the complex J-symmetric
one. Conclusions are given in Section 5.

2 Complex symplectic decompositions

It is well-known that each complex matrix A ∈ Cn×n can be decomposed into the product
of a unitary matrix Q and an upper triangular matrix R. Based on this decomposition,
the standard QR algorithm can be used to transform A into Schur form using similarity
transformations with unitary matrices.

In order to derive a QR-like structure-preserving algorithm for complex J-symmetric
matrices, a suitable matrix decomposition which can replace the standard QR decom-
position in the QR iteration is needed. As a similarity transformation with a complex
symplectic matrix preserves the complex J-symmetric structure, complex symplectic

4



decompositions of square matrices of even dimension are considered in this section.
Hence we will consider decompositions of a complex matrix A ∈ C2n×2n into the

product of a complex symplectic matrix S and a suitable matrix R. First, the numerically
desirable case of a decomposition into the product of a unitary and complex symplectic
matrix S and a suitable matrix R is discussed. Next, the requirement of S being unitary
is dropped, and a decomposition into the product of a complex symplectic matrix S
and a suitable matrix R is presented. Our discussion closley resembles the discussion in
[6] where matrix decompositions of the type A = SR into the product of a symplectic
matrix S (that is, SHJS = J, S ∈ C2n×2n) or a unitary and symplectic matrix S (that
is, SHS = I, SHJS = J, S ∈ C2n×2n) and an upper triangular-like matrix R for complex
matrices A ∈ C2n×2n have been considered.

Theorem 2 (Complex symplectic unitary QR decomposition).
For any A ∈ C2n×2n, there always exists a decomposition of the form

A = QR, QTJQ = J,QHQ = I

for a complex symplectic and unitary matrix Q ∈ C2n×2n and

R =

[
R11 R12

R21 R22

]
=

 @
...@

 , (3)

where R11 is upper triangular and R21 is strictly upper triangular. If A is nonsingular,
then R11 is nonsingular.

If A is real, Q and R can be chosen to be real.

Proof. Partition the matrix A into n× n blocks

A =

[
A11 A12

A21 A22

]
.

The complex symplectic and unitary matrix Q can be constructed by using a suitable
sequence of complex symplectic and unitary Householder and Givens transformations to
turn A columnwise to the desired form (3). Essentially for every column, first a House-
holder transformation is used to eliminate the corresponding entries under the diagonal
in the (2, 1) block, then a Givens transformation is used to eliminate the diagonal ele-
ment in the (2, 1) block. Finally, a Householder transformation is used to eliminate the
corresponding entries under the diagonal in the (1, 1) block.

The proof makes use of complex symplectic Householder and Givens transformations
which are defined as follows:

• A complex symplectic Givens transformation G
(j)
C differs from the identity I2n

in four elements (j, j), (j, n + j), (n + j, j) and (n + j, n + j). Let G denote a

unitary 2× 2 Givens rotation. Then (G
(j)
C )jj = g11, (G

(j)
C )j,n+j = g12, (G

(j)
C )n+j,j =

g21, (G
(j)
C )n+j,n+j = g22. G is chosen to zero out either the jth or the (n + j)th

component of x ∈ C2n (see [13, Section 4.6.1]).
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• A complex symplectic Householder transformation is set up in a similar way by
embedding a k×k Householder matrix H(u) and H(u) into I2n, k ≤ n. The vector
u 6= 0 is chosen to map k coordinates from among the first n (alternatively, from
among the last n) coordinates of x ∈ C2n to a specific vector in Ck (see [13, Section
4.6.2]).

Corollary 1. If A is complex symplectic, then R in (3) has additional structure: R21 = 0
and R22 = R−T

11 ,

R =

 @
0 @

 .
Proof. As A is complex symplectic and has a complex symplectic QR decomposition,
A = QR, the matrix R needs to be complex symplectic as well:

J = ATJA = RTQTJQR = RTJR.

This gives

I = RT11R22 −RT21R12, (4)

0 = RT11R21 −RT21R11. (5)

Hence, RT11R21 is symmetric due to (5), RT11R21 = RT21R11 = (RT11R21)
T .

In the matrix R from (3) R11 is upper triangular and R21 is strictly upper triangular.
As A is nonsingular, R11 is nonsingular. That is, r11jj 6= 0, j = 1, . . . , n. Here the elements

of Rk` are denoted by rk`ij , k, ` = 1, 2, i, j = 1, . . . , n. Now it follows from the (strict) upper

triangular structure of R11 and R21 that R21 = 0. Consider the product Z = RT11R21. Its
first column is equal to zero. As Z is symmetric, this implies that its first row has to be
equal to zero as well. As z1j = r1111r

21
1j for j = 2, . . . , n, and r1111 6= 0, this implies that the

first row of R21 is zero, r211j = 0. From this it follows that the second column of Z is zero

as well. Hence the second row of Z is zero, that is z2j = r1122r
21
2j = 0 for j = 3, . . . , n. As

r1122 6= 0, we have r212j = 0, j = 3, . . . , n. From this it follows that the third column of Z is
zero. Z is symmetric, so that its third row has to be equal to zero as well. Continuing
in this fashion, one can argue that R21 = 0.

Now (4) implies that RT11R22 = I, which gives R22 = R−T
11 .

Theorem 2 and Corollary 1 are analogues of Corollary 4.5 in [6]. Note that the
unitary symplectic SR decomposition in [6] yields a matrix R almost of the form (3),
just the diagonal entries of R21 are purely imaginary numbers, not zeros. However, not
surprisingly, in the real case, Q and R can be chosen real and the matrix R is as in (3).

Unfortunately, a QR-like method based on the complex symplectic unitary QR decom-
position is not viable due to the lack of an appropriate reduced form which can replace
the Hessenberg form in the standard QR iteration (see Section 4.1 for a discussion).
Therefore, a decomposition into a complex symplectic matrix S and a suitable matrix
R is considered next.
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The following theorem is the analogue of Theorem 3.8 in [6]. Please note that in [6]
the decomposition of 2n × 2n matrices A into the product of a symplectic matrix S
(SHJS = J) and a matrix R which is a permuted version of an upper triangular matrix
is considered. It is proven that the set of matrices which have such a decomposition is
dense in R2n×2n, but not dense in C2n×2n. Making use of complex symplectic matrices
in the decomposition of a complex 2n×2n matrix, we obtain a result analogously to the
real case in [6] (in the real case, the theorem below is just the result from [6]).

Theorem 3 (Complex symplectic SR decomposition). Let A ∈ C2n×2n be nonsingular.
There exists a decomposition of the form

A = SR, STJS = J

for a complex symplectic matrix S ∈ C2n×2n and an (upper) J-triangular matrix

R =

[
R11 R12

R21 R22

]
=

 @ @
...@ @


if and only if det((P̂ATJAP̂ T )[2k, 2k] 6= 0 for all k = 1, . . . , n. Here P̂ is the permutation
matrix P̂ = [e1, e3, . . . , e2n−1, e2, e4, . . . , e2n] which permutes R into upper triangular
form and A[k, k] denotes the leading k× k principal submatrix of A of dimension k× k.

Proof. Theorem 3.8 and Remark 3.9 in [6] states the above result for real matrices A,
the proof also holds for complex A.

The complex symplectic SR decomposition is unique up to a trivial factor.

Corollary 2. Let A ∈ C2n×2n. Let A = SR and A = S̃R̃ be complex symplectic SR
factorizations of A. Then there exists a trivial matrix D, that is, D is complex symplectic
and J–triangular, such that S̃ = SD−1 and R̃ = DR. D is trivial if and only if it has
the form

D =

[
C F
0 C−1

]
=

 @ @
0 @

 , (6)

where C and F ∈ Cn×n are diagonal matrices.

Proof. Proposition 3.3 in [9] states the above result for real matrices A, the proof also
holds for complex A and the complex symplectic SR decomposition.

A straightforward adaption of the algorithm for computing the real SR decomposition
as given in [9] gives an algorithm for computing the complex symplectic SR decompo-
sition of an arbitrary matrix A ∈ C2n×2n. Besides the complex symplectic Householder
and Givens transformations already introduced in Section 3, complex symplectic shears
for Gauss-like eliminations are needed, see [13, Section 4.6.3] for a definition.
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3 (Structured) normal forms for complex J-symmetric matrices

The standard QR algorithm transforms a complex matrix A into its Schur form. A
structure-preserving analogue for complex J-symmetric matrices A will attempt to trans-
form A into an appropriate complex J-symmetric Schur form.

Any complex J-symmetric matrix X is said to be in complex J-symmetric Schur form
if

X =

[
R B
0 −RT

]
=

 @
0 @

 , R,B = BT ∈ Cn×n, (7)

where the nonzero eigenvalues of R either have positive real part or zero real part and
positive imaginary part, see, e.g. [16]. Much to our surprise, we could not find a proof
of the following fact in the literature.

Theorem 4. For any complex J-symmetric matrix HC there exists a complex symplectic
and unitary matrix W ∈ C2n×2n satisfying

W TJW = J, WHW = I,

such that WHHCW is in complex J-symmetric Schur form (7).

We will present a proof for Theorem 4 which makes use of the structured Jordan
form for complex J-symmetric matrices [15]. For the ease of the reader, this structured
Jordan form is presented here. Before we do so, some notation needs to be introduced.

A matrix X = X1⊕ · · · ⊕Xp denotes a block diagonal matrix X with diagonal blocks
X1, . . . , Xp (in that order). The symbol Σp denotes the p × p reverse identity with
alternating signs

Σp =

 0 (−1)0

...

(−1)p−1 0

 .
Moreover, Jp(λ) denotes the upper bidiagonal Jordan block of size p associated with
the eigenvalue λ. Finally, a matrix X ∈ Cp×p is called J-decomposable if there exists a
nonsingular matrix P ∈ Cp×p such that

P−1XP = X1 ⊕X2, P TJP = J1 ⊕ J2,

where X1, J1 ∈ Cm×m and X2, J2 ∈ Cp−m×p−m for some 0 < m < p. Otherwise, X is
called J-indecomposable. Clearly, any matrix X can always be decomposed as

P−1XP = X1 ⊕ · · · ⊕Xk, P TJP = J1 ⊕ · · · ⊕ Jk,

where Xj is Jj-indecomposable, j = 1, . . . , k. A classification of indecomposable matrices
is given in [15].

Now we can state the structured Jordan form for complex J-symmetric matrices.
As already observed, all nonzero eigenvalues come in pairs (λ,−λ). The Jordan block
associated with −λ is just minus the transpose of the Jordan block associated with λ.
Moreover, Jordan blocks associated with the eigenvalue zero either are of even size or
appear in pairs. In particular, it holds

8



Theorem 5 ([15, Theorem 8.3]). (Canonical form for complex J-symmetric matrices)
There exists a nonsingular matrix Q such that

Q−1HCQ = H1 ⊕ · · · ⊕ Hp, QTJQ = J1 ⊕ · · · ⊕ Jp, (8)

where Hj is Jj-indecomposable and where Hj and Jj have one of the following forms:

i) blocks associated with λj = 0, where nj ∈ N is even:

Hj = Jnj (0), Jj = Σnj ;

ii) paired blocks associated with λj = 0, where mj ∈ N is odd:

Hj =

[
Jmj (0) 0

0 −
(
Jmj (0)

)T ] , Jj = Jmj ;

iii) blocks associated with a pair (λj ,−λj) ∈ C × C, where Re(λj) > 0 or Im(λj) > 0
if Re(λj) = 0 and mj ∈ N:

Hj =

[
Jmj (λj) 0

0 −
(
Jmj (λj)

)T ] , Jj = Jmj .

Moreover, the form (8) is unique up to the permutation of blocks.

With this theorem we are ready to present a proof of Theorem 4 using Theorem 5.

Proof of Theorem 4. Consider equation (8). The first step in proving Theorem 4 will
be to construct a matrix Y to transform Q−1HCQ such that Y −1Q−1HCQY = T is
in complex J-symmetric Schur form (7) and such that Y TQTJQY = J . For this, only
permutations and diagonal scaling have to be used. Let Y be this transformation matrix
and set Z = QY . In a second step, decompose the complex symplectic matrix Z into
the product of a complex symplectic and unitary matrix S and a matrix R as in (3). As
Z is complex symplectic, R is of the form given in Corollary 1. Then

STJS = J

and
R−1S−1HCSR = T ⇔ S−1HCS = RTR−1 = T̃ ,

where T̃ is in complex J-symmetric Schur form (7) as

RTR−1 = RTJRTJ =

[
T̃11 T̃12
0 T̃22

]
with

T̃11 = −R11T11R
−1
11 ,

T̃12 = −R11T12R
T
11 +R11T11R

T
11 +R12T

T
11R

T
11 = T̃ T12,

T̃22 = R−T
11 T

T
11R

T
11 = −T̃ T11,
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and T̃11 is an upper triangular matrix as products and inverses of upper triangular
matrices are upper triangular again [12, Chapter 3.1.7].

This leaves to discuss the first step of constructing Y . The blocks Hj in cases ii) and
iii) are of even dimension having the block form[

Jj(λ) 0
0 −J Tj (λ)

]
.

The corresponding blocks Jj are just small copies of J , Jj = Jj . Our first goal is to
transform the blocks corresponding to case i) to be of the same form as those for the
cases ii) and iii), even so the Jordan structure will be lost. Then it will be possible to
reorder the blocks in the different Hj such that all upper bidiagonal blocks are moved
to the upper block and all lower bidiagonal blocks will be moved to the lower block of
the resulting 2× 2 block matrix with n× n blocks.

The blocks Hj = Jj(0) in case i) corresponding to zero eigenvalues have even dimension
as well. Hence they can be partitioned into blocks of size j/2× j/2

Hj =

[
Jj/2(0) B̂

0 Jj/2(0)

]
, Jj/2, B̂ ∈ Rj/2×j/2,

where B̂ is zero up to the only nonzero entry 1 in the position (j/2, 1). Unlike the Hj
block in the cases ii) and iii), here the second diagonal block is upper bidiagonal, not
lower bidiagonal. Applying the permutation Pj

Pj =

[
Ij/2 0

0 Pj/2

]
, Pj/2 =

 0 1
...

1 0

 ∈ Rj/2×j/2 (9)

to Hj yields

Pj
[
Jj/2(0) B̂

0 Jj/2(0)

]
Pj =

[
Jj/2(0) B̂Pj/2

0 Jj/2(0)T

]
,

so that the second diagonal block is of lower bidiagonal form. The only nonzero entry in
B̂ ends up in the (n, n)-position in B̂Pj/2. Applying Pj to the corresponding Jj block
gives

PTj ΣjPj = Pj
[

0 Σj/2

−Σj/2 0

]
Pj =

[
0 Σj/2Pj/2

−Pj/2Σj/2 0

]
with

Σj/2Pj/2 = diag(−(1)0, (−1)1, . . . , (−1)j/2) = Dj/2.

Using diagonal scaling with the matrix

Dj =

[
Dj/2 0

0 Ij/2

]
,

the matrix PjΣjPj can easily be transformed to the matrix Jj :

DTj PjΣjPjDj = Jj .
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In order to conclude the transformation, Dj needs to be applied to PjHjPj

D−1
j

[
Jj/2(0) B̂Pj/2

0 Jj/2(0)T

]
Dj =

[
−Jj/2(0) Dj/2B̂Pj/2

0 Jj/2(0)T

]
.

Let G = G̃1 ⊕ · · · ⊕ G̃p be partitioned as the matrices in (8), where

G̃j =

{
Ij if the block corresponds to case ii) or iii),
PjDj if the block corresponds to case i).

Then
G−1Q−1HCQG = H̃1 ⊕ · · · ⊕ H̃p, GTQTJQG = J̃1 ⊕ · · · ⊕ J̃p,

where

H̃j =

[
Ej Bj
0 −ETj

]
,

J̃j = Jj .

Here Ej is upper bidiagonal and Bj is zero for the cases ii) and iii), and has one nonzero
entry in the (j/2× j/2) position for the case i).

Next permute G−1Q−1HCG such that

P̂G−1HCGP̂ =

[
R̃ B̃

0 −R̃T

]
, P̂GTJGP̂ = J (10)

for an upper bidiagonal R̃ and a symmetric B̃. Such a permutation P̂ always exists. Each
of the blocks H̃j has diagonal blocks of the form diag(Jj ,−J Tj ). Hence, the permutation

has to take the leading diagonal block of Hj as the jth diagonal block of R̃ (which implies

that the trailing diagonal block will be the jth diagonal block of −R̃T ). In case there is
a nonzero off-diagonal block Bj in H̃j , it will be moved to B̃ such that the nonzero entry

ends up on the diagonal of the upper right block B̃.
In order to illustrate this, consider the following small example

Ej1(0) Bj1
−ETj1(0)

Ej2(λ)
−ETj2(λ)

 .
Using

P̂ =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I



11



yields

P̂


Ej1(0) Bj1

−ETj1(0)

Ej2(λ)
−ETj2(λ)



I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I



=


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I



Ej1(0) 0 Bj1 0

0 0 −ETj1(0) 0

0 Ej2(λ) 0 0
0 0 0 −ETj2(λ)



=


Ej1(0) 0 Bj1 0

0 Ej2(λ) 0 0

0 0 −ETj1(0) 0

0 0 0 −ETj2(λ)

 .
Applying this permutation to GTQTJQG yields

I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I




0 Ij1 0 0
−Ij1 0 0 0

0 0 0 Ij2
0 0 −Ij2 0



I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I



=


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I




0 0 Ij1 0
−Ij1 0 0 0

0 0 0 Ij2
0 −Ij2 0 0



=


0 0 Ij1 0
0 0 0 Ij2
−Ij1 0 0 0

0 −Ij2 0 0

 = J.

Hence, there is always a permutation P̂ in order to achieve (10).

Note that HC is in complex J-symmetric Schur form if and only if the matrix PHCP
with P as in (9) is in standard Schur form.

In [16], a Jacobi algorithm for computing the complex J-symmetric Schur form of a
complex J-symmetric matrix is given.

4 Algorithms

The only algorithm for computing the complex J-symmetric Schur form of HC which
we could find in the literature is a Jacobi algorithm [16]. The algorithms proposed
there are based either on solving a suitable 2 × 2 or a 4 × 4 complex J-symmetric
subproblem. Asymptotic quadratic convergence is proven under a specific scheme on
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the choice of the sweeps (that is, a sequence of Jacobi steps in which each element in
the strict lower triangular part of PHcP is annihilated at least once). Even so, a proof
of global convergence is still missing. The Jacobi algorithm is structure-preserving and
backward stable. The Jacobi algorithm is inherently parallel, since the solutions of the
2× 2 or a 4× 4 subproblems rely only on local information. But if one is not interested
in high accuracy computation, then for large-scale computations, Jacobi’s method is not
regarded as competitive, not even for modern parallel computers [11].

Hence, in this section other structure-preserving algorithms for computing the eigen-
values of complex J-symmetric matrices are derived.

4.1 QR-like algorithm

The most popular way to compute the standard Schur form of a general matrix is the
QR algorithm. It first transforms the given matrix into upper Hessenberg form and then
iterates on that to converge towards the Schur form. It is tempting to derive a structured
QR algorithm for transforming HC iteratively into complex J-symmetric Schur form. In
order to do so, we need a structured Hessenberg form. The most natural way to define
this is the following: a complex J-symmetric matrix is in structured Hessenberg form if
it is of the form

Hhess =

[
F G
E −F T

]
=

 @@

* @@

 , F, E,G = GT ∈ Cn×n,

where F is upper Hessenberg and E = αene
T
n . A matrix HC is in structured Hessenberg

form if and only if PHCP is in standard Hessenberg form for P as in (9).
Assume that a complex symplectic and unitary matrix Q exists which transforms HC

into unreduced structured Hessenberg form QHHCQ. Let Q = [q1 . . . qn qn+1 . . . q2n]
with qn+j = Jqj . Given q1, it is straightforward to see from HCQ = QHhess that

HCqj =
∑j+1

k=1 fkjqk, while from QHHCQ = Hhess we have for i, j = 1, . . . , n

(Hhess)n+i,j = eij = qHi J
THCqj = qHi J

T

(
j+1∑
k=1

hkjqj

)
= −

j+1∑
k=1

hkjq
H
i Jqj .

For the structured Hessenberg form eij needs to be zero. As the complex symplecticity
of Q only gives information about qTi Jqj , not about qHi Jqj , we can not argue that
eij = 0 in general (only in the real case, we have eij = 0). Therefore, in general we can
not construct a complex symplectic and unitary matrix Q which transforms HC into
a structured Hessenberg matrix. This cannot be used as a basis for a structured QR
algorithm.

However, for any complex matrix X ∈ C2n×2n there exists a unitary and complex
symplectic transformation to a condensed form with more nonzero entries.

Theorem 6. There exists a complex symplectic and unitary matrix Q which transforms
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any X ∈ C2n×2n into the form

QHXQ = M =

 @@
M21

 ,
where M21 is such that m21

ji = 0 for j = i + 3, . . . , n, i = 1, . . . , n − 1. If X = HC is
complex J-symmetric, then this reduces to

QHHCQ = M =

 @@
M21 @@

 , (11)

where M22 = −MT
11, M12 = MT

12 and M21 = MT
21. M21 is pentadiagonal, that is, m21

ji =

m21
ij = 0 for j = i+ 3, . . . , n, i = 1, . . . , n− 1.

Proof. Q can be constructed from a sequence of complex symplectic Householder trans-
formations. First construct a complex symplectic Householder transformation H1 such
that it eliminates the entries (3, 1), . . . , (n, 1) in X. The similarity transformation
X1 = H1XH

H
1 gives zero entries in X1 in the positions (3, 1), . . . , (n, 1). Next construct

a complex symplectic Householder transformation H2 such that it eliminates the entries
(n + 4, 1), . . . , (2n, 1) in X1. Perform the similarity transformation X2 = H2X1H

H
2 .

This gives zero entries in X2 in the positions (n + 4, 1), . . . , (2n, 1). The already cre-
ated zeros in the upper part of the first column are not destroyed. Now construct a
complex symplectic Householder transformation H3 such that it eliminates the entries
(4, 2), . . . , (n, 2) in X2, perform the similarity transformation X3 = H3X2H

H
3 , construct

a complex symplectic Householder transformation H4 such that it eliminates the entries
(n+5, 2), . . . , (2n, 2) in X4. Perform the similarity transformation X4 = H4X3H

H
4 . This

gives zero entries in X4 in the positions (4, 2), . . . , (n, 2) and (n+ 5, 2), . . . , (2n, 2). The
already created zeros in the first column are not destroyed. Continue in this fashion.

The reduced form (11) may serve as the basis of a unitary complex symplectic QR-
like algorithm for complex J-symmetric matrices. But the reduced form (11) will not be
preserved in the iteration as products of the form @

0 @

 @@
M12 @@

 @
0 @


are in general not of the form (11). In each iteration step, the reduced form (11) is
lost and would have to be restored. Even so all necessary computations are numerically
stable, this seems to be no promising way to solve the eigenproblem for HC due to a
computational complexity of O((2n)4).

A similar observation has been made for the symplectic case (SHJS = J), see, e.g. [6,
Theorem 4.7] and the discussion given there. Please note that the derivations presented
there have no direct analogue here as they heavily depend on the relations SHJS = J
and SHS = I.
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4.2 SR-like algorithm

Using the complex symplectic SR decomposition, the complex symplectic SR algorithm
for an arbitrary 2n× 2n matrix A is given as

let A0 = S−1
0 AS0 for an appropriate complex symplectic S0

for k = 1, 2, . . .
choose a shift polynomial pk
compute the SR decomposition pk(Ak−1) = SkRk
compute Ak = S−1

k Ak−1Sk
end

As Sk is complex symplectic, but not unitary, the iterates Ak will not converge towards
a complex J-symmetric Schur form (7). An appropriate reduced form A0 just as in the
standard QR iteration has to be used in order to derive an efficient algorithm. Such a
reduced form is given next.

Corollary 3. For any HC ∈ C2n×2n there exists a complex symplectic matrix S such
that S−1HCS is a complex J-symmetric J-Hessenberg matrix, that is,

S−1HCS =

 @ @@@

@ @



=



α1 γ1 δ2
α2 δ2 γ2 δ3

α3 δ3
. . .

. . .

. . .
. . .

. . . δn
αn δn γn

β1 −α1

β2 −α2

β3 −α3

. . .
. . .

βn −αn


. (12)

Any complex J-symmetric J-Hessenberg matrix is determined by 4n− 1 parameters.

A straightforward adaption of the discussion of the SR algorithm for real Hamiltonian
matrices as in [9] holds. In particular, the adaption of the algorithm for reducing a real
2n×2n matrix to J-Hessenberg form as given in [9] yields an algorithm for the situation
considered here. In complete analogy to the QR algorithm [12], the complex symplectic
SR step can be performed implicitly.

The complex symplectic SR algorithm for a complex J-symmetric J-Hessenberg ma-
trix HC can be rewritten in a parameterized form that will work only with the 4n − 1
parameters which determine HC instead of the entire matrix in each iteration step. Thus
only O(n) flops per SR step are needed compared to O(n3) flops when working on the
actual complex J-symmetric matrix. As the algorithm is a straightforward adaption
of the one in the real case considered in [10], it is not given here. The complex J-
symmetric structure, which will be destroyed in the numerical process due to roundoff
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errors when working on a complex J-symmetric matrix will be forced by working just
with the parameters. The complex symplectic SR iteration proceeds until the problem
has completely decoupled into complex J-symmetric subproblems of size 2× 2 or 4× 4.
In a final step each of these subproblems has to be transformed into a form from which
the eigenvalues can be read off.

Please note, that as S is complex symplectic, but not unitary, the complex symplectic
SR algorithm is structure-preserving for complex J-symmetric eigenproblems, but not
backward stable. The algorithm uses a sequence of unitary complex symplectic Givens-
and Householder-like transformations matrices as well as some complex symplectic shears
which are not unitary. But whenever a complex symplectic shear transformation has to
be used, the complex symplectic shear among all possible ones with optimal (smallest
possible) condition number is chosen.

In case a large and sparse complex J-symmetric eigenproblem is to be solved, the
complex symplectic SR algorithm might not be the appropriate tool. Based on the
complex symplectic SR algorithm and the complex J-symmetric J-Hessenberg form, a
Lanczos-like algorithm can be derived which reduces a complex J-symmetric matrix HC

to complex symmetric J-Hessenberg form just like the symplectic Lanczos algorithm for
(real) Hamiltonian matrices in, e.g., [1]. The algorithm projects the large, sparse 2n×2n
complex J-symmetric matrix onto a small 2k × 2k one from which approximations to
a few extremal (or interior) eigenvalues can be obtained. Basically all comments given
for the symplectic Lanczos algorithm for real Hamiltonian matrices hold here as well.
Like any unsymmetric Lanczos algorithm, the complex symplectic Lanczos algorithm for
complex J-symmetric matrices may break down; serious breakdown may occur. There
is freedom in the choice of the parameters αj , βj , γj , δj which may be used in order to
construct a numerically safe algorithm.

A Krylov-Schur-type restart might be possible, analogous to the Hamiltonian case [2].

4.3 Embedding HC into a real Hamiltonian matrix

A different approach is to embed HC into a matrix of double size to make everything
real and permute everything in order to collect the real and imaginary parts of A,C,D
parts into joint blocks. Let

A = AR + ıAI ,

C = CR + ıCI ,

D = DR + ıDI

with AR, AI , CR, CI , DR, DI ∈ Rn×n. As C = CT and D = DT , it follows that

CR = CTR , CI = CTI , DR = DT
R, DI = DT

I . (13)

Then

HC =

[
A C
D −AT

]
=

[
AR CR
DR −ATR

]
+ ı

[
AI CI
DI −ATI

]
= HR + ıHI ,
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with Hamiltonian real and imaginary part HR ∈ R2n×2n and HI ∈ R2n×2n,

(HRJ)T = HRJ and (HIJ)T = HIJ.

Let

Y =

√
2

2

[
I ıI
I −ıI

]
∈ C4n×4n

and

P =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 −I

 .
Then P TP = PP T = I and Y is unitary, that is, Y HY = I = Y Y H .

It is straightforward that

P TY H

[
HC 0

0 HC

]
Y P = P T

[
HR −HI

HI HR

]
P ∈ R4n×4n

=


AR −AI CR CI
AI AR CI −CR
DR −DI −ATR −ATI
−DI −DR ATI −ATR


=

[
A C
D −AT

]
= H ∈ R4n×4n. (14)

As C = CT and D = DT , H is Hamiltonian.
Clearly, the spectrum σ(H) of H is the union of the spectrum of HC and the one of

HC ,
σ(H) = σ(HC) ∪ σ(HC).

The structured Jordan form of H can be inferred from that of HC (8). Hence, the
nonzero eigenvalues of H come in quadruples (λ,−λ, λ,−λ). In particular, the real and
purely imaginary eigenvalues of H have even multiplicity.

When solving the eigenproblem for HC by solving the eigenproblem for H, eigenvalues
of HC can be deduced from those of H, but eigenvectors can not. They have to be
determined using inverse iteration. Moreover, one has to decide which of the computed
eigenvalues are eigenvalues of HC . For real and purely imaginary eigenvalues of H, this
is straightforward. They appear in quadruples (λ,−λ, λ,−λ), that is we have for real λ

(λ,−λ, λ,−λ) = (Re(λ),−Re(λ),Re(λ),−Re(λ))

and similar for purely imaginary λ

(λ,−λ, λ,−λ) = (Im(λ),−Im(λ), Im(λ),−Im(λ)).

As the eigenvalues of HC appear in pairs, each real and purely eigenvalue quadruple of H
gives an eigenvalue pair (λ,−λ) of HC . For complex eigenvalues of H there is no obvious
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way to determine whether (λ,−λ) or whether (λ,−λ) is the corresponding eigenpair of
HC . This needs to be tested, e.g., using inverse iteration.

The eigenproblem for H can be solved by the numerically stable, structure preserving
method for computing the eigenvalues of real Hamiltonian matrices proposed in [4] (or
any other method proposed for the Hamiltonian eigenproblem).

The additional explicit structure in HBS (1) can not be made use of in any of the
ideas discussed above. E.g., the Hamiltonian matrix (14) has additional structure

H =

[
A −D
D −AT

]
, D = DT ,A = AT

which is so far of no use.

5 Conclusions

Structure-preserving algorithms for the complex J-symmetric eigenproblem have been
discussed. When choosing an algorithm for a specific problem at hand one should take
the following into account.

• The Jacobi-like algorithm [16] is backward stable and inherently parallelizable.
Asymptotic quadratic convergence has been proven, but a global convergence proof
is missing. In case of convergence, the iterates converge towards the complex J-
symmetric Schur form (7).

• A backward stable QR-like algorithm based on the complex symplectic unitary
QR decomposition as given in Theorem 2 can be derived, but there seems to be no
suitable Hessenberg-like form to decrease the computational complexity O((2n)4).

• The complex symplectic SR algorithm based on the complex symplectic SR decom-
position as given in Theorem 3 is structure-preserving, but not backward stable.
When using the reduction to complex J-symmetric J-Hessenberg form (12) as a
first step of the algorithm, the complex-symplectic SR algorithm can be imple-
mented such that only O(n) flops per iteration steps are required. The iteration
proceeds until the problem has completely decoupled into complex J-symmetric
subproblems of size 2× 2 or 4× 4.

• A complex symplectic Lanczos algorithm suitable for large sparse complex J-
symmetric eigenproblems can be devised based on the complex symplectic SR
algorithm. (Serious) breakdown may occur.

• Any complex J-symmetric matrix HC can be embedded into a real Hamiltonian
matrix H of double size. The real Hamiltonian eigenproblem can be solved by
the numerically stable, structure-preserving method [4]. Eigenvalues of HC can be
deduced from those of H, eigenvectors have to be determined via inverse iteration.
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