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Abstract

In this paper, we investigate interpolatory model order reduction for large-scale
bilinear descriptor systems. Recently, it was shown in [14] for linear descriptor
systems that directly extending the standard rational interpolation conditions
used in H2 optimal model reduction to descriptor systems in general yields an
unbounded error in the H2-norm. This is due to the possible mismatch of the
polynomial part of the original and reduced-order systems. This conclusion also
holds for nonlinear systems as well. In this paper, we deal with bilinear descriptor
systems and aim to pay attention to the polynomial part of the bilinear descriptor
system along with interpolation. To this end, we have shown in [12] how to de-
termine the polynomial part of each subsystem of the bilinear descriptor system
explicitly, by assuming special structures of the system matrices. Considering
the same structured bilinear descriptor systems, in this paper we first show how
to achieve multipoint interpolation of the underlying Volterra series of bilinear
descriptor systems while retaining the polynomial part of each subsystem of the
bilinear system. Then, we extend the interpolation based first-order necessary
conditions for H2 optimality to bilinear descriptor systems and propose an iter-
ative scheme to obtain an H2 optimal reduced-order system. By mean of two
numerical examples, we demonstrate the efficiency of the proposed model-order
reduction technique and compare it with reduced bilinear systems obtained by
using linear IRKA.
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series, H2 optimality.
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1 Introduction

Model order reduction (MOR) plays a vital role in numerical simulation of large-
scale complex dynamical systems. These dynamical systems are governed by ordinary
differential equations (ODEs), or partial differential equations (PDEs), or both. To
capture the essential information about the dynamics of the systems, a fine semi-
discretization of these governing equations in the spatial domain is required, leading
to a large-scale system of ODEs or, in general, differential algebraic equations (DAEs).
The simulation, control and optimization studies of such large-scale complex systems
are numerically cumbersome and often not efficient. Thus, MOR provides a remedy
to accelerate the simulation of such large-scale systems and seeks to determine low-
dimensional surrogate systems with acceptable accuracy.

Model reduction for linear ODE systems has been studied for many years by now
and is very well-established; see, e.g., [1, 3, 8, 14, 21]. However, there are many open
and challenging problems with regard to model reduction for nonlinear systems. In
this paper, we consider bilinear differential algebraic equations (DAEs) which are of
the form

Eẋ(t) = Ax(t) +

m∑
k=1

Nkx(t)uk(t) +Bu(t),

y(t) = Cx(t),

(1.1)

where E,A,Nk ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n, and the matrix E is singular.
It is assumed that the matrix pencil (λE − A) is stable, this means that all finite
eigenvalues of the matrix pencil (λE − A) lie in the negative half plane. Such sys-
tems can be considered as weakly nonlinear systems [19]. They are linear in the state
and input independently, but not jointly. Bilinear systems appear in various appli-
cations, for example, biology, nuclear fusion, PDE control problems, and electrical
circuits [17, 18, 22]. Their applications can also be seen in stochastic control prob-
lems [15] and in parameter-varying linear systems [5]. Moreover, nonlinear systems
can be approximated as bilinear systems via Carleman bilinearization [13, 20].

Many model reduction techniques for linear systems have been extended to bilin-
ear systems with E = I or E being invertible. For instance, Gramian-based model
reduction techniques such as balanced truncation have been extended for bilinear sys-
tems [7] and interpolation-based model reduction techniques also have been success-
fully extended from the linear case to the bilinear case; see, e.g., [2, 9, 19], where
interpolation of the leading k subsystems is considered. In [24], the Gramian-based
Wilson conditions for H2 optimality were extended from linear systems [23] to bilinear
systems.

Later, the analogue problem of determining an H2 optimal reduced-order system for
bilinear systems was considered in [6], where the first-order necessary conditions forH2

optimality were derived by taking derivatives of the H2-norm of the error system with
respect to the matrix entries of the realization of the reduced-order system. Based on
these conditions, a bilinear iterative rational Krylov algorithm (B-IRKA) was proposed
which on convergence leads to a locally H2 optimal reduced-order system. Moreover,
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recently, a new framework of interpolation for bilinear systems, the so-called multipoint
interpolation, was considered which interpolates the whole underlying Volterra series at
pre-defined frequency points [11] and therein also, the first-order necessary conditions
for H2 optimality in terms of pole-residue formulation were proposed. It is also shown
that the reduced-order system, satisfying these H2 optimality conditions in the pole-
residues form also satisfies the optimality conditions derived in [6].

As has been noted, many model reduction techniques for linear systems have been
extended to bilinear systems with E = I. But still, there are ample challenges when
it comes to model reduction of bilinear descriptor systems with singular E, and it is
necessary to study this case due to its omnipresence in applications [16]. In this paper,
we focus on interpolatory model reduction techniques for bilinear descriptor systems
with singular matrix E. The interpolation conditions for bilinear systems with E = I
can be readily extended to singular E by just replacing I by E. However, it was
shown in [14] that directly extending the interpolation conditions for linear ODEs to
linear DAEs leads to an unbounded error in the H2-norm due to the mismatch of
the polynomial part of the system. This observation immediately holds for bilinear
descriptor systems as well. As a consequence, we need to pay special attention to the
polynomial part of the bilinear system along with interpolation.

Model reduction for a special family of bilinear descriptor systems, whose subsystems
have constant polynomial parts, was recently considered in [12]. There, it was shown
how to achieve the interpolation of the leading k subsystems together with retaining
their polynomial parts. In contrast to this, in this paper we focus on extending the
multipoint Volterra series interpolation to a similar special family of bilinear descriptor
systems while paying attention to the polynomial part of the system. Secondly, we
investigate the first-order necessary conditions for H2 optimality for a special family
of bilinear descriptor systems and propose an iterative scheme to obtain an optimal
reduced-order system.

The structure of the rest of the paper is as follows. We begin with giving a short
overview on the multipoint interpolation framework for bilinear ODEs and visit the
first-order necessary conditions for H2 optimality in Section 2. In Section 3, we show
how to achieve the multipoint interpolation of the underlying Volterra series of bi-
linear descriptor systems along with retaining the constant polynomial part of each
subsystem. Then, in Section 4, we extend the first-order necessary conditions for H2

optimality to bilinear descriptor systems and propose an iterative algorithm, the so-
called B-IRKA for bilinear descriptor systems which on convergence gives rise to a
locally H2 optimal reduced-order system. Finally in Section 5, we demonstrate the
efficiency of the proposed methodology via several examples.

2 Multipoint Interpolation of the Volterra Series for
Bilinear ODE Systems

In this section, we first briefly overview the multipoint interpolation of the Volterra
series and the first-order necessary conditions for H2 optimality for bilinear ODE
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systems. For simplicity, we begin with considering a single-input single-output (SISO)
bilinear system, i.e.,

Σ :

{
ẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t), x(0) = 0,
(2.1)

where the dimensions of A,B and C are the same as defined in (1.1) with p = m = 1,
and N ∈ Rn×n. Assuming a stationary and causal bilinear system, the output y(t)
can be described by a nonlinear mapping of the input u(t):

y(t) =

∞∑
k=1

∫ t1

0

∫ t2

0

· · ·
∫ tk

0

gk(t1, t2, . . . , tk)u(t− t1 − t2 . . .− tk) · · ·u(t− tk)dt1 · · · dtk,

where gk is the regular Volterra kernel, whose corresponding multivariate transfer
function can be given by

Gk(s1, s2, . . . , sk) = C(skI −A)−1N · · · (s2I −A)−1N(s1I −A)−1B.

The transfer function Gk(s1, s2, . . . , sk) is also called the kth order multivariate trans-
fer function associated with the bilinear system. Analogous to the linear case, the
multivariate transfer function can be written in the pole-residue formulation which is
given by the following proposition.

Proposition 2.1. [11] Consider the multivariate transfer function Gk(s1, s2, . . . , sk) =
C(skI − A)−1N · · · (s2I − A)−1N(s1I − A)−1B and let {λ1, λ2, . . . , λn} ⊂ C be the n
distinct zeros of det(sI − A). Then the multivariate transfer function can also be
written in the pole-residues form as follows:

Gk(s1, s2, . . . , sk) =

n∑
l1=1

n∑
l2=1

· · ·
n∑

lk=1

φl1,...,lk
k∏
i=1

(si − λli)
,

where

φl1,...,lk = lim
sk→λlk

(sk − λlk) lim
sk−1→λlk−1

(sk−1 − λlk−1
) · · · lim

s1→λl1

(s1 − λl1)Gk(s1, . . . , lk).

(2.2)

Interpolatory model reduction techniques for bilinear systems have been studied
widely in the literature; see, e.g., [2, 9, 19], where the leading k subsystems of the
reduced-order system interpolate the corresponding original subsystem. However, re-
cently in [11], multipoint interpolation for the whole Volterra series was considered at
selected frequency points. We now outline the multipoint interpolation of the Volterra
series problem statement for the bilinear system (2.1).
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Consider two sets of interpolation points σj ∈ C and µj ∈ C, for j = 1, . . . , r, along
with matrices U, S ∈ Cr×r, and define the weighted Volterra series

ζj =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·
r∑

lk−1=1

ηl1,...,lk−1,jGk(σl1 , σl2 , . . . , σj) (2.3)

and

ϕj =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·
r∑

lk−1=1

ϑl1,...,lk−1,jGk(µj , µl1 , . . . , µlk−1
), (2.4)

where ηl1,...,lk−1,j and ϑl1,...,lk−1,j are the weights associated to each subsystem in the
Volterra series, and are defined in terms of the elements of the matrices U and S as
follows:

ηl1,...,lk−1,j = uj,lk−1
ulk−1,lk−2

· · ·ul2,l1 for k ≥ 2 and ηl1 = 1,

ϑl1,...,lk−1,j = sj,lk−1
slk−1,lk−2

· · · sl2,l1 for k ≥ 2 and ϑl1 = 1.
(2.5)

The goal of the new interpolation framework is to construct a reduced-order system
of dimension r:

Σ̂ :

{
˙̂xr(t) = Âx̂(t) + N̂ x̂(t)u(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = 0,
(2.6)

where Â, N̂ ∈ Rr×r and B̂, ĈT ∈ Rr, such that the following interpolation conditions
are satisfied for each j = 1, . . . , r:

ζj =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·
r∑

lk−1=1

ηl1,...,lk−1,jĜk(σl1 , σl2 , . . . , σj) (2.7)

and

ϕj =

∞∑
k=1

r∑
l1=1

r∑
l2=1

· · ·
r∑

lk−1=1

ϑl1,...,lk−1,jĜk(µj , µl1 , . . . , µlk−1
), (2.8)

where Ĝk(µl1 , . . . , µk) is the kth order multivariate transfer function associated with
the reduced-order bilinear system (2.6). Similar to the linear case, the reduced-order
system matrices are constructed via projection matrices V and W , assuming WTV
being invertible, as follows:

Â = (WTV )−1WTAV, N̂ = (WTV )−1WTNV,

B̂ = (WTV )−1WTB, Ĉ = CV.
(2.9)

Then, the problem of identifying these projection matrices is considered in [11] which
provides the reduced-order system such that the interpolation conditions are satisfied.
The following theorem suggests the choice of the projection matrices.
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Theorem 2.2. [11] Consider a SISO bilinear system Σ := (A,N,B,C) of dimension
n and the interpolation points σj ∈ C and µj ∈ C, j = 1, . . . , r, along with matrices
U, S ∈ Cr×r. Let the projection matrices V and W be the solutions of the following
Sylvester equations

V Ω−AV −NV UT = BeT (2.10)

and

WΞ−ATW −NTWST = CT eT , (2.11)

where Ω = diag (σ1, . . . , σr), Ξ = diag (µ1, . . . , µr), and e is the vector of ones in
Rr. Assume WTV ∈ Rr×r to be invertible and that the reduced-order system Σ̂ :=
{Â, N̂ , B̂, Ĉ} of order r is computed using the projection matrices V and W as shown
in (2.9). Then, the interpolation conditions (2.7) and (2.8) are fulfilled.

Furthermore, the H2-norm of the error system can be given in terms of the weighted
sum of the multivariate transfer functions evaluated at all possible combinations of
poles of the original and reduced-order system, see, [11]. Analogous to the linear case,
the error in the H2-norm of the error system, due to the mismatch at the reduced-
order system singularities, is eliminated, leading to the following first-order necessary
conditions for optimality:

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk=1

φ̂l1,...,lk

(
Gk(−λ̂l1 , . . . ,−λ̂lk)− Ĝk(−λ̂l1 , . . . ,−λ̂lk)

)
= 0 (2.12)

and
∞∑
k=1

r∑
l1=1

· · ·
r∑

lk=1

φ̂l1,...,lk

 k∑
j=1

∂

∂sj
Gk(−λ̂l1 , . . . ,−λ̂lk)


=

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk=1

φ̂l1,...,llk

 k∑
j=1

∂

∂sj
Ĝk(−λ̂l1 , . . . ,−λ̂lk)

 ,

(2.13)

where the λ̂i’s are the zeros of det(sÎ − Â) and φ̂l1,...,lk are the residues of the kth

order transfer functions Ĝk(s1, s2, . . . , sk), as defined in (2.2). Here, the operator
∂
∂sj

Gk(−λ̂l1 , . . . ,−λ̂lk) denotes the partial derivative of Gk(s1, . . . , sk) with respect to

sj , evaluated at (s1, . . . , sk) = (−λ̂l1 , . . . ,−λ̂lk).
It is also shown in [11] that the first-order necessary conditions for H2 optimality

in terms of the pole-residues form are satisfied, if the projection matrices V and W
are computed by setting the interpolation points as mirror image of the poles of the
reduced-order system across the imaginary axis, i.e., Ω = Ξ = −Θ in (2.10) and (2.11),
respectively, where Θ = R−1ÂR; the matrices U and S are given by the bilinear term
N̂ as U = R−1N̂R and S = RT N̂TR−T ; and the vector e in (2.10) and (2.11) is
replaced with R−1B̂ and ĈR, respectively. For details, we refer to [10, 11].
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Remark 2.3. The multipoint interpolation of the underlying Volterra series can be
extended to bilinear descriptor systems by replacing I by E. This yields a reduced-
order system which satisfies the interpolation conditions. However, directly extending
the interpolation conditions to descriptor systems without any modifications, leads to
a poor reduced-order systems with the H2-norm error blowing up, occuring due to the
unmatched polynomial part of the system. This statement is based on the analysis
in [14] for linear descriptor systems.

Motivated by the work done in [14], we pay special attention to the polynomial
part of the bilinear descriptor system in this paper along with interpolation. In the
following section we show how to achieve multipoint interpolation of the underlying
Volterra series along with matching the polynomial part of the multivariate transfer
function of each subsystem.

3 Multipoint Interpolation of the Volterra Series for
Bilinear Descriptor Systems

Here, we deal with a special family of bilinear descriptor systems (DAEs). The consid-
ered family consists of those systems with all associated multivariate transfer functions
having constant polynomial part. For simplicity, we begin with a single-input single-
output bilinear descriptor system, i.e.,

Eẋ(t) = Ax(t) +Nx(t)u(t) +Bu(t),

y(t) = Cx(t),
(3.1)

where the dimensions of E,A,B and C are as defined in (1.1) with p = m = 1
and N1 = N ∈ Rn×n. Similar to bilinear ODEs, the kth order multivariate transfer
function of the bilinear descriptor systems (3.1) can be given by

Hk(s1, s2, . . . , sk) = C(skE −A)−1N · · · (s2E −A)−1N(s1E −A)−1B. (3.2)

Our goal is to extend interpolation based model reduction techniques to bilinear
DAEs. Therefore, we first intend to determine an explicit expression for the polynomial
part of the multivariate transfer function Hk(s1, s2, . . . , sk), by assuming a special
structure of the matrices E and A in (3.1) as follows:

E =

[
E11 E12

0 0

]
and A =

[
A11 A12

A21 A22

]
, (3.3)

where A22 and E11 − E12A
−1
22 A21 are invertible. This means that the matrix pencil

(A,E) has nilpotency index 1. It was shown in [12] that the kth order multivariate
transfer function of the bilinear system, having the structure of the matrices as shown
in (3.3), has a constant polynomial part which can be determined by the following
lemma.
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Lemma 3.1. [12] Let Hk(s1, s2, . . . , sk) = C(skE −A)−1N . . . (s2E −A)−1N(s1E −
A)−1B be the Laplace transform of the kth order subsystem. Then, the polynomial
part of Hk(s1, s2, . . . , sk) is constant and can be given as

Dk = C(MN)k−1MB,

where M =

[
0 E−1A E12A

−1
22

0 −A−122

(
I +A21E

−1
A E12A

−1
22

)] and EA = E11 − E12A
−1
22 A21.

Now, we discuss the interpolation based model reduction techniques for bilinear de-
scriptor systems that also retain the explicitly computed constant polynomial part of
the subsystems together with interpolation. Recently, the problem of the interpola-
tion of the leading k subsystems of bilinear descriptor systems while retaining their
polynomial parts was considered in [12], i.e.,

Hi(σ1, σ2, . . . , σi) = Ĥi(σ1, σ2, . . . , σi), for i = 1, . . . , k, (3.4)

where {σi} ⊂ C are the interpolation points and Ĥk(s1, s2, . . . , sk) is the regular kth
order multivariate transfer function of the reduced-order system, which is of the form

Ĥk(s1, s2, . . . , sk) = Ĉ(skÊ − Â)−1N̂ · · · (s2Ê − Â)−1N̂(s1Ê − Â)−1B̂ +Dk (3.5)

with invertible Ê. It can be easily seen that the polynomial parts of Hk(s1, s2, . . . , sk)
and Ĥk(s1, s2, . . . , sk) are equal to Dk.

In contrast to this, we focus on interpolating the underlying Volterra series and at
the same retaining the polynomial part of each subsystem. Therefore, we revisit the
following multipoint Volterra interpolation problem. We consider two sets of interpo-
lation points σj ∈ C and µj ∈ C, j = 1, 2, . . . , r, along with matrices U, S ∈ Cr×r, and
define the weighted Volterra series as follows:

νj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jHk(σl1 , σl2 , . . . , σj) (3.6)

and

γj =
∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ϑl1,l2,...,lk−1,jHk(µj , µl1 , . . . , µlk−1
), (3.7)

where the weights ηl1,l2,...,lk−1,j are defined in (2.5) in terms of the elements of the
matrix U and similarly for ϑl1,l2,...,lk−1,j . It is assumed that νj and γj converge for
each j = 1, 2, . . . , r. The goal of the multipoint Volterra series interpolation is to
determine a reduced-order system, with its kth order multivariate transfer function
being of the form (3.5), so that the following are satisfied for each j = 1, . . . , r:

νj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jĤk(σl1 , σl2 , . . . , σj) (3.8)
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and

γj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ϑl1,l2,...,lk−1,jĤk(µj , µl1 , . . . , µlk−1
). (3.9)

As a first step in this direction, we establish the relation between the weighted Volterra
series and the generalized Sylvester equation for the bilinear descriptor systems in the
following lemma, similar to the case of bilinear ODEs in [11, Lemma 3.1].

Lemma 3.2. Consider Σ := {E,A,N,B,C} to be a SISO bilinear descriptor system
and let σj ∈ C and µj ∈ C, j = 1, . . . , r, be two sets of interpolation points. Given
matrices U, S ∈ Cr×r, and assume the following series

vj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,j(σjE −A)−1N · · · (σl2E −A)−1N(σl1E −A)−1B

(3.10)
and

wj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ϑl1,l2,...,lk−1,j(σjE −A)−TNT · · · (σl2E −A)−TNT (σl1E −A)−TCT

(3.11)
converge for each j = 1, 2, . . . , r. Then, the matrices V and W , whose jth columns
are vj and wj, respectively, solve the following generalized Sylvester equations

EV Ω−AV −NV UT = BeT (3.12)

and
ETWΞ−ATW −NTWST = CT eT , (3.13)

respectively, where Ω = diag(σ1, σ2, . . . , σr) and Ξ = diag(µ1, µ2, . . . , µr).

The proof of the above lemma is analogous to [11, Lemma 3.1] where E = I was
considered. Nevertheless, it can be easily extended to E 6= I in a similar fashion.
Therefore, for brevity of the paper, we skip the proof.

Next, in the following theorem, we discuss the construction of a reduced-order system
with required modifications so that (3.8) and (3.9) can be satisfied.

Theorem 3.3. Consider a SISO bilinear descriptor system (3.1) of order n. Assume
for some r < n that two sets of interpolation points σj ∈ C and µj ∈ C, j = 1, 2, . . . , r,
and matrices U, S ∈ Cr×r, such that Λ(U) ∩ Λ(S) = ∅, where Λ() denotes the spec-
trum of a matrix. Let the matrices V and W be the solutions of (3.12) and (3.13),
respectively, and LA, LN , LB and Lc be the solutions to

LAV + LNV U
T + LBe

T = 0, (3.14a)

LTAW + LTNWST + LTc e
T = 0, (3.14b)

WTLB + [α1, α2, . . . , αr]
T = 0, (3.14c)

LCV + [β1, β2, . . . , βr] = 0, (3.14d)
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where

αj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ϑl1,l2,...,lk−1,jDk (3.15)

and

βj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jDk. (3.16)

If the matrices of the reduced-order system are computed as

Ê = WTEV, Â = WT (A+ LA)V, N̂ = WT (N + LN )V,

B̂ = WT (B + LB), Ĉ = (C + LC)V,
(3.17)

then, the interpolation conditions (3.8) and (3.9) are satisfied for each j = 1, . . . , r.
Furthermore, if Ê is invertible, then the polynomial part of each subsystem is also
matched.

Proof. We begin with the Sylvester equation, determining the projection matrix V

EV Ω−AV −NV UT −BeT = 0. (3.18)

Subtracting (3.18) and (3.14a) yields

EV Ω− (A+ LA)V − (N + LN )V UT − (B + LB)eT = 0.

Premultiplying the above equation by WT , we obtain

WT
(
EV Ω− (A+ LA)V −NV UT − (B + LB)eT

)
= 0.

This implies
ÊΩ− Â− N̂UT − B̂eT = 0.

From the above equation, it follows that Ψ = Î solves the following projected Sylvester
equation:

ÊΨΩ− ÂΨ− N̂ΨUT − B̂eT = 0, (3.19)

where Î is an identity matrix of appropriate dimension. The above projected Sylvester
equation has a structure similar to the one in Lemma 3.2. So, using Lemma 3.2, the
jth column of Ψ, denoted by ψj , can be given as

ψj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,j(σjÊ − Â)−1N̂ · · · (σl2Ê − Â)−1N̂(σl1Ê − Â)−1B̂.

(3.20)
Now, we multiply ψj by Ĉ to obtain

Ĉψj = (C + LC)V ψj = CV ψj + LCV ψj . (3.21)
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The vector ψj is the jth column of the identity matrix. Therefore, V ψj gives the jth
column of the matrix V , given in (3.10) and multiplication with C gives

CV ψj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jHk(σl1 , σl2 , . . . , σj) = νj . (3.22)

By (3.14d), we get

LcV ψj = −
∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jDk. (3.23)

Finally, we substitute (3.22), (3.23) and the expression for ψj from (3.20) in (3.21) to
have

νj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jĈ(σjÊ − Â)−1N̂ · · · (σl2Ê − Â)−1N̂(σl1Ê − Â)−1B̂

+

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jDk

=

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jĤk(σl1 , σl2 , . . . , σj).

Using a similar argument, we can prove

γj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ϑl1,l2,...,lk−1,jĤk(µj , µl1 , . . . , µlk−1
).

Since, we have assumed the form of the kth order multivariate transfer function of the
reduced-order system as shown in (3.5) and Ê being invertible, this means that the
polynomial parts of each subsystem of the original and reduced-order system are equal
to Dk. This concludes the proof.

Remark 3.4. Theorem 3.3 extends the interpolation for linear systems with D 6=
Dr [4, Thm. 3] to bilinear systems.

Remark 3.5. In Theorem 3.3, it is assumed that the matrices U and S do not have
any common eigenvalue in order to have simultaneous solutions of the set of equa-
tions (3.14a)–(3.14d) for the matrices LA, LN , LB and LC . If the matrices U and S
have common eigenvalues, then this leads to numerical issues which we discuss in the
next section.

Theorem 3.3 shows how to choose the projection matrices and to obtain a reduced-
order system with the required modifications which not only interpolates the underly-
ing Volterra series but also retains the polynomial part of each subsystem. Meanwhile,

11



we also like to highlight an important aspect that the reduced-order system matri-
ces obtained from Theorem 3.3 are not obtained via projection of the original system
matrices (3.1). They are rather obtained via projection of another bilinear system (in-
termediate bilinear system) of order n whose kth order multivariate transfer function
is given by

H̃(s1, s2, . . . , sk) = C̃(skẼ − Ã)−1Ñ · · · (s2Ẽ − Ã)−1Ñ(s1Ẽ − Ã)−1B̃ +Dk,
(3.24)

where

Ẽ = E, Ã = A+ LA, Ñ = N + LN ,

B̃ = B + LB , C̃ = C + LC .
(3.25)

Interestingly, we project the intermediate bilinear system using the projection matrices
V and W which depend on the original bilinear system matrices, as opposed to the
intermediate bilinear system matrices. So next, to resolve this discrepancy, we show
the formulation of the reduced-order system, obtained in Theorem 3.3, in a standard
projection framework using the intermediate bilinear system. We reveal that the pro-
jection matrices obtained using the original and intermediate bilinear system matrices
are exactly the same.

Proposition 3.6. For some r < n, we consider two sets of interpolation points σj ∈ C
and µj ∈ C, j = 1, . . . , r, and matrices U, S ∈ Cr×r such that Λ(U) ∩ Λ(S) = ∅. Let
the matrices V and W be the solutions of (3.12) and (3.13), respectively, and let the
projection matrices Ṽ and W̃ be the solutions to

ẼṼ Ω− ÃṼ − Ñ Ṽ UT = B̃eT (3.26)

and
ẼT W̃Ω− ÃW̃ − ÑT W̃ST = C̃T eT , (3.27)

respectively. Then, Ṽ = V and W̃ = W also solve (3.26) and (3.27), respectively.

Proof. We begin with proving that the matrix V also satisfies (3.26). We start with

ẼV Ω− ÃV − ÑV UT

= EV Ω−AV − LAV −NV UT − LNV UT (substituting for Ã and Ñ from (3.25))

= (EV Ω−AV −NV UT )− (LAV + LNV U
T )

From (3.12), EV Ω−AV −NV UT = BeT and using the relation between LA, LN and
LB from (3.14a), we get

ẼV Ω− ÃV − ÑV UT = BeT + LBe
T

= (B + LB)eT = B̃eT .

An analogous argument can be given for (3.27) as well. This proves the assertion.

12



Based on this investigation, we propose the following corollary.

Corollary 3.7. The reduced-order system, determined in Theorem 3.3, coincides with
the reduced system obtained from the intermediate bilinear system, whose kth order
multivariate transfer function is given in (3.24), via the projection subspaces Ṽ and
W̃ in a standard projection framework.

4 H2-Model Order Reduction for Bilinear Descriptor
Systems

So far, we have shown how to determine a reduced-order system with the appropriate
modifications such that the multipoint interpolation of the underlying Volterra series
can be achieved together with retaining the polynomial part of each subsystem. In
this section, we discuss the first-order necessary conditions for H2 optimality of the
special structured bilinear descriptor systems. The first-oder necessary conditions, in
terms of the pole-residues of the multivariate transfer functions, for bilinear ODEs
were derived in [11] by minimizing the error in the H2-norm of the error system. In
this paper, we consider the analogous first-order necessary conditions for optimality
for bilinear descriptor systems which are as follows:

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

φ̂l1,l2,...,lk−1,jHk(−λ̂l1 , . . . ,−λ̂lk)

=

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

φ̂l1,l2,...,lk−1,jĤk(−λ̂l1 , . . . ,−λ̂lk)

(4.1)

and
∞∑
k=1

r∑
l1=1

· · ·
r∑

lk=1

φ̂l1,...,lk

 k∑
j=1

∂

∂sj
Hk(−λ̂l1 , . . . ,−λ̂lk)


=

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk=1

φ̂l1,...,lk

 k∑
j=1

∂

∂sj
Ĥk(−λ̂l1 , . . . ,−λ̂lk)

 ,

(4.2)

where φ̂l1,...,lk and λ̂li are the residues and poles, respectively, of the transfer functions

Ĥk(s1, s2, . . . , sk). In this regard, we first establish the connection between the multi-
point interpolation of the Volterra series interpolation conditions and the pole-residues
of the kth order multivariate transfer function of the reduced-order system.

Lemma 4.1. Let Hk(s1, s2, . . . , sk) and Ĥk(s1, s2, . . . , sk) be the kth order multivari-
ate transfer functions of the original and reduced-order systems as shown in (3.2) and

in (3.5), respectively. Decompose Y ÂZ = Ω = diag(λ̂1, λ̂2, . . . , λ̂r) and Y ÊZ = Î,

where {λ̂1, λ̂2, . . . , λ̂r} are the eigenvalues matrix pencil (A,E) and the columns of
Z = [z1, z2, . . . , zr] and Y = [y1, y2, . . . , yr] are the right and left eigenvectors, respec-
tively.
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Moreover, define B = Y B̂, N = Y N̂Z and C = ĈZ, and let φ̂l1,l2,...,lk be the residues

corresponding to the kth order multivariate transfer function Ĥk(s1, . . . , sk). Assume
that the projection matrices V and W solve

EV (−Ω)−AV −NVN T = BBT , (4.3)

ETW (−Ω)−ATW −NTWN = CTC, (4.4)

respectively. Then,

C (CV )
T

=

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk=1

φ̂l1,l2,...,lkHk(−λ̂l1 , . . . ,−λ̂lk). (4.5)

Proof. We begin by comparing (4.3) and (3.12) which readily shows that these two
equations are equivalent after setting

U = N , e = B and σj = −λ̂j , j = 1, . . . , r.

By applying Lemma 3.2, we can write the jth column of V , vj , as follows:

vj =

∞∑
k=2

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,...,lk−1,jBl1(λ̂jE −A)−1N · · · (λ̂l2E −A)−1N(λ̂l1E −A)−1B

+ Bj(λ̂jE −A)−1B,
(4.6)

where ηl1,...,lk−1,j = N (j, lk−1)N (lk−1, lk−2) · · · N (l2, l1) for k ≥ 2 by the definition of
ηl1,...,lk−1

in (2.5), and Bi is the ith element of B. Multiplying (4.6) by C yields

Cvj =

∞∑
k=2

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,...,lk−1,jBl1Hk(−λ̂l1 , . . . ,−λ̂j) + BjH1(−λ̂j). (4.7)

Hence,

(CV )T =



∞∑
k=2

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,...,lk−1,1Bl1Hk(−λ̂l1 , . . . ,−λ̂1) + B1H1(−λ1)

∞∑
k=2

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,...,lk−1,2Bl1Hk(−λ̂l1 , . . . ,−λ̂2) + B2H1(−λ2)

...
∞∑

k=2

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,...,lk−1,rBl1Hk(−λ̂l1 , . . . ,−λ̂r) + BrH1(−λr)


. (4.8)

Next, we premultiply the above equation by C = [C1, C2, . . . , Cr], where Ci is the ith
element of C. This yields

C(CV )T =

∞∑
k=2

r∑
l1=1

· · ·
r∑

lk=1

ηl1,...,lk−1,lkClkBl1Hk(−λ̂l1 , . . . ,−λ̂lk) +

r∑
lk=1

ClkBlkH1(−λlk).

(4.9)
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Now, we recall the expression for the residues φ̂l1,...,lk of the kth order multivariate
transfer function of the reduced-order system which are given as

φ̂lk = ClkBlk ,

φ̂l1,...,lk = Clkηl1,...,lk−1,lkBl1 , for k ≥ 2.

Lastly, we substitute the above relation in (4.9) which leads to the desired result.

Our next task is to obtain a reduced-order system which satisfies the necessary
conditions for optimality (4.1) and (4.2). The following theorem reveals the choice of
a reduced-order system ensuring the first-order necessary conditions for H2 optimality.

Theorem 4.2. Let Hk(s1, s2, . . . , sk) and Ĥk(s1, s2, . . . , sk) be the kth order multivari-
ate transfer functions of the original and reduced-order bilinear systems, respectively,
and assume the projection matrices V and W are given by (4.3) and (4.4), respectively.
Also, assume that LA, LN , LB and LC satisfy the following set of equations:

LAV + LNVN T + LBBT = 0, (4.10a)

LTAW + LTNWN + LTc C = 0, (4.10b)

WTLB + [α1, α2, . . . , αr]
T = 0, (4.10c)

LCV + [β1, β2, . . . , βr] = 0, (4.10d)

where

αj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ϑl1,l2,...,lk−1,jCl1Dk (4.11)

and

βj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jBl1Dk (4.12)

with

ηl1,...,lk−1,j = N (j, lk−1)N (lk−1, lk−2) · · · N (l2, l1) for k ≥ 2,

ϑl1,...,lk−1,j = N (lk−1, j)N (lk−2, lk−1) · · · N (l1, l2) for k ≥ 2.

If the reduced-order system matrices are computed as shown in (3.17), then the first-
order necessary conditions for H2 optimality (4.1) and (4.2) are satisfied along with
retaining the polynomial part of each subsystem.

Proof. We begin by recalling Lemma 3.2 which provides us the formulation of the jth
column of the identity matrix, ψj , see equation (3.20),

ψj =

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jBl1(σjÊ − Â)−1N̂ · · · (σl2Ê − Â)−1N̂(σl1Ê − Â)−1B̂,
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Now, we multiply the above equation by Ĉ to get

ĈΨ = (C + LC)V = CV + LCV. (4.13)

Transposing (4.13) and premultiplying by C leads to

C(ĈΨ)T = C(CV )T + C(LCV )T .

Next, we substitute LCV given in (4.10d) and employ (4.12) which on simplification
yields

C(CV )T = C



∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jBl1Ĥk(−λ̂l1 , . . . ,−λ̂1))

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jBl1Ĥk(−λ̂l1 , . . . ,−λ̂2))

...
∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

ηl1,l2,...,lk−1,jBl1Ĥk(−λ̂l1 , . . . ,−λ̂r))


.

Using Lemma 4.1 and simple algebra gives us

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

φ̂l1,l2,...,lk−1,jHk(−λ̂l1 , . . . ,−λ̂lk)

=

∞∑
k=1

r∑
l1=1

· · ·
r∑

lk−1=1

φ̂l1,l2,...,lk−1,jĤk(−λ̂l1 , . . . ,−λ̂lk).

(4.14)

The second necessary condition (4.2) can be easily obtained in a similar fashion as
shown in [11, Thm. 4.2] by tracing the terms corresponding to W (:, j)TV (:, j), for
j = 1, 2, . . . , r.

Clearly, still the computation of the reduced-order system matrices involves the
matrices LA, LN , LB and Lc which are not readily available. In what follows we show
how to compute the reduced-order system without explicitly computing these matrices
and related computational issues.

Computational issues

Now, we discuss the computational issues regarding determining the reduced-order
system. It is interesting to note that we do not need the matrices LA, LN , LB and LC
explicitly, but we rather require expressions for WTLAV,W

TLNV,W
TLB and LCV to

determine the reduced-order system. The expressions for WTLB and LCV are given
in (4.10c) and (4.10d), respectively which are

WTLB = −[CTD1 +N TCTD2 + (N T )2CTD3 + · · · ],
LCV = −[D1BT +D2BTN T +D3BT (N T )2 + · · · ].
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In order to determine the expressions forWTLAV andWTLNV , we premultiply (4.10a)
and (4.10b) by WT and V T , respectively, and obtain

WTLAV +WTLNVN T +WTLBBT = 0, (4.15)

V TLTAW + V TLTNWN + V TLTCC = 0. (4.16)

Now, we subtract (4.15) from the transpose of (4.16), leading to the following Sylvester
equation in WTLNV :

N T (WTLNV
T )− (WTLNV )N T + CTLCV −WTLBBT = 0. (4.17)

In order to have a unique solution of the above Sylvester equation, the matrix (Î ⊗
N T −N ⊗ Î) should be invertible. But, it is easy to see that the matrix contains zero
eigenvalues. Therefore, the Sylvester equation (4.17) either does not have a unique
solution or has no solution. However, if one assumes Dk = 0 for k ≥ 3, then at-
least one solution for WTLNV can be easily computed which satisfies (4.17). In this
scenario, the equation (4.17) boils down to

N T (WTLNV − CTD2BT )− (WTLNV − CTD2BT )N T = 0.

This implies WTLNV = CTD2BT satisfies the above Sylvester equation, although it
is not unique. The expression for WTLAV can be simply computed by inserting the
expressions for WTLB and WTLNV in (4.15).

Remark 4.3. As we have noted above, the Sylvester equation (4.17) either does not
have unique solution or even has no solution. However, it is possible to determine the
solution if Dk = 0 ∀ k ≥ 3.

In case of Dk 6= 0 for some k ≥ 3, the equation (4.17), in general, does not have
any solution. This implies that it is not possible to obtain a reduced-order system,
satisfying necessary conditions for optimality. Nevertheless, here we set WTLNV equal
to CTD2BT which often is a good choice as Dk generally decreases fast.

Remark 4.4. It is shown in [12] that if the bilinear term has the following structure:

N =

[
N11 N12

0 0

]
,

then the higher order systems with k ≥ 2, all have zero polynomial parts, i.e., Dk =
0 ∀ k ≥ 2.

Here now, we sketch an iterative algorithm based on our theoretical discussions for
the special class of bilinear descriptor systems considered here.

Remark 4.5. Algorithm 1 extends the algorithm proposed in [13] for bilinear descrip-
tor system for which the polynomial part of each subsystem was assumed to be zero.

Remark 4.6. The expressions for RB and RC require the summation of the infinite
series. However, Di generally decreases fast, therefore one can consider only the lead-
ing terms which may approximate the infinite summation very well. In all practical
applications we consider in the next section, Dk = 0 ∀ k ≥ 2.
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Algorithm 1 B-IRKA for bilinear descriptor systems with index-1 matrix pencil.

1: Input: E,A,N,B,C.
2: Make an initial guess of Ω,B,N and C.
3: while no convergence do
4: Solve for V and W

EV (−Ω) +AV +NVN T +BBT = 0,
ETW (−Ω) +ATW +NTWN + CTC = 0.

5: Compute the expression for

WTLB = −
∞∑
k=1

(N T )k−1CTDk =: RB ,

LCV = −
∞∑
k=1

DkBT (N T )k−1 =: RC .

6: Determine the expression for WTLNV = CTD2BT =: RN .
7: Determine the expression for WTLAV =: RA,

RA = −RNN T −RBBT .
8: Compute the reduced-order system matrices:

Ê = WTEV , Â = WTAV +RA, N̂ = WTNV +RN ,
B̂ = WTB +RB , Ĉ = CV +RC .

9: Determine Y and Z such that Y ÂZ = Ω, Y ÊZ = Î.
10: Compute N = Y N̂Z, B = Y B̂ and C = ĈZ.
11: end while
12: Output: Ê, Â, N̂ , B̂, Ĉ.

Remark 4.7. The application of Algorithm 1 is not only restricted to bilinear descrip-
tor systems with index-1 matrix pencil as shown in (3.3), but also can be applied to all
bilinear descriptor systems, whose subsystems all have constant polynomial parts. For
instance, all subsystems of the bilinear descriptor system with the following structure
of matrices:

E =

[
E11 0
0 0

]
, A =

[
A11 A12

A21 0

]
,

N =

[
N11 N12

N21 0

]
, B =

[
B1

0

]
and C =

[
C1 C2

]
,

have constant polynomial parts. Here, the matrix pencil (A,E) has a nilpotency index-
2. Theoretically, Algorithm 1 can be employed to determine a H2 optimal reduced-
order system. But numerically, we have experienced that as the nilpotency index of
the matrix pencil (A,E) increases, the convergence of Algorithm 1 becomes more and
more difficult.

Thus far, we have presented how to obtain the realization of the reduced-order
system which satisfy it’s the first-order necessary conditions for H2 optimality together
with retaining the polynomial part of each subsystem, by assuming the structure of
the kth order multivariate transfer function of the reduced-order system as in (3.5).
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Figure 1: Nonlinear transmission line circuit.

However, the corresponding time-domain bilinear system can be given by

Ê ˆ̇x(t) = Âx̂(t) + N̂ x̂(t)u(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) +

∞∑
k=1

Dku
k(t).

For a detailed proof, we refer to [12]. Also, therein, the computational issue of
∞∑
k=1

Dku
k(t) is also discussed and shown how to deal with this summation cheaply.

5 Numerical Results

In this section, we illustrate the performance of the proposed B-IRKA for bilinear
descriptor systems using various numerical examples. We also compare them with
the reduced bilinear system, whose matrices Ê, Â, B̂ and Ĉ are obtained by linear
IRKA [14, Algo. 5.2], and the reduced bilinear terms, N̂ , are determined by simply
projecting the bilinear terms by using the same projection matrices. The stopping cri-
terion for Algorithm 1 is chosen based on the relative change of the norm of the poles
of the reduced-order system. If the relative change becomes smaller than tol then
we stop the iterations, where tol is chosen as the square-root of machine precision.
Moreover, the initialization of the algorithm is done by choosing arbitrary interpola-
tion points and tangential directions. We also consider a scaling factor for smooth
convergence of B-IRKA as discussed in [6, 10]. All the simulations are carried out
in MATLAB® version 7.11.0.584(R2010b)64-bit(glnza64) on an Intel(R) Core(TM)2
Quad CPU Q9550 @2.83GHz, 6MB cache, 4GB RAM, openSUSE 12.1 (x86-64).

5.1 Nonlinear RC Circuit

As a first example, we study the nonlinear transmission line circuit whose circuit
diagram is shown in Figure 1. The nonlinearity in the system appears due to the diode
I-V characteristic g(vD) = e40vD +vD−1, where vD is the voltage across the diode. As
discussed in [12], the system can be modelled as a quadratic-bilinear descriptor system
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(QBDAE) of dimension (2n1 + n2), where n1 and n2 are the numbers of capacitors
(C) and linear resistors (R), respectively. The output of the system is the average
voltage over all nodes. We set n1 = 10 and n2 = 20, and all electrical component
equal to 1, leading a QBDAE of order n = 40 with the structure of the matrices E and
A as shown in (3.3). However, Carleman bilinearization for descriptor systems [13]
is employed on the QBDAE which gives us a bilinearized system of order 840. The
polynomial part of the first subsystem of the bilinearized system is D1 = 0.0333 and
higher order subsystems all have zero polynomial parts.

We determine the reduced-order system of order r = 5 by employing Algorithm 1.
We choose the scaling factor γ = 0.5. We also determine the reduced bilinear system
by employing IRKA. To illustrate the accuracy of the reduced-order systems, we plot
the time-domain response for the input u(t) = cos(2πt)e−t + 1 in Figure 2a, and the
relative errors are shown in Figure 2b. Also, we compare the reduced bilinear system
obtained by applying Algorithm 1 with the reduced bilinear system determined by the
linear IRKA.

Original System Obtained from B-IRKA Obtained from IRKA

0 1 2 3 4 5
0

2 · 10−2

4 · 10−2

6 · 10−2

Time [s]

Response

(a) Transient response for an input
u(t) = cos(2πt)e−t + 1.

0 1 2 3 4 5

10−4

10−2

100

Time [s]

Relative Error

(b) Relative error.

Figure 2: Comparison of reduced-order systems obtained by employing B-IRKA and
IRKA with the original system.

Evidently, the reduced-order system obtained by using B-IRKA replicates the input-
output behaviour of the original system much better as compared to the reduced-order
system obtained by using IRKA. We also observe that the higher accuracy of the
reduced-order system, determined by B-IRKA, can be achieved by increasing the order
of the reduced system. On the other hand, the reduced bilinear system determined by
using IRKA produces an unstable reduced-order system, as the order of the reduced
system increases.
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5.2 Parametric RLC Circuit

Next, we consider an RLC circuit as shown in Figure 3 whose first node has three
branches, connected to the voltage source V via a constant resistance Rc, to a variable
resistance, and to ground via a capacitor. The last, nth, node of the circuit is connected
to the ground via a capacitor. All other nodes also have three branches; the first one
is grounded via a capacitor; the second one is connected to an inductor and the third
one is connected to a variable resistor as shown in Figure 3.

V

Rc

C1

v1

R1
L1

C2

v2
� � �

� � �

vn−1

Cn−1

Rn−1
Ln−1

Cn

vn

Figure 3: RLC circuit diagram.

Using Kirchhoff’s voltage law at each node, we obtain the following system of equa-
tions:

Cj
vj(t)

dt
= ij − ij+1, j = 1, 2, . . . , n− 1,

Lj
ij+1

dt
= −Rjij+1 + vj+1 − vj , j = 1, 2, . . . , n− 1,

0 = v1 + i1Rc − V,
Cn

vn
dt = in.

Here, we set all the capacitors C, inductors L, and the resistance RC equal to 1. We
also assume that the variable resistances vary linearly with the parameter p as follows:

Rj = Rj(1 + p). (5.1)

Also, we consider Rj = 1 . Combining all these equations and utilizing the parametric
relation of the variable resistance, we obtain the following parametric linear system:

Eẋ(t) = Ax(t) + pA1x(t) +Bu(t),

y(t) = Cx(t),
(5.2)

where x(t) is the state vector containing the voltage at each node and current through
resistances. The input u(t) is the voltage source, and the quantity of interest y(t) is
the current through the voltage source. It has been shown in [5] that a special class of
linear parametric systems can be treated as bilinear systems, by re-writing parameters
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p as inputs to the system. Therefore, we can write the system 5.2 as a bilinear system
with two inputs ũ(t) = [u(t), p]T as follows:

Eẋ(t) = A(t) +

2∑
i=1

Nix(t)ũ(t) + B̃ũ(t),

y(t) = Cx(t),

(5.3)

where N1 = 0, N2 = A1, and B̃ = [B,0]. We determine reduced bilinear systems
of order r = 15 using B-IRKA. We choose the scaling factor γ = 0.1 for smooth
convergence of B-IRKA. We also determine the reduced bilinear system by employing
IRKA of the same order. The computed reduced bilinear systems can be again re-
written as reduced parametric linear systems. In Figure 4, we show the comparison
of the transfer functions of the original and reduced-order systems with respect to the
parameter p and the frequency ω. In Figure 5, we plot the relative H∞ error with
respect to the parameter p.
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101−0.2

0
0.2

10−12

10−7
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ω
p

σ(H(jω)− Ĥ(jω))/σ(H(jω))

(a) Using B-IRKA.

10−1
101−0.2

0
0.2

10−10

10−4

102

ω
p

σ(H(jω)− Ĥ(jω))/σ(H(jω))

(b) Using IRKA.

Figure 4: Comparison of the reduced-order systems obtained by using B-IRKA and
IRKA with the original system.
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Figure 5: Comparison of relative H∞-norm.

These figures clearly show that the reduced-order system obtained by using B-IRKA
outperforms the one obtained by using IRKA for a wide range of the parameter.
However, the projection matrices computed by using IRKA capture the dynamics of
the original system very well in the vicinity of the parameter p = 0. This is why one
can see a sharp drop in the relative errors in Figure 4 and 5 around the parameter
p = 0.

6 Conclusions

In this paper, we have extended the multipoint Volterra series interpolation to a family
of bilinear descriptor systems with the polynomial part of its kth order multivariate
transfer function being constant. We have presented the modified interpolation condi-
tions which not only achieve multipoint interpolation of the underlying Volterra series,
but also retain the polynomial part of each subsystem. Based on the first-order nec-
essary conditions for H2 optimality, we have proposed an iterative rational Krylov
algorithm, the so-called B-IRKA for bilinear descriptor systems, which converges to a
locally H2 optimal reduced-order system, if it converges. Using two numerical exam-
ples, we have demonstrated the efficiency of the proposed methodology and compared
it with reduced-order systems obtained by using IRKA.
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