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Abstract

Fractional differential equations are becoming increglgipopular as a modelling tool
to describe a wide range obn-classical phenomena with spatial heterogeneities tr-
out the applied science and engineering. However, the ocal-hature of the fractional
operators causes essential difficulties and challengesuimerical approximations. We
here address an efficient approach to solve fractionagpées Allen- Cahn equations via
the contour integral method (CIM) for computing the frantbpower of a matrix times
a vector. Time discretization is performed by the first-aadond-order implicit-explicit
schemes with an adaptive time-step size approach, whepetialsliscretization is per-
formed by a symmetric interior penalty Galerkin (SIPG) noeth Several numerical ex-
amples are presented to illustrate the effect of the fraatipower.
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1 Introduction

Fractional models, in which a standard time or space diffgeoperator is replaced by a
corresponding fractional operator, have gained condide@opularity and importance during
the last few decades, although fractional calculus is ariagit in mathematics, see [22] for
historical notes. Fractional calculus is now used to dbscai broad range of non-classical
phenomena in the applied sciences, engineering, and firtree¢o the intrinsic non-local
property of fractional derivatives, for example, the fiftoa of solutes in porous soils [8], dif-
fusion of water molecules in brain tissues [12], electradwdrge transport in polymer networks
[25], the relationship between certain option pricing ard\y-tailed stochastic process [42],
anomalous diffusion process for continuous time randonk waddels [38].

It is well known that the derivation of the analytical sobuts to the fractional differential
equations is generally difficult and computation of themdspexpensive due to infinite series
in the analytical solutions. On the other hand, the impletatgn of numerical approaches to
solve the fractional differential equations also has essatifficulties and challenges due to
the non-local nature of the fractional operators (spacgtibmal) and the dependence on the
full history (time fractional). However, in recent yearsyamber of successful numerical ap-
proaches for the fractional differential equations havenbmonsidered such as finite difference
methods [27, 36, 44, 9, 48], spectral methods [39, 34], fel#enent methods [15, 18, 49, 10],
and discontinuous Galerkin methods [16, 41]. Many of theggg@aches have limitations in
terms of computational efficiency when two and three spdimaénsions are considered. They
either do not scale well or their scalability has not beemshdrecently, Yang et al. in [47]
proposed a new approach using a matrix transfer techniginefinite difference and finite
element methods to solve the time-space fractional ddfusiquation in two spatial dimen-
sions with homogeneous Dirichlet boundary conditions. 3tletion was advanced in time
by computing the function of a matrix times a vector by pratibaned Lanczos method. This
conceptis also considered in [11] using the finite elemenhotkin space and a semi-implicit
Euler approximation in time. The computation of the fracdbpower of a matrix times a
vector was done by the contour integral method, the exteKag@dv subspace method, and
the preassigned poles and interpolation nodes method.

We here concern ourselves with the fractional-in-spacemAlLahn equations of the form

ut_|_(_A)au+%f(u) -0 inQ x (0,T), (1a)
u = ¢° in P x (0,T), (1b)
ou . N . N
= =g in™N % (0,T), (1c)

with initial conditionu(x, 0) = up(x). The operatof — A)“ denotes the fractional operator of
ordera € (0.5,1].

In problem (1) u represents the concentration of one of the species of iy Hike parame-
tere represents the diffuse interface width parameder, R%(d = 1,2, 3) is a bounded domain
with Dirichlet and Neumann boundary conditions denoted Byand N, respectively. The
nonlinear ternf (u) = F'(u) is the derivative of a free energy functioglu). There are many
not just two types of free energy functiorfa(u) in the literature. The first one we consider is



the non-convex logarithmic free energy [6]

F(u) = g[(1+u)|n(1+u)+(1—u)|n(1—u)} —%uz 2)
with 0 < 6 < B¢, wheref is the transition temperature. Whértonverges t@., the logarith-
mic free energy (2) can be approximated by a smooth doublel eeell potential taking its
global minimum value 0 at = +1

F(u) = S 1) 3
Then, f(u) = u(u? — 1) represents the bistable non-linearity for the double-wetential,
wheread (u) = % In (%) —Bcu is for the logarithmic free energy (2). Further, the frantib
in-space Allen-Cahn equation can be viewed as the gradenofl the energy

£)= | (3100 + TF () do. @)

Equation (1) witha = 1, which is known as a scaled in time form of the Allen-Cahnaequ
tion, was originally introduced by Allen and Cahn in [1] tosteibe the phase separation
process of a binary alloy at a fixed temperature. The AllehrCequations (and the related
Cahn-Hilliard equations) are essential building blockshia phase field methodology or the
diffuse interface methodology for moving interface andefteoundary problems, see e.g.,
[5, 37]. There are several challenges to obtain numerigalcgimations of these problems
such as the existence of a nonlinear term and the presenbe sfrtall interfacial length pa-
rametere. An appropriate numerical scheme requires a proper relégtween physical and
numerical scales, that is, the size of spatial meahd time steg have to properly be related
to the interaction length. For the spatial discretization, well known methods likectpal
methods [14], finite element methods [35], and discontisu®alerkin methods [20, 31] have
been used for the classic Allen-Cahn equation. The regudtistem is inherently stiff system
due to the small positive parametefThis is then handled by appropriate temporal discretiza-
tions methods, such as the implicit-explicit (IMEX) techués [43, 21], and the average vector
field (AVF) method [31, 13].

Recently, there has been a fast increasing number of stodidont propagation of re-
action diffusion systems with an anomalous diffusion asesufiffusion, i.e., the fractional
Allen-Cahn equation (1). Such super diffusion is relatet&ay processes and can be mod-
eled by a fractional operatgr-A)® with 0.5 < o < 1. Especially, the fractional models offer
insight that traditional approaches do not offer, in casdiffision in heterogeneous envi-
ronments. However, there are some subtle issues assowidtethe interpretation of the
fractional Laplace operator; see [46] for further discossi Ili¢ et al. in [28] have shown
that the fractional Laplace operatprA)® has the same interpretation @sA) in terms of
its spectral decomposition for homogeneous boundary tiongi Further, the matrix transfer
technique was introduced in [29, 30] to compute the fractidaplacian by first computing a
matrix representation of the Laplace (independent of ditszation approach) and then raising
it to the fractional order.

We here solve the equation of the form (1) by computing thetiivaal power of a matrix
times a vector. To compute the fractional power, the conioteégral method proposed in



[24] is applied. It is expected that the fractional reactibfiusion models as (1) with smaller
fractional order exhibit more heterogeneous environmeirtsaaddition, the sharp gradients
and singularities emerge locally for the small values ofgheametee. To handle these dif-
ficulties, we apply the symmetric interior penalty Galer@&PG) method as a discontinuous
Galerkin method for the spatial discretization. Then, tin@licit-explicit (IMEX) methods
are applied for the temporal discretization. In order toese@mputational cost we have ad-
dressed an adaptive-time stepping algorithm based on tlegattice between the first order
IMEX method and the second order IMEX method.

The rest of this paper is organized as follows: in the nextiecwe introduce the sym-
metric interior penalty Galerkin (SIPG) method as a distatus Galerkin discretization. In
section 3 we review the contour integral method, which adlowto approximate the fractional
Laplacian by a fractional power of a matrix. The implicitpdicit methods are given in sec-
tion 4 for the temporal discretization. Also, an adaptiveet stepping algorithm is addressed
to reduce the computational cost. Finally, in the last se¢tseveral numerical examples are
presented to show the effect of the fractional power.

2 Symmetric interior penalty Galerkin (SIPG) discretization

In this section, we introduce the symmetric interior pgn&lerkin (SIPG) discretization
as a discontinuous Galerkin (DG) method. It is chosen dubdsymmetric property of its
bilinear form, i.e.an(y,v) = an(v,y), see e.g., [2].

We begin with the continuous weak formulation of the claasfllen-Cahn equation de-
fined by

ut—Au+%f(u):0 inQx (0,T). (5)

Then, findu(t) € U such that
(u,v) +a(u,v) =£(v) YWwevV, te (0,T], (6a)
(u(-,0),v) = (up,V) Wwev, (6b)

where the space of solutiohk and the space of test functions are defined by
U={ueHYQ): Yo =0®}, V={veHQ): v|ro =0},

and the (bi)-linear forms are given by

a(u,v):/Q(Duﬂv)d)g and é(v):—/g%f(u)vdXJr/rN gVvds

We assume that the domaihis polygonal such that the boundary is exactly represented
by boundaries of triangles. We dendt#, }1, as a family of shape-regular simplicial triangu-
lations of Q. Each mesHZ;, consists of closed triangles such titat= UKE%K holds. We
assume that the mesh is regular in the following sense: fterdit trianglesK;,K; € 7y,

i # |, the intersectiorK; NK;j is either empty or a vertex or an edge, i.e., hanging nodes are
not allowed. The diameter of an elemé&haind the length of an eddgeare denoted biik and
hg, respectively.



We split the set of all edges;, into the setfl? of interior edges, the s%r? of Dirichlet
boundary edges and the s&}' of Neumann boundary edges so tiaf = 2 U 0 with
£B=EPUEN. Letthe edg& be a common edge for two elemektandK®. For a piecewise
continuous scalar functioy) there are two traces gfalongE, denoted by|e from insideK
andy®|e from insideK®. The jump and average gfacross the eddgeé are defined by:

V] = vlenk +Ylence, ()} = 3 (vl +Y7le). )

wherenk (resp.nge) denotes the unit outward normald& (resp.oK®).
Similarly, for a piecewise continuous vector fiélly, the jump and average across an edge
E are given by

[0¥] = Oyle -+ O°le e, {0YD = 3 (Ovle + D'le). ®

For a boundary edge € KN T, we set{{Oy}} = Oy and[y]] = yn, wheren is the outward
normal unit vector orf.

For continuous finite element methods (FEMSs), the idea ippr@imate (6) using a con-
forming, finite dimensional spadg C V. On the other hand, we point out that in discontinu-
ous Galerkin methods the space of solutions or test funetionsist of piecewise discontinu-
ous polynomials. That is, no continuity constraints ardieitly imposed on the state and test
functions across the element interfaces. As a consequemsed, formulations must include
jump terms across interfaces, and typically penalty temasdded to control the jump terms.
Then, we define the spaces of test functions, of the soligibps

Vh=Un={uel?(Q): ulkeP'(K) VKe %}, 9)

whereP'"(K) is the set of polynomials of degree at mosh K. Note that the spaddy, of
discrete solutions and the space of test functigpare identical due to the weak treatment of
boundary conditions in DG methods. Note also that the spriga non-conforming space
such thaw, Z V.

Now, we are ready to set up the SIPG discretization of themootis weak formulation (5).
Multiply (5) by a test functiorv € V;, , and then integrate over each elemiére 7y,

> / (UtV—AUV) dx= % / :—Lf(U)v dx
Kem, /K Kem, /K €
An application of integration by parts on each element irgkgives us
z / (utv+ Ou- Dv) dx— z / (Ou-n)vds= z / :—Lf(u)v dx
Kem, /K K, /oK Kem, /K €
Then, using the definition of the jump operator we obtain

z /K(utv+Du~Dv) dx— Z /E[[vDu]]ds: z /Kf(u)vdx+ z /ngds

Kedh EcEJUED KeTp EcE) E



The following equality
[vOul} = {Oujy - v + [Ou] - v
which one can verify easily and the fact tfjatu] = 0 (u is assumed to be smooth) yield

> /K(utv—i—Du-Dv) dx— /{{Du}}

KeT, EethZhD

Z/f u)v dx+ /gvds

KET, Ee th

To handle the coercivity of the left hand side and controjtinep terms, we add the following
equalities via[u] = 0 on the interior edge& € £°

> fuovpnies = 3 [mvnds
D p/E
Ee‘EhUZh EcZf
9 D
/ = — [ g°vds
fhufr? he Eezfg’ he Je

whereo is the penalty parameter, which should be chosen a suffigiEmge to ensure the
stability of the SIPG scheme, see, e.g., [2]. Then, the weaklation of the Allen-Cahn
equation (5), discretized by the SIPG method reads asufjrdJy, such that

Oun

(at V) +@n(un,V) = ¢h(V) We W, te(0,T], (10a)

(un(+,0),v) = (uo,V) YW e Vh, (10b)

where the (bi)-linear forms are given by

an(u.y)= 5 [ (Ou-0v) dx- Z [ (Houp- M+ Ovh - [ul) ds

KeThk EGZhUZEE
(11a)
Eeﬁhuﬂr? E/
eh(v):KezTh/S WV dx+ z /g —{ovy) ds+E€Tﬁ/g vds (Lib)

andun(-,0) is an orthogond].z—projection of the initial conditiomig ontoUj,.
For each time step, we can expand the discrete solution as

= ii EU}dj, (12)

whereU! and¢@. are the unknown coefficients and the basis functions, réispsg for j =
1,2,---,npandi=1,2,--- ,N. The numbeN denotes the number dG elements agds the
local dimension of each dG element with

_ (p+1(p+2)
2 )



wherep is the degree of the polynomial order.
Inserting (12) into (10), we obtain

du
E%—M’lLU =B(U), (13)
whereU is the unknown coefficient vectar = (U, - -- ,Ur}p, UG ,Ur']“p), M is the mass

matrix, L is the stiffness matrix correspondingdg(u,v), andB(-) is the nonlinear vector of
the unknown coefficient vectdf corresponding tén(v).

We are now ready to employ the matrix transfer techniquedhtced in [29], which states
that the error introduced by approximating the fractionaplacian by a fractional power of
the matrixA = M 1L converges at the same rate as the underlying discretizatishod. In
the following section, we employ the contour integral metivtroduced in [24] to compute
the fractional power oA times a vector.

3 Contour integration method (CIM)

We remark that an analytic functidnof a square matriXA can be represented as a contour
integral in the complex plane [26, Definition 1.11]

h(A) = % /r h(2)(Z —A) tdz (14)

wherei = /—1, andr is a closed contour lying in the region of analyticityro&nd enclosing
the spectrum ofAA. Then, numerical quadrature method is applied to the iategr (14) to
approximaten(A).

We here compute the vectbfA)b for a given vectob by using definition (14) with the
technique proposed in [24]. The basic principle is basechapplication of the midpoint rule
over a circle contained within an annulus whose outer bogynaiaps to the interval—o, 0]
and whose inner boundary maps to the intef¥alAn], which are the eigenvalues Af, see
Figure 1.

Then, the vectoh(A)b is computed via the following quadrature formula

h(A)b ~ |m_2wj (nil —A)~ b, (15)

where the weights and shifts are denotedabgndn, respectively, anay is the number of
guadrature points.

The SIPG discretization of the Dirichlet problem providemasingular and real-symmetric
matrixA = M ~1L. Then, by using the symmetry propertyfdfwe can integrate over only the
upper half the contour. The algorithm based on the metho24hi$ given in Algorithm 1. In
the algorithm, we use the routind$ipkkp andellipjc, which are described in [17] to compute
complex arguments.



Figure 1: Conformal map from the annulus (left) to the dom@ifi(—oo, 0] U [A1,An]} (right).
The quadrature points in the CIM denoted by the dots. SegjfjHetails.

Algorithm 1 CIM for computingA® for the Dirichlet problem

1: I =eigs(L,M,1,'SM"); 11 = I(1); % min. eigenvalue of A
2: I = eigs(L,M,1,/LM"); IN = I(2); % max. eigenvalue of A
3: k = (sqgrt(IN/11)-1)/(sqrt(IN/11)+1); % a convenient coast

4: [K Kp] = ellipkkp(-log(k)/pi); % elliptic integrals

5: t = .5i*Kp-K+(ng-.5:-1:0)*2*K/nq; % midpoint rule points

6: [sn cn dn] = ellipjc(t,-log(k)/pi); % jacobi elliptic funans
7: Xi = sqrt(I1*IN)*(1/k+sn)./(1/k-sn); % quadrature nodes

8: dxidt = cn.*dn./(1/k-sn). " 2; % derivative wrt t

9: wts = h(xi).*dxidt; % quadrature weights
10: v = zeros(length(b),1); % initialize output
11: fori=1:nqdo
12y =(Xi()*M-L) \ (M*b);
13: v =Vv+wij(j)*y; % update solution vector
14: end for
15: v = -4*K*sqrt(I1*IN)*imag(v)/(k*pi*ng); % scale the soltibn

However, many applications require Neumann-type boundangitions, which make the
matrix A singular. A contouf surrounding the eigenvaluesAfcannot be found. Therefore,
the Algorithm 1 should be modified to compute (15). Burragaletin [11, Sec. 4] handle
this problem by adding a correction term. It is shown in Aigon 2. The first line of the
Algorithm 2 yields the first non-zero eigenvalue of the ma#i

4 Implicit-explicit schemes
After spatial discretization of the Allen-Cahn equatioti® leading system is typically stiff

for small values of the parameterExplicit methods are not suitable for stiff systems, wiasre
implicit methods require the solution of nonlinear equasiat each time step. Therefore, the



Algorithm 2 CIM for computingA® for the Neumann problem

1: I =eigs(L,M,3,SM"); 11 = I(1); % min. eigenvalue of A
2: I = eigs(L,M,1,LM"); IN = I(2); % max. eigenvalue of A
3:

4. v = -4*K*sqrt(11*IN)*imag(v)/(k*pi*nq); % scale the solubn

5. e = ones(length(b),1);

6: V=V + (e*(M*(b-v)))/(e™*M*e)*e; % corrector term

implicit-explicit IMEX) method can play an important rofer such problems, see, [3, 4]. In
such a procedure, the Laplacian term is discretized intllici time and the nonlinear terms
are discretized explicitly. This can also be recognizedamalyzed as a splitting technique.
In addition, it typically allows a larger time step than dagjtimethods while avoiding the use
of nonlinear solvers.

We first divide the time intervegD, T] as follows

O=to<ti<-- <ty =T

with the time step size, =t, —th_1, n=1,2,---,Nr. Then, we can consider the first- and
second-order IMEX approximations of the following systefominary differential equations
(ODEs)

= + A% =B(). (16)

4.1 First-order implicit-explicit schemes
The first-order implicit-explicit schemes for ODEs (13) dawritten as
@] n+1_ yn
Tn

+AC (eu M1 e)u”) =B(U"), (17)

where®8 is a free parameter arad is the fractional order. We point out that choosig: 1
results in the backward Euler scheme.

4.2 Second-order implicit-explicit schemes
The second-order implicit-explicit schemes for ODEs (1) be written as
unt4eu"—(1-6,)unt
Tn
+A° ((62 - %)U "2+ gel —28,)U" + 8.V ”*1)

= (2+e—21)5(u“)+e—215(u“*1), (18)




wheref; and 6, are two free parameters. In our numerical examples, we @stotlowing
modified Crank-Nicolson/Adams-Bashforth scheme by chapd,0;) = (-1, 1—16)

yntt—uyn a 9 n+1 3 n 1 n-1 3 n 1 n-1

A (EU +SUN+ZU )—EB(U ) - 5BU"Y). (19)
Remark 4.1 In our numerical simulations, we use two different matrixdiions Kz) to com-
pute the fractional matriXA®, which is formed on both left-and right-hand side of the IMEX
scheme in (17) or (18). When we first apply the Laplace transénd then Laplace inversion
to the ODE system (13), the matrix functiofzhis defined in terms of exponential function,

see [40]. Then, we haveh) as
h(z) — ;
exp(1z%)
for the left-hand side. Note that the fraction is due to isi@n in (17) or (18). On the other
hand, for the right-hand side, we choose &g)h= 2 as was done in [24].

4.3 Time-step size adaptivity

For small values of the parameterthe transition layer moves slowly and then an inordinate
number of time steps is required to resolve the dynamicorespof the fractional-in-space
Allen-Cahn equation (1). To reduce the amount of work, adiyin time should be used.
Our time-step size adaptivity is based on the ideas pres@nfé, 45]. To update the time-step
size, we use the difference between two solutions, whiclagnedictor and a corrector. The
first-order IMEX schemes are chosen as a predictor, whelneaetond-order IMEX schemes
are chosen as a corrector. The time-step adaptive algoigtipmesented in Algorithm 3. To
update the time-step size, we use the following controller

. Tol\ ¥/2
ta=p(g) T (20)

wherep is a safety coefficient, which is introduced to reduce thédahility of rejectingry, ;.

In numerical examples, we talge= 0.9 as suggested in [32]. The paramelet determines
the required accuracy of the numerical solution. The impédtol on the number of times
steps will be studied in Section 5. Finally, to avoid a strotayease or decrease of subsequent
time steps, we use the following formula as proposed in therdenistic framework [23]

A(en, Tn) = Min{SmaxIn, MaX{SminTn, Ths1} }, (21)

In numerical simulationsmin = 0.1 andsmax= 2 are used. A step size is accepteghik Tol,
otherwise it is rejected.

The time-step size adaptivity allows us to reduce the coatjmurt time by factors of hun-
dreds compared to the uniform step size.

5 Numerical results

In this section, we investigate the performance of our apatid temporal discretization strate-
gies for the fractional-in-space Allen-Cahn equationsadbieve the required accuracy for all



Algorithm 3 Time-step adaptive algorithm

1: GivenUy, Tg, Tol
2. forn=1,2,---Ny do

3:  ComputeP, using a first-order implicit-explicit scheme.
4:  ComputeC, using a second-order implicit-explicit scheme.
5. Calculatee, = W.

6: Setreject=0.

7. if ey > Tol then

8: Recalculate time-step sizg < A(en, Tn).

9: Updatere ject=reject+ 1.
10: goto step 3.
1.  ese
12: Update time-step size,.1 = A(en, Tn).
13: continue
14:  endif
15: end for

examples, 50 quadrature points are used in the contouraitegthod described in Section 3.
We use piecewise linear polynomials to form the SIPG disa#bn in space in all numerical
experiments. The penalty parametein the SIPG discretization is chosen@s- 6 on the
interior edgesE® ando = 12 on the boundary edgg. All examples are implemented on
a mesh, constructed by first dividifg into 32x 32 uniform squares and then dividing each
square into two triangles.

Figure 2: Initial condition of Example 5.1.

5.1 Dumbbell example with double-well potential

We first consider a dumbbell example, taken from [19], wita touble-well potential (3).
The data of problem are

Q=[-112% oQ=rN, gN=0 £=00025 19=5x10"°

10



with the following initial condition

tanh(¥((x—0.5)+y2 - (0397)), if x>0.14
U(xy) = { tanh g(yZ—(o.ls)Z)), if —0.3<x<0.14,
tanh( 3((x+0.5)%+y? - (025/%2)), if x< 0.3

t=0.00353 t=0.03878 t=0.07967 t=0.11738
t=0.00748 t=0.07001 t=0.13154 t=0.18281
t=0.03605 t=0.15459 t=0.26674 t=0.37035

Figure 3: Example 5.1: Diffusion power= 1,0.9,0.8 (from left to right) withTol = 103,

Figure 2 displays of the initial functiony, which is a dumbbell shape with unequal bells.
The snapshots of the solution of the fractional-in-spaderACahn equation in time are dis-
played for various fractional powera & 1,0.9,08) in Figure 3. With standard diffusion, i.e.,
o = 1, we see that the curvature drives toward to a circle (cobstarvature) in time. The
motion of smaller fractional powers is similar, although tlate is slower.

11



250 T T u 1.8
—o=1
---0a=0.9
2000 L a=038
c
ie]
7 150
c
=
>
=y
@ 100
c
(]
. N . 0 . .
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
time time

Figure 4: Example 5.1: Energy function versus time (left)l dime-step size versus time
(right) with Tol = 103,

a=1 a=0.9 a=0.8
107 107 107
—Tol=5.10° —Tol=5.10° —Tol=5.10°
---Tol=10°® - - -Tol=10°° - - -Tol=107®
o Tol=5.10 o Tol=5.107 o Tol=5.10"*

10 10° 10
0 0.05 0.1 0.15 0 0.05 0.1 0.15 0.2 0 0.1 0.2 0.3 0.4
time time time

Figure 5: Example 5.1: Evolution of the length of the timepstéth variousT ol parameters.

The behaviour of the numerical energy function (4) and theptide time-step size is dis-
played in Figure 4 with the tolerance paramédtet= 10-3. The energy function (4) decreases
in time for all cases. Reducing the fractional power incesathe required time to reach the
metastable state. For paramef€a € {5.103,10-25.10-4}, the evolution of the length of
the time step is shown in Figure 5. The time-step size osedlfor smaller fractional powers,
when the tolerance parameter is large. In addition, the murobtime steps increases with
decreasing the parametEol and the fractional power.

The number of time-steps are given in Table 1 with variousrasice parameters. It can
be seen that the number of rejected time-steps is incre&siragnall fractional powers with
large tolerance parameter. Table 2 also shows the perfaeraithe adaptive time-step size

12



Tol a=1 a=09 a=0.8
Total Rej.| Total Rej.| Total Rej.
5103 99 16 | 143 22 | 288 45
103 174 2 194 2 312 5
5104|290 2 307 2 500 2

Table 1: Example 5.1: Number of time steps (total, rejectedi = 1,0.9,0.8 with various
tolerance parameters.

o | # Adaptive time-stepg # Uniform time-steps
1 174 2348
0.9 194 3657
0.8 312 7408

Table 2: Example 5.1: Number of time steps for adaptive aritbrm time-step size ap-
proaches withrol = 1032,

with respect to the uniform time-step size, i®= 5 x 10-°. As expected, the time-step size
adaptivity allows us to reduce the computing time compawdte uniform time-step size.

Figure 6: Initial condition of Example 5.2.

5.2 Intersection of two dumbbells with double-well potential

We now investigate an intersection of two dumbbells on theld@an. The double-well po-
tential (3) function is taken. The rest of problem data are

Q=[-1,12, aQ=rN, gN=0, £€=001 T1H=5%x10"

with the following initial condition

Uo(X,Y) = U(X,Y)U3(X, ),
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t=0.00341 t=0.02731 t=0.04496 t=0.10277

t=0.00784 t=0.05702 t=0.08254 t=0.16351

1=0.02583 t=0.11562 t=0.16211 1=0.29632

1=0.06669 t=0.23754 1=0.32059 1=0.5494

t=0.2128 t=0.66193 1=0.86441 t=1.4004

Figure 7: Example 5.2: Diffusion power= 1,0.9,0.8,0.7,0.6 (from top to bottom).

1

4



where

tanh( 2 ((x—0.5)2+ (y—0.4)2 - (0.25)2)) , ifx>03,
ub(xy) = { tanh( 2 ((y—04)2— (0.15)2)), if —0.3<x<0.3,
tanh( 2 ((x+0.5)2+ (y—0.4)2 - (0.25)2)), if x < —0.3,
and
tanh % (x°+(y—0.6)2— (0.25)2)) , ify>04,
WB(xy) =1 tanh(Z (- (0.15)2)) , if —0.4<y<0.4,
tanh( 2 (@ + (y—0.6)2— (0.25)2)), if y<—0.4.
120 | | gx10°
—o=1
---0=0.9
wof e a=0.8|| 2.5
-=0=0.7
=0.6 ‘-
§ @ a
“5 60 '
)
Q
& 40 —a=1
A - --0=0.9
20/ [ ] , ---0=038|]
TN - - a=07
\‘. ; 0=0.6
0 . o MY L O L L
0 0.5 1 1.5 0 0.5 1 1.5
time time

Figure 8: Example 5.2: Energy function versus time (leftyl dime-step size versus time
(right) with Tol = 102,

The initial functionug, which is an intersection of two dumbbells, is shown in Fey@r For
various fractional power&x = 1,0.9,0.8,0.7,0.6), the snapshots of the solutions in time are
displayed in Figure 7. As the previous example, reducingadtional power decreases the
rate of motion of initial curvature. Figure 8 illustrategtbehaviour of the numerical energy
function (4) and the adaptive time-step size. The evolutibthe length of the time-step
for o = 0.8,0.7,0.6 is shown in Figure 9 for parameteFsl € {5.10°3,10°2 5.1074}. Itis
observed that decreasing the tolerance parameter makestiom of time-step size smoother.

Table 3 shows the number of time-steps doe 1,0.9,0.8,0.7,0.6 with various tolerance
parameters. The number of time steps increases with déwgehe parametefol and the
fractional powenn. Further, the number of the adaptive and uniform time-stepslisplayed
in Figure 4. It can be seen that the time-step size adapéiltdaws us to reduce the computation
time by factors of hundreds compared to the uniform time-stee.
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Figure 9: Example 5.2: Evolution of the length of the timepstath variousTol parameters
fora =0.8,0.7,0.6.

Tol a=1 a=0.9 a=0.8 a=07 a=0.6
Total Rej.| Total Rej.| Total Rej.| Total Rej.| Total Rej.
5.10°° 4 47 2 62 1 102 29 | 250 115
10° |[107 1 123 1 181 1 285 1 637 0
5104|192 1 203 1 313 1 530 1 1287 1

Table 3: Example 5.2: Number of time steps (total, rejectedy = 1,0.9,0.8,0.7,0.6 with
various tolerance parameters.

o | # Adaptive time-steps # Uniform time-steps
1 107 2056
0.9 123 3271
0.8 181 5927
0.7 285 10988
0.6 637 28090

Table 4: Example 5.2: Number of time steps for adaptive aritbrm time-step size ap-
proaches witiTol = 103,

5.3 Star-shaped interface with double-well potential

This example is a star-shaped interface in a curvaturesdfiow, taken from [33]. The rest
of problem data are

Q=017

0Q=rN,

gV =0,

16
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To=5x10"°,



Figure 10: Initial condition of Example 5.3.

t=0.00260 t=0.00933 t=0.02093 t=0.0427
t=0.00073 t=0.02646 t=0.05164 t=0.08454
t=0.01065 t=0.08202 t=0.22122 t=0.33523

Figure 11: Example 5.3: Diffusion power = 1,0.82 0.65 (from left to right) withTol =
1073,
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Figure 12: Example 5.3: Energy function versus time (left)l &ime-step size versus time
(right) with Tol = 103,

a=1 a=0.82 a=0.65

107 10 10°

10 et 10 10
—emmtTT [ —1oim5.10° —Tol=5.10"° —Tol=5.10"°
- - -Tol=10°3 - - -Tol=107° - - -Tol=10"°
S Tol=5.1074 o Tol=5.10" o Tol=5.107
0 00L 002 003 004 005 O 002 004 006 008 01 O 0.1 0.2 0.3 0.4
time time time

Figure 13: Example 5.3: Evolution of the length of the timepsivith variousT ol parameters
fora =1,0.82,0.65.

with the following initial condition

0.25+0.1c0$70) — \/(x—0.5).2+ (y— 0.5 2
V2 ’

up(x,y) = tanh

where

tan ! (i’:g:s) , if x> 0.5,
05

5
ni+tan ! (%) , otherwise.
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The initial functionup, which is a star-shaped interface in a curvature-driven floahown
in Figure 10. The shapshots of the computed solutions apéagiisd in Figure 11. The tips of
the star move inward, while the gaps between the tips moweardt The curvature deforms to
a circular shape and the radius of the circle shrinks in tikeeexpected, the rate of the motion
is slower for the small number of the fractional powers. Fégl2 shows the behaviour of the
energy function and the adaptive time-step size in timeleafigure 13 shows the evolution
of the time-step size for various tolerance parameters.

5.4 Spinodal decomposition with logarithmic free energy

We now consider a test example with the logarithmic freeg@n€2). The initial condition is a
random state by randomly distributing numbers fre®01 to Q01. The rest of problem data
are

Q=[0,2m% 0Q=TrP g°=0, 19=5%x10"° 6=0.1, 8. =0.2.

A

Figure 14: Initial condition of Example 5.4.

In this example, we investigate the effect of fractional powhen a spinodal decomposition
is considered. The initial state is well mixed, see FigureTl#e snapshots of phase evolution
for various values of fractional powea (= 1,0.8,0.6) are illustrated in Figure 15 with =
1073, Early stages of phase transition yields a rapid movemebtito regions fora = 1.
However, smaller fractional powers leads much more hetregus phase structures with
smaller bulk regions. Figure 16 also shows the snapshotsasfgevaluation &t= 0.016 with
e=10"%

The behaviour of the numerical energy function (4) and theptide time-step size versus
time is displayed in Figure 17 far= 10"4. The numerical energy decrease is observed for
all the cases. Lastly, Figure 18 shows the evolution of time{step size for various tolerance
parameters.
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t=0.09795 1=0.16481 t=0.23159 t=0.40023

s 28 2

t=0.07777 1=0.11694 t=0.16064 1=0.40012

Figure 15: Example 5.4: Diffusion power= 1,0.8,0.6 (from top to
andTol = 1074,

Figure 16: Example 5.4: Diffusion powar= 1,0.8,0.6 (from left to right) withe = 10~* and
Tol =10 “att = 0.016.
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Figure 17: Example 5.3: Energy function versus time (left)l &ime-step size versus time
(right) with € = 10~% andTol = 104

a=1 , a=0.8 , a=0.6
10" 10"
—Tol=10"® —Tol=10"2 —Tol=10"2
10° - - -Tol=10* - - -Tol=10* - --Tol=10"
©oTolz10°|] 107 “ Tol=107°

~ 107
. 10° -
1075 _
T e -6 -6
10 10
0 0.005 0.01 0.015 0 0.005 0.01 0.015 0 0.005 0.01 0.015
time time time

Figure 18: Example 5.4: Evolution of the length of the timepsivith variousT ol parameters
with € = 104 fora = 1,0.8,0.6.

6 Conclusions

In this paper we have investigated the numerical solutidtiseofraction-in-space Allen-Cahn

equations, discretized the symmetric interior penaltye@ah (SIPG) method in space and an
implicit-explicit IMEX) method in time. The contour integl method (CIM) has been used
to compute the fractional power of a matrix times a vectorrdauce computation time, an

adaptive time-step size method is proposed. The numegsalts of the fractional-in-space
Allen-Cahn equations show that such a kind of modelling caarbaid to understanding the
effects of spatial heterogeneity. Although, the ideas esged in this paper have applicability
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in this setting, the numerical approximations of the Ries@watives, discretized by discon-
tinuous Galerkin methods, should also be considered in tive general framework.
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