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Abstract

This paper is aimed at the efficient numerical simulation of optimization prob-
lems governed by either steady-state or unsteady partial differential equations
involving random coefficients. This class of problems often leads to prohibitively
high dimensional saddle point systems with tensor product structure, especially
when discretized with the stochastic Galerkin finite element method. Here, we de-
rive and analyze robust Schur complement-based block-diagonal preconditioners
for solving the resulting stochastic optimality systems with all-at-once low-rank
solvers. Moreover, we illustrate the effectiveness of our solvers with numerical
experiments.
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Optimization problems constrained by deterministic steady-state partial differen-
tial equations (PDEs) are computationally challenging. This is even more so if the
constraints are deterministic unsteady PDEs since one would then need to solve a sys-
tem of PDEs coupled globally in time and space, and time-stepping methods quickly
reach their limitations due to the enormous demand for storage [23, 28]. Yet, more
challenging than the afore-mentioned are problems constrained by unsteady PDEs in-
volving (countably many) parametric or uncertain inputs. This class of problems often
leads to prohibitively high dimensional linear systems with Kronecker product struc-
ture, especially when discretized with the stochastic Galerkin finite element method
(SGFEM). Moreover, a typical model for an optimal control problem with stochastic
inputs (SOCP) will usually be used for the quantification of the statistics of the system
response; this is a task that could in turn result in additional enormous computational
expense.

Stochastic finite element-based solvers for a large range of PDEs with random data
have been studied extensively [1, 2, 14, 25, 27, 32]. However, optimization problems
constrained by PDEs with random inputs have, in our opinion, not yet received ade-
quate attention. Some of the papers on these problems include [3, 13, 14, 15, 27, 31].
While [13, 14] use SGFEM to study the existence and the uniqueness of control prob-
lems constrained by elliptic PDEs with random inputs, the emphasis in [3, 15, 31] is
on solvers based on stochastic collocation methods for optimal control problems with
random coefficients. Rosseel and Wells in [27] apply a one-shot method with both
SGFEM and collocation approaches to an optimal control problem constrained by
stochastic elliptic PDEs. One of their findings is that SGFEM generally exhibits su-
perior performance compared to the stochastic collocation method, in the sense that,
unlike SGFEM, the non-intrusivity property of the stochastic collocation method is
lost when moments of the state variable appear in the cost functional, or when the
control function is a deterministic function.

The fast convergence and other nice properties exhibited by SGFEM notwithstand-
ing, the resulting large tensor-product algebraic systems associated with this intrusive
approach unfortunately limits its attractiveness. Thus, for it to compete favourably
with the sampling-based approaches, there is the need to develop efficient solvers for
the resulting large linear systems. This is indeed the motivation for this work. More
precisely, we apply an all-at-once approach, together with SGFEM, to two prototypical
models, namely, optimization problems constrained by (a) stationary diffusion equa-
tions, (b) unsteady diffusion equations, and in each of the two cases, both the constraint
equations and the objective functional have uncertain inputs. As these problems pose
increased computational complexity due to enormous memory requirements, we here
focus specifically on efficient low-rank preconditioned iterative solvers for the resulting
linear systems representing the Karush-Kuhn-Tucker (KKT) conditions. In particular,
inspired by a state-of-the-art preconditioning strategy employed in the deterministic
framework [24, 23, 28], we derive and analyze robust Schur complement-based block-
diagonal preconditioners which we use in conjunction with low-rank solvers for the
efficient solution of the optimality systems.

In order to numerically simulate the above SOCP, we assume that the state, the
control and the target (or the desired state) are analytic functions depending on the
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uncertain parameters. This allows for a simultaneous generalized polynomial chaos
approximation of these random functions in the SGFEM discretization of the models.
However, we note here that, as pointed out in [27], problems in which the control
is modeled as an unknown stochastic function constitute inverse problems and they
are different from those with deterministic controls [35]. In the former, the stochastic
properties of the control are unknown but will be computed. So, in most cases (as we
assume in this work), the mean of the computed stochastic control could be considered
as optimal. Depending on the application, the mean may not, in general, be the sought
optimal control, though. Besides, computing the uncertainty in the system response
might require additional computational challenges.

This paper is structured as follows. In Section 1, we present our problem statement
and give an overview of the SGFEM on which we shall rely in the sequel. Section 2
discusses efficient solution of our first model problem, namely, an optimization problem
governed by a steady-state diffusion equation with uncertain inputs. As an extension of
the concepts discussed in Section 2, we proceed to Section 3 to introduce and analyze
our preconditioning strategy for the unsteady analogue of the steady-state model.
Furthermore, we here briefly review the tensor-train (TT) toolbox - a software which
we shall use, in conjunction with MINRES, to solve our unsteady problems. Finally,
Section 4 presents some numerical experiments to demonstrate the performance of our
solvers.

1 Problem statement

In this paper, we study the numerical simulation of optimal control problems con-
strained by PDEs with uncertain coefficients. More precisely, we formulate our model
problems as

min
y,u
J (y, u) subject to c(y, u) = 0, (1)

where the constraint equation c(y, u) = 0 represents a PDE to be specified in the
sequel, and

J (y, u) :=
1

2
||y − ȳ||2L2(D)⊗L2(Ω) +

α

2
||std(y)||2L2(D) +

β

2
||u||2L2(D)⊗L2(Ω) (2)

is a cost functional of tracking-type. The functions y, u and ȳ are, in general, real-
valued random fields representing, respectively, the state, the control and the pre-
scribed target system response. We note here that ȳ and u could also be modeled
deterministically. The positive constant β in (2) represents the parameter for the
penalization of the action of the control u, whereas α penalizes the standard devia-
tion std(y) of the state y. The objective functional J (y, u) is a deterministic quantity
with uncertain terms. In what follows, we shall focus mainly on distributed control
problems, although we do believe that our discussion generalizes to boundary control
problems as well.

Next, we recall that by a random field z : D × Ω → R, we mean that z(x, ·) is a
random variable defined on the complete probability space (Ω,F ,P) for each x ∈ D.
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Moreover, for any random variable g defined on (Ω,F ,P), the standard deviation std(g)
of g is given by

std(g) =

[∫
Ω

(g − E(g))2 dP(ω)

] 1
2

, (3)

where E(g) is the mean of g defined by

〈g〉 := E(g) =

∫
Ω

g dP(ω) <∞. (4)

The Kronecker product Hilbert space L2(D)⊗ L2(Ω) is endowed with the norm

||υ||L2(D)⊗L2(Ω) :=

(∫
Ω

||υ(·, ω)||2L2(D) dP(ω)

) 1
2

<∞,

where L2(Ω) := L2(Ω,F ,P).

1.1 Representation of random inputs

In the spirit of [27], we consider two ways of representing the random fields which
we shall use in the rest of the paper. In doing so, we will employ the so-called fi-
nite noise assumption, which states that a random field can be approximated with a
prescribed finite number of random variables ξ := {ξ1, ξ2, . . . , ξN}, where N ∈ N and
ξi : Ω→ Γi ⊆ R.We also make the simplifying assumption that each random variable is
independent and characterized by a probability density function ρi : Γi → [0, 1]. More-
over, the random vector ξ has a bounded joint probability density function ρ : Γ→ R+,
where Γ :=

∏N
i=1 Γi ⊂ RN and ρ =

∏N
i=1 ρi(ξi). With these assumptions, Doob-

Dynkin’s Lemma, cf. [1], guarantees that one can therefore parametrically represent a
random field z(x, ω) in terms of the random vector ξ instead of the random outcomes
ω. That is, we can now write z(x, ξ1, ξ2, . . . , ξN ). Besides, denoting the space of square-
integrable random variables with respect to the density ρ by L2

ρ(Γ), we introduce the
space L2(D)⊗ L2

ρ(Γ), equipped with the norm

||υ||L2(D)⊗L2
ρ(Γ) :=

(∫
Γ

||υ(·, ξ)||2L2(D)ρ(ξ) dξ

) 1
2

<∞. (5)

Similarly, using equations (3) and (4) we have

std(g) =

[∫
Γ

(g(ξ)− E(g(ξ)))2ρ(ξ) dξ

] 1
2

and 〈g〉 =

∫
Γ

g(ξ)ρ(ξ) dξ <∞. (6)

Furthermore, our cost functional J (y, u) now reads

J (y, u) :=
1

2
||y − ȳ||2L2(D)⊗L2

ρ(Γ) +
α

2
||std(y)||2L2(D) +

β

2
||u||2L2(D)⊗L2

ρ(Γ). (7)
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Suppose now that z : D × Ω → R is a random field with known continuous covari-
ance function Cz(x,y). Then, one way to represent z with a finite number of random
variables is through a truncated Karhunen-Lòeve expansion (KLE):

zN (x, ξ(ω)) = E[z](x) + σz

N∑
i=1

√
λiϕi(x)ξi(ω), (8)

where σz is the standard deviation of z, the random variables {ξi}Ni=1 are centered,
normalized and uncorrelated with

ξi(ω) =
1

σz
√
λi

∫
D

(z(x, ξ(ω))− E[z](x))ϕi(x) dx,

and {λi, ϕi} is the set of eigenvalues and eigenfunctions corresponding to Cz(x,y),
that is, ∫

D
Cz(x,y)ϕi(y) dy = λiϕi(x).

The eigenfunctions {ϕi} form a complete orthogonal basis in L2(D). The eigenvalues
{λi} form a sequence of non-negative real numbers decreasing to zero. The series (8)
represents the best N -term approximation of z and converges in L2(D) ⊗ L2

ρ(Γ), due
to

∞∑
i=1

λi =

∫
Γ

∫
D
ρ(z(x, ξ(ω))− E[z](x))2 dxdξ.

Alternatively, one can approximate the random field of interest z using a truncated
generalized polynomial chaos expansion (PCE):

zP (x, ω) =

P−1∑
j=0

zj(x)ψj(ξ(ω)), (9)

where zj , the deterministic modes of the expansion, are given by

zj(x, ω) =
〈z(x, ξ(ω))ψj(ξ)〉〈

ψ2
j (ξ)

〉 ,

{ψj}P−1
j=0 are N -variate orthogonal polynomials of order n and

P = 1 +

n∑
k=1

1

k!

k−1∏
j=0

(N + j) =
(N + n)!

N !n!
. (10)

The N -variate orthogonal polynomials {ψj}P−1
j=0 satisfy

〈ψ0(ξ)〉 = 1, 〈ψj(ξ)〉 = 0, j > 0, 〈ψj(ξ)ψk(ξ)〉 =
〈
ψ2
j (ξ)

〉
δjk, (11)
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with

〈ψj(ξ)〉 =

∫
ω∈Ω

ψj(ξ(ω)) dP(ω) =

∫
ξ∈Γ

ψj(ξ)ρ(ξ) dξ. (12)

Moreover, it can be easily shown then that

E[zP ](x) = z0(x) and Var[zP ](x) =

P−1∑
i=1

z2
i (x)

〈
ψ2
i (ξ)

〉
. (13)

Observe then that since Var(y) = [std(y)]2, it follows immediately from (13) that

||std(y)||2L2(D) =

∫
D
Var[y](x)dx =

∫
D

P−1∑
i=1

y2
i (x)

〈
ψ2
i (ξ)

〉
dx. (14)

In this contribution, we shall rely on the SGFEM for the spatial and stochastic
discretizations, see e.g. [1, 14, 25, 27, 32], and our exposition here follows closely
the framework in [27]. To this end, we note that the KLE and PCE representations
are quite essential in the SGFEM discretizations of the optimal control problems dis-
cussed in the sequel [14, 27]. In a nutshell, we recall that the SGFEM is a spectral
approach in which one seeks y and u in a finite-dimensional subspace of the Hilbert
space H1

0 (D)⊗L2
ρ(Γ), consisting of tensor products of deterministic functions defined

on the spatial domain and stochastic functions defined on the probability space. More
precisely, suppose first that Vh ⊂ H1

0 (D) is a space of standard Lagrangian finite ele-
ment functions on a partition T into triangles (or rectangles) of the domain D defined
by

Vh := {vh ∈ H1
0 (D) : vh ∈ Pk(Ξ) ∀Ξ ∈ T },

where Ξ ∈ T is a cell and Pk is the space of Lagrangian polynomials of degree k. In
particular, let Vh = span{φj(x), j = 1, . . . , J}. Moreover, let Yn ⊂ L2

ρ(Γ) be such that

Yn := span{ψi(ξ) : i ∈ I}, where I := {i = (i1, . . . , iN ) ∈ NN : |i| ≤ n}. That is, Yn is
a set of all N -variate orthogonal polynomials of degree at most n, whereas I is a set
of all multi-indices of length N satisfying |i| ≤ n. It can then be shown that

dim(Yn) = dim(I) =

(
N + n
N

)
,

which is precisely P given in (10). Hence, it turns out that there exists a bijection
µ : {1, . . . , P} → I that assigns a unique integer i to each multi-index µ(i) ∈ I.

To illustrate here how the space Yn is constructed [25], consider the case of uniform
random variables with N = 2 and n = 3. Then Yn is a set of two-dimensional Legendre
polynomials (products of a univariate Legendre polynomial in ξ1 and a univariate
Legendre polynomial in ξ2) of degree less than or equal to three. Each of the basis
functions is associated with a multi-index ν = (ν1, ν2), where the components represent
the degrees of the polynomials in ξ1 and ξ2. Since the total degree of the polynomial
is three, we have the possibilities ν = (0,0), (1,0), (2,0), (3,0), (0,1), (1,1), (2,1), (0,2),
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(1,2), and (0, 3). Since the univariate Legendre polynomials of degrees 0, 1, 2, 3 are
L0(x) = 1, L1(x) = x, L2(x) = 1

2 (3x2 − 1), and L3(x) = 1
2 (5x3 − 3x), we have

Yn = span{ψi(ξ)}9i=0

= {1, ξ1,
1

2
(3ξ2

1 − 1),
1

2
(5ξ3

1 − 3ξ1), ξ2, ξ1ξ2,
1

2
(3ξ2

1 − 1)ξ2,
1

2
(3ξ2

2 − 1),

1

2
ξ1(3ξ2

2 − 1),
1

2
(5ξ3

2 − 3ξ2)}.

So, the SGFEM essentially entails performing a Galerkin projection onto Whn :=
Vh ⊗ Yn ⊂ H1

0 (D)⊗ L2
ρ(Γ) using basis functions rhn of the form

rhn =

J∑
j=1

∑
i∈I

rijφj(x)ψi(ξ), (15)

where rij is a degree of freedom. In this paper, {φj} are Q1 finite elements, whereas
{ψi} are multi-dimensional Legendre polynomials.

We now proceed to Section 2 to present our first SOCP whose constraint is a sta-
tionary diffusion equation. The idea is to use this model to motivate our discussion
on the solvers for a time-dependent model problem in Section 3.

2 A control problem with stationary diffusion equation

Our first SOCP consists now in minimizing the cost functional J (y(x, ω), u(x, ω))
defined in (2) such that, P-almost surely, the following linear elliptic diffusion equation
holds {

−∇ · (a(x, ω)∇y(x, ω)) = u(x, ω), in D × Ω,

y(x, ω) = 0, on ∂D × Ω,
(16)

where a : D × Ω → R is a random coefficient field and the forcing term on the right
hand side u : D×Ω→ R denotes a random control function. Furthermore, we assume
that

u ∈ L2(D)⊗ L2(Ω), (17)

and that there exist positive constants amin and amax such that

P (ω ∈ Ω : a(x, ω) ∈ [amin, amax], ∀x ∈ D) = 1. (18)

For the weak formulation of the forward problem (16), we seek y ∈ H1
0 (D)⊗ L2(Ω)

such that, P-almost surely,

B(y, v) = `(u, v), ∀v ∈ H1
0 (D)⊗ L2(Ω), (19)
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where the bilinear form B(·, ·) is given by

B(y, v) :=

∫
Ω

∫
D
a(x, ω)∇xy(x, ω) · ∇xv(x, ω) dxdP(ω), v, y ∈ H1

0 (D)⊗ L2(Ω),

and

`(u, v) :=

∫
Ω

∫
D
u(x, ω)v(x, ω) dxdP(ω), v, u ∈ H1

0 (D)⊗ L2(Ω).

The following existence and uniqueness result of the solution y to (16) proved in, for
instance, [14] follows from the Lax-Milgram Lemma [5].

Theorem 1. Under the assumptions (17) and (18), there exists a unique solution
y ∈ H1

0 (D)⊗ L2(Ω) such that, P-almost surely, (19) holds.

Recasting the above SOCP given by (2) and (16) into a saddle-point formulation,
Chen and Quarteroni in [6] prove the existence and uniqueness of its solution. More
precisely, the following result holds.

Theorem 2. [6, Theorem 3.5] Let (17) and (18) be satisfied and let α = 0 in (7).
Then, there exists a unique solution (y, u) to the SOCP (7) and (16) satisfying the
stochastic optimality conditions

B(y, v) = `(u, v), v ∈ H1
0 (D)⊗ L2(Ω),

`(βu− f, w) = 0, w ∈ L2(D)⊗ L2(Ω),

B′(y, r) + `(y, r) = `(ȳ, r), r ∈ H1
0 (D)⊗ L2(Ω),

where f is the adjoint variable or Lagrangian parameter associated with the optimal
solution (y, u), and B′ is the adjoint bilinear form of B; that is, B′(y, r) = B(r, y).

We note here that the cost functional considered in [6, 14] does not include ||std(y)||2L2(D).

But then, their results extend to the more general form of J (y, u) considered in this
paper due to the Frechét differentiability of ||std(y)||2L2(D); see, for example, [27].

As our major concern in this paper is to study efficient solvers resulting from the
discretization of our model problems, we proceed next to recall the two common ap-
proaches in the literature to solve these optimization problems [29, 30]. The first
method is the so-called optimize-then-discretize (OTD) approach. Here, one essen-
tially considers the infinite-dimensional problem, writes down the first order conditions
and then discretizes the first order conditions. An alternative strategy, namely, the
discretize-then-optimize (DTO) approach involves discretizing the problem first and
then building a discrete Lagrangian functional with the corresponding first order condi-
tions. The commutativity of DTO and OTD methods when applied to optimal control
problems constrained by PDEs has been a subject of debate in recent times (see [17]
for an overview). In what follows, we will adopt the DTO strategy because, for the
SOCPs considered in this paper, it leads to a symmetric saddle point linear system
which fits in nicely with our preconditioning strategy.

To discretize the SOCP given by (2) and (16) using the SGFEM, consider first the
constraint (16). Given a basis for Whn := Vh ⊗ Yn ⊂ H1

0 (D)⊗ L2
ρ(Γ) and a truncated
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KLE representation aN (x, ξ) (cf. (8)) of the random field a satisfying (18), we now
seek a finite dimensional yhn, uhn ∈Whn, satisfying∫

Γ

∫
D
aN (x, ξ)∇yhn · ∇v ρ(ξ)dxdξ =

∫
Γ

∫
D
uhnv ρ(ξ)dxdξ, (20)

∀v ∈ Whn. Expanding yhn, uhn and the test functions in the chosen basis in (20), we
see that

yhn =

P−1∑
k=0

J∑
j=1

yjkφj(x)ψk(ξ) =

P−1∑
k=0

ykψk(ξ),

and

uhn =

P−1∑
k=0

J∑
j=1

ujkφj(x)ψk(ξ) =

P−1∑
k=0

ukψk(ξ),

yield the following linear system of dimension JP × JP

Ky =Mu (21)

with block structure, where the blocks Kp,q of the stochastic Galerkin matrix K are
linear combinations of N + 1 weighted stiffness matrices of dimension J, with each
of them having the same sparsity pattern equivalent to that of the corresponding
deterministic problem. More specifically, for p, q = 0, . . . , P − 1, we have

Kp,q = 〈ψp(ξ)ψq(ξ)〉K0 +

N∑
i=1

〈ξiψp(ξ)ψq(ξ)〉Ki, (22)

and
Mp,q = 〈ψp(ξ)ψq(ξ)〉M,

where the mass matrix M ∈ RJ×J and the stiffness matrices Ki ∈ RJ×J , i =
0, 1, . . . , N, are given, respectively, by

M(j, k) =

∫
D
φj(x)φk(x) dx, (23)

K0(j, k) =

∫
D
E[a](x)∇φj(x)∇φk(x) dx, (24)

Ki(j, k) = σa
√
λi

∫
D
ϕi(x)∇φj(x)∇φk(x) dx, (25)

where we assume that E[a] > 0, so that K0 is symmetric and positive definite. The
blockK0 captures the mean information in the model, whereas the other blocksKi, i =
1, . . . , N, represent fluctuations in the model. In Kronecker product notation, one
obtains

K := G0 ⊗K0 +

N∑
i=0

Gi ⊗Ki, M := G0 ⊗M, (26)
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where {
G0 = diag

(〈
ψ2

0

〉
,
〈
ψ2

1

〉
, . . . ,

〈
ψ2
P−1

〉)
,

Gi(j, k) = 〈ξiψjψk〉 , i = 1, . . . , N,
(27)

due to the orthogonality of the stochastic basis functions with respect to the probability
measure of the distribution of the chosen random variables (cf. (11)). Moreover, K is
highly sparse as many of the sums in (22) are zero.

Similarly, applying SGFEM to the cost function (7), taking into account the expres-
sion (14), leads to

1

2
(y − ȳ)TM(y − ȳ) +

α

2
yTMty +

β

2
uTMu, (28)

where

Mt := T ⊗M, T := diag
(
0,
〈
ψ2

1

〉
, . . . ,

〈
ψ2
P−1

〉)
. (29)

Our discrete SOCP now is to minimize (28) subject to (21). The Lagrangian func-
tional L of this optimization problem is given by

L(y,u, f) :=
1

2
(y − ȳ)TM(y − ȳ) +

α

2
yTMty +

β

2
uTMu + fT (−Ky +Mu),

where f denotes the Lagrangian multiplier or adjoint associated with the constraint.
Now, applying the first order conditions to the Lagrangian yields the following opti-
mality system  Mα 0 −KT

0 βM MT

−K M 0


︸ ︷︷ ︸

:=A

 y
u
f

 =

 Mȳ
0
d

 , (30)

where

Mα = M+ αMt

= (G0 ⊗M) + α(T ⊗M)

= Gα ⊗M, (31)

with Gα := G0 + αT, so that

Gα(j, k) =


〈
ψ2

0

〉
, if j = k = 0,

(1 + α)
〈
ψ2
j

〉
, if j = k = 1, 2, . . . , P − 1,

0, otherwise.

(32)

We note from (26), (31) and (32) that if α = 0, then Gα = G0 and, hence, Mα =
M. Moreover, we assume that the parameter N in the KLE of the random input a
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is chosen such that K stays symmetric and positive definite [25]. The vector d :=
diag(G0)⊗ d̃, where d̃ represents, in general, contributions from boundary conditions
with respect to the spatial discretization. The system (30) is usually of huge dimension.
As a result, the use of direct solvers for the system is out of the question. In what
follows, we consider efficient iterative solvers instead. First, however, we discuss our
preconditioning strategies.

2.1 Preconditioning the optimality system

Now, observe that the optimality system (30) is of saddle point form [9]:

A =

[
A BT

B 0

]
, (33)

where

A =

[
Mα 0

0 βM

]
, B = [−K M], (34)

where A is symmetric and positive definite and B has full row rank. An appropriate
Krylov subspace solver for the indefinite saddle point system is the MINRES algorithm
originally proposed by Paige and Saunders in [22]. However, effectiveness of iterative
solvers requires a suitable preconditioner. That is, we need a matrix P such that P−1A
has better spectral properties (essentially, clustered eigenvalues) and for which P−1v
is cheap to compute for any vector v of appropriate dimension. In what follows, we
discuss our preconditioning strategies for solving (30).

Throughout this paper, we will focus mainly on block diagonal preconditioners; that
is, preconditioners of the form

P =

[
A 0
0 S

]
,

where S = BA−1BT is the (negative) Schur complement. It has been shown [18] that

this choice of preconditioner indeed yields three distinct eigenvalues
{

1−
√

5
2 , 1, 1+

√
5

2

}
of P−1A. Hence, any Krylov subspace method with optimality property, such as MIN-
RES, will terminate after at most three iterations. With this preconditioner, we specif-
ically have

P =

 Mα 0 0
0 βM 0
0 0 S

 , (35)

where

S = KM−1
α K +

1

β
M, (36)
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since K andM are symmetric. We note here that (35) is only an ideal preconditioner
for our saddle point system (30) in the sense that it is not cheap to solve the system
with it. In practice, one often has to approximate the three diagonal blocks in order
to use P with MINRES. An effective approach to approximate blocks (1, 1) and (2, 2)
is the application of Chebyshev semi-iteration to the mass matrices in each of the two
blocks [34]. More specifically, for a given system involving a mass matrix Mx = b,
the Chebyshev semi-iteration, as given by Algorithm 1, is used to speed up a relaxed
Jacobi iteration:

xk+1 = Hxk + g,

where H = I− θD−1
0 M, g = θD−1

0 b, D0 = diag(M). The optimal relaxation parame-
ter θ must be chosen in such a way that the the spectrum of the matrix H is symmetric
about the origin. For instance, for a mesh of square Q1 elements in 2 dimensions,
λ(D−1

0 M) ⊂ [1/4, 9/4]; moreover, if θ = 4/5, then we get λ(H) ⊂ [−4/5, 4/5]; see e.g.
[33].

Algorithm 1 Chebyshev semi-iterative algorithm for ` steps

Set D0 = diag(M).
Set relaxation parameter θ.
Compute g = θD−1

0 b.
Set H = I − θD−1

0 M (this can be used implicitly).
Set x0 = 0 and xk = Hxk−1 + g.
Set c0 = 2 and c1 = θ.
for k = 1, . . . , l do

ck+1 = θck − 1
4ck−1.

ϑk+1 = θ ck
ck+1

.

xk+1 = ϑk+1(Hxk + g − xk−1) + xk−1.
end for

Approximating the Schur complement S, that is, block (3, 3) poses more difficulty,
however. One possibility [26] is to approximate S by dropping the term 1

βM to obtain

S0 := KM−1
α KT . (37)

An alternative and more robust approach, which we adopt here and in the rest of this
paper, was proposed in [24] in the context of deterministic optimal control problems.
In this case, S is approximated by a matrix S1 of the form

S1 = (K +Mu)M−1
α (K +Mu)

T
, (38)

where Mu is determined by ‘matching’ the terms in the expressions for S1 and S as
given, respectively, in (38) and (36). More precisely, we ignore the cross terms (that
is, KM−1

α Mu +MuM−1
α K) in the expansion of S1 to get

MuM−1
α Mu =

1

β
M =

1

β
MM−1M. (39)

11



Now, observe from (27), (31) and (32), we have that Mα = Gα ⊗M. Moreover, note
that ideally in (7), we have α ≥ 0. So, to derive an approximation to S1, we consider
first of all the case α = 0. In this case, it is easy to see that (39) holds if we set

Mu =
1√
β
M, (40)

since Mα = M. If α > 0, then we apply the following trick. We proceed first to
replace in equation (32) the (0, 0) entry in the diagonal matrix Gα by (1 +α)

〈
ψ2

0

〉
, so

that we can then obtain

Mα = Gα ⊗M ≈ (1 + α)G0 ⊗M = (1 + α)M.

It turns out then that (39) holds if and only if

Mu =

√
1 + α

β
M,

with which we recover (40) for α = 0. Hence, we have

S1 =

(
K +

√
1 + α

β
M
)
M−1

α

(
K +

√
1 + α

β
M
)T

. (41)

We point out here that the expression forMu implies that the ignored cross terms are
O(β−1/2) instead of O(β−1) in (37).

The effectiveness of the iterative solver used to solve our KKT system depends to a
large extent on how well the approximation S1 represents the exact Schur complement.
To measure this, we need to consider the eigenvalues of the preconditioned Schur
complement S−1

1 S. In what follows, we proceed to establish the spectrum λ(S−1
1 S) of

S−1
1 S by examining the Raleigh quotient

R(x) :=
xTSx

xTS1x
,

for any non-zero vector x of appropriate dimension. We shall rely on the following
result on positive definite matrices.

Proposition 1. [19, Theorem 2] Let X = AB + BA, where A and B are positive
definite, Hermitian square matrices. Then, X is positive definite if

κ(B) <

(√
κ(A) + 1√
κ(A)− 1

)2

,

where κ(Y ) represents the spectral condition number of the matrix Y.

We can now prove the main result of this section.
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Theorem 3. Let α ∈ [0,+∞). Then, the eigenvalues of S−1
1 S satisfy

λ(S−1
1 S) ⊂

[
1

2(1 + α)
, 1

)
, ∀α <

(√
κ(C) + 1√
κ(C)− 1

)2

− 1, (42)

where C =M−1/2KM−1/2.

Proof. Suppose that α ∈ [0,+∞). Define the diagonal matrices Υ and Eα by

Υ = diag(0, IP−1) and Eα = (IP + αΥ)⊗ IJ , (43)

where In denotes an identity matrix of dimension n ∈ N. Clearly,

IJP � Eα � (1 + α)IJP and IJP � E−1
α � (1 + α)−1IJP , (44)

where, for arbitrary square matrices X and Y, we write X � Y if X − Y ≥ 0, and
vice versa. Moreover, from (26), (27), (31) and using the identity (A⊗B)(X ⊗ Y ) =
AX ⊗BY, we obtain

Mα = G0 ⊗M + αT ⊗M
= (G0 + αT )⊗M
= (G0IP + αG0Υ)⊗ (MIJ)

= (G0 ⊗M)(IP ⊗ IJ) + (G0 ⊗M)(αΥ⊗ IJ)

= (G0 ⊗M) [(IP ⊗ IJ) + (αΥ⊗ IJ)]

= M [(IP + αΥ)⊗ IJ ]

= MEα = EαM, (45)

since both G0 and IP + αΥ are diagonal matrices and therefore commute with each
other. Now, recall from (41) that the approximation S1 to the Schur complement S is
given by

S1 =

(
KM−1

α K +
1 + α

β
MM−1

α M+

√
1 + α

β

[
KM−1

α M+MM−1
α K

])
,

so that using (36), (45) and (46), we see that the preconditioned Schur complement
S−1

1 S is similar to the matrix

M1/2S−1
1 SM−1/2 = (M−1/2S1M−1/2)−1(M−1/2SM−1/2). (46)

It therefore follows that

S−1
1 S ∼

(
CE−1

α C +
1 + α

β
E−1
α +

√
1 + α

β

(
CE−1

α + E−1
α C

))−1 (
CE−1

α C + β−1IJP
)

=
(
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

))−1 (
βCE−1

α C + IJP
)
,
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where ∼ implies similarity transformation and C := M−1/2KM−1/2. Now, observe
that the matrix C is symmetric and positive definite so that λ(C) ⊂ (0,+∞) . Consider
now the Raleigh quotient

R(x) :=
xT
[
βCE−1

α C + IJP
]
x

xT
[
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

)]
x
.

But then, κ(E−1) = 1 + α, and hence, by Proposition 1, we have that

xT (CE−1
α + E−1

α C)x > 0, for α+ 1 <

(√
κ(C) + 1√
κ(C)− 1

)2

.

This, in turn, implies that the denominator of R(x) is also strictly positive. Hence,

R(x) ≤
xT
[
βCE−1

α C + (1 + α)E−1
α

]
x

xT
[
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

)]
x
< 1,

from which we deduce that λmax := maxR(x) < 1.
Now, observe that xTCE−1

α x = xTE−1
α Cx. Moreover, for any two vectors z1, z2 of

appropriate dimensions, Cauchy-Schwarz Inequality implies 〈zT1 z2〉2 ≤ (zT1 z1)(zT2 z2).

Thus, setting zT1 = xTCE−1/2
α and z2 = E−1/2

α x, we obtain(
xTCE−1

α x
)2 ≤ (xTCE−1

α Cx
)

(xTE−1
α x). (47)

Hence, using (47), together with the fact that (a+ b)2 ≤ 2(a2 + b2), a, b ∈ R, one gets

R(x) =
xT
[
βCE−1

α C + IJP
]
x

xT
[
βCE−1

α C + (1 + α)E−1
α +

√
β(1 + α)

(
CE−1

α + E−1
α C

)]
x

≥ xTβCE−1
α Cx+ xT IJPx[

β1/2(xTCE−1
α Cx)1/2 + (1 + α)1/2(xTE−1

α x)1/2
]2

≥ xTβCE−1
α Cx+ xT IJPx

2
[
βxTCE−1

α Cx+ (1 + α)xTE−1
α x

]
≥ xTβCE−1

α Cx+ xTE−1
α x

2
[
βxTCE−1

α Cx+ (1 + α)xTE−1
α x

]
≥ xTE−1

α x

2(1 + α)xTE−1
α x

=
1

2(1 + α)
, (48)

which shows that λmin := minR(x) ≥ 1
2(1+α) , thereby concluding the proof of the

theorem.

Note that, in the context of a deterministic optimal control problem, Pearson and
Wathen in [24, Theorem 4] have independently obtained, specifically for α = 0, a
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similar result as that of Theorem 3. We, however, point out herein that, in addition
to the generalization of the said result, ours yields a sharper bound than the one that
these authors obtained. Moreover, with the exception of the parameter α, the result
of Theorem 3 is independent of the discretization parameters in the system.

The following result is an immediate consequence of Theorem 3.

Theorem 4. Let A be the KKT matrix given by (33) and define P0 by

P0 =

[
A 0
0 S1

]
,

where A and S1 are given, respectively, by (34) and (41). Moreover, assume that

α <

(√
κ(C)+1√
κ(C)−1

)2

− 1, where C is as defined in Theorem 3. Then, the eigenvalues of

the matrix P−1
0 A satisfy

λ(P−1
0 A) = {1} ∪ I− ∪ I+, (49)

where

I− =

(
1

2
(1−

√
5),

1

2

(
1−

√
1 +

2

1 + α

)]
, I+ =

[
1

2

(
1 +

√
1 +

2

1 + α

)
,

1

2
(1 +

√
5)

)
.

Proof. First, we note that P−1
0 A shares the same eigenvalues with the symmetric

matrix given by

P−1/2
0 AP−1/2

0 =

[
I A−1/2BTS

−1/2
1

S
−1/2
1 BA−1/2 0

]
.

Now, using [10, Lemma 2.1], we know that the eigenvalues of P−1/2
0 AP−1/2

0 are either

1 or have the form 1
2

(
1±
√

1 + 4s2
)
, where s is a singular value of X := S

−1/2
1 BA−1/2;

in other words, s2 is an eigenvalue of XTX. Since S−1
1 S is similar to XTX, the result

(49) follows immediately from Theorem 3.

The robustness of S1 notwithstanding, we cannot implement it as it is, as this is
equivalent to solving the forward problem twice per iteration due to the presence of
Z := K+Mu and its transpose. Hence, we need to derive an appropriate approxima-
tion for Z. More precisely, observe first, from (26), that

Z = K +

√
1 + α

β
M

=

(
N∑
i=0

Gi ⊗Ki

)
+

√
1 + α

β
(G0 ⊗M) =

N∑
i=0

Gi ⊗ K̃i, (50)
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with K̃0 := K0+
√

1+α
β M, K̃i = Ki, i = 1, . . . , N. But then, we can now approximate

Z using similar preconditioners for the stationary forward problems considered in, for
example, [25, 32]:

Z0 := G0 ⊗ K̃0, (51)

or

Z1 :=

N∑
i=0

trace(K̃T
i K̃0)

trace(K̃T
0 K̃0)

Gi ⊗ K̃0. (52)

Note that for a practical algorithm, S1 is approximated using multigrid techniques for
K̃0 in both Z0 and Z1. The preconditioner (51) is the so-called mean-based precon-
ditioner. It is block diagonal and is best suited for systems for which the variance
of the random input is small relative to its mean. Its performance deteriorates with
increasing variance. This is quite intuitive since from (24), (25) and (50), we can see
that as σκ increases, the off-diagonal blocks of the global stochastic Galerkin matrix∑N
i=1Gi ⊗Ki become more significant and they are not represented in the precondi-

tioner. The latter was proposed by Ullmann in [32] to circumvent the shortcomings
of the former in the forward problem. Both of them have been successfully applied
to a time-dependent forward problem considered in [2]. It is, however, more expen-
sive to implement Z1 than the mean-based preconditioner. Hence, in our numerical
experiments, we shall stick to the mean-based preconditioner.

In a nutshell, we outline below the dominant operations in the application of our
proposed block-diagonal preconditioner P in (35).

• (1,1): 1 Chebyshev semi-iteration for the mass matrix M.

• (2,2): 1 Chebyshev semi-iteration for the mass matrix M.

• (3,3): 2 multigrid operations: 1 for Z0 and 1 for its transpose.

• Total: 2 Chebyshev semi-iterations and 2 multigrid operations.

Having been equipped with a suitable preconditioner, we proceed to the next section
to discuss our Krylov subspace solver.

2.2 Computing low-rank approximation of the solution to the
stationary problem

As we have already pointed out in Section 2.1, the MINRES algorithm is an optimal
solver for the system (30). Hence, we will use it, together with (35), to solve (30).
In particular, our approach is based on the low-rank version of MINRES presented in
[28]. In this section, we give a brief overview of this low-rank iterative solver. Now,
observe first that using the identity

vec(WXV ) = (V T ⊗W )vec(X), (53)
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where

vec(X) =

x1

...
xm

 ∈ Rm×1,

for any X = [x1, . . . , xm] ∈ Rn×m, the linear system (30) can be rewritten as AX = R,
where

A =


Gα ⊗M 0 −

N∑
i=0

Gi ⊗Ki

0 β(G0 ⊗M) G0 ⊗M

−
N∑
i=0

Gi ⊗Ki G0 ⊗M 0

 ,

X =

 vec(Y )
vec(U)
vec(F )

 , R =

 vec(R1)
0

vec(R3)

 ,
and

Y = [y0, . . . , yP−1], U = [u0, . . . , uP−1], F = [f0, . . . , fP−1],

R1 = vec−1((G0 ⊗M)ȳ), R3 = vec−1(d).

Hence, (53) implies that

AX = vec




MYGTα −
N∑
i=0

KiFG
T
i

βMUGT0 +MFGT0

−
N∑
i=0

KiY G
T
i +MUGT0


 = vec

 R1

0
R3

 . (54)

Our approach is essentially based on the assumption that both the solution matrix
X and the right hand side matrix R admit low-rank representations; that is,

Y = WY V
T
Y , with WY ∈ RJ×k1 , VY ∈ RP×k1

U = WUV
T
U , with WU ∈ RJ×k2 , VU ∈ RP×k2

F = WFV
T
F , with WF ∈ RJ×k3 , VF ∈ RP×k3 ,

(55)

where k1,2,3 are small relative to P. Substituting (55) in (54) and ignoring the vec
operator, we then obtain

MWY V
T
Y G

T
α −

N∑
i=0

KiWFV
T
F G

T
i

βMWUV
T
U G

T
0 +MWFV

T
F G

T
0

−
N∑
i=0

KiWY V
T
Y G

T
i +MWUV

T
U G

T
0

 =

 R11R
T
12

0
R31R

T
32

 , (56)

where R11R
T
12 and R31R

T
32 are the low-rank representations of the R1 and R3, respec-

tively.
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The attractiveness of this approach lies therefore in the fact that one can rewrite
the three block rows in the left hand side in (56), respectively, as

(first block row)

[
MWY −

N∑
i=0

KiWF

][
V TY G

T
α

V TF G
T
i

]
,

(second block row) [ βMWU MWF ]

[
V TU G

T
0

V TF G
T
0

]
,

(third block row)

[
−

N∑
i=0

KiWY MWU

] [
V TY G

T
i

V TU G
T
0

]
,

(57)

so that the low-rank nature of the factors guarantees fewer multiplications with the
submatrices while maintaining smaller storage requirements. More precisely, keeping
in mind that

x = vec

 X11X
T
12

X21X
T
22

X31X
T
32


corresponds to the associated vector x from a vector-based version of MINRES, matrix-
vector multiplication in our low-rank MINRES is given by Algorithm 2. Note that an

Algorithm 2 Matrix-vector multiplication in low-rank MINRES

Input: W11,W12,W21,W22,W31, X32

Output: X11, X12, X21, X22, X31, X32

X11 =

[
MW11 −

N∑
i=0

KiW31

]
X12 = [GαW12 GiW32]

X21 =

[
βG0W21 −

N∑
i=0

KiW31

]
X22 = [G0W22 G0W32]

X31 =

[
−

N∑
i=0

KiW11 MW21

]
X32 = [GiW12 G0W22]

important feature of low-rank MINRES is that the iterates of the solution matrices Y, U
and F in the algorithm are truncated by a truncation operator Tε with a prescribed
tolerance ε. This is accomplished via QR decomposition as in [16] or truncated singular
value decomposition (SVD) as in [2, 28].

The truncation operation is necessary because the new computed factors could have
increased ranks compared to the original factors in (57). Hence, a truncation of all the
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factors after the matrix-vector products, is used to construct new factors; for instance,

[X̃11, X̃12] := Tε ([X11, X12]) = Tε

([
MW11 −

N∑
i=0

KiW31

] [
WT

12G
T
α

WT
32G

T
i

])
.

Moreover, in order to ensure that the inner products within the iterative low-rank
solver are computed efficiently, we use the fact that

〈x, y〉 = vec (X)
T

vec (Y ) = trace
(
XTY

)
to deduce that

trace

(X1X
T
2

)T︸ ︷︷ ︸
Large

(
Y1Y

T
2

)︸ ︷︷ ︸
Large

 = trace

Y T2 X2︸ ︷︷ ︸
Small

XT
1 Y1︸ ︷︷ ︸

Small

 ,

where X = X1X
T
2 and Y = Y1Y

T
2 , which allows us to compute the trace of small

matrices rather than of the ones from the full model.
For more details on implementation issues, we refer the interested reader to [2, 28].

In Section 4, we use numerical experiments to illustrate the performance of low-rank
MINRES, together with the preconditioners discussed in Section 2.1.

Next, we proceed to Section 3 to present a time-dependent analogue of the model
problem considered so far.

3 A stochastic parabolic optimal control problem

In an attempt to extend our discussion on the above model problem to a time-
dependent case, we henceforth replace L2(D) in (7) by the space

L2([0, T ],D) =

{
f ∈ L2(D) :

∫ T

0

[f(t)]2 dt <∞

}
,

and then consider a parabolic SOCP now given by J (y(t,x, ω)), u(t,x, ω)) subject,
P-almost surely, to

∂y(t,x, ω)

∂t
−∇ · (a(x, ω)∇y(t,x, ω)) = u(t,x, ω), in (0, T ]×D × Ω,

y(t,x, ω) = 0, on (0, T ]× ∂D × Ω,

y(0,x, ω) = y0, in D × Ω,

(58)

where the random control function satisfies∫
Ω

u(·, ·, ω) dP(ω) < +∞, a.e,

and, as before, a(x, ω) is assumed to be uniformly positive in D×Ω. We note here that
the time-dependence of this problem introduces an additional degree of freedom which
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makes the system matrix here (a lot) larger than the system matrix in the steady-state
case.

We use the trapezoidal rule for temporal discretization (as was done for deterministic
problems in e.g. [23, 28]) and SGFEM in the spatial and the stochastic domains to
get the following discrete objective function

J (y, u) =
τ

2
(y − ȳ)TMa(y − ȳ) +

τα

2
yTMby +

τβ

2
uTM2u, (59)

where 
Ma = blkdiag

(
1
2M,M, . . . ,M, 1

2M
)
,

Mb = blkdiag
(

1
2Mt,Mt, . . . ,Mt,

1
2Mt

)
,

(60)

withM andMt as defined in (26) and (29) respectively. Note thatM2 =Ma. Here,
denoting the number of time steps by nt, we also note that

y =

 y1

...
ynt

 , ȳ =

 ȳ1

...
ȳnt

 and u =

 u1

...
unt

 ,
with yi, ȳi,ui ∈ RJP×1, i = 1, . . . , nt.

For an all-at-once discretization of the state equation (58), we use the implicit Euler
method together with SGFEM to get

Kty − τNu = d,

where

Kt =


L
−M L

. . .
. . .

−M L

 , N =


M

M
. . .

M

 , d =


My0

0
...
0

 ,
where L := G0 ⊗ (M + τK0) + τ

∑N
i=1Gi ⊗ Ki. Observe that the matrix Kt in this

case is not symmetric, unlike the matrix K in the stationary case.
Applying first order conditions to the Lagrangian functional for this constrained

optimization problem yields τM1 0 −KTt
0 βτM2 τN T

−Kt τN 0

 y
u
f

 =

 τMaȳ
0
d

 , (61)

where, from (60) and (26),

M1 = Ma + αMb

= (D ⊗M) + α(D ⊗Mt) = D ⊗Gα ⊗M = D ⊗Mα, (62)
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with Gα as defined in (32), and

D = diag

(
1

2
, 1 . . . , 1,

1

2

)
∈ Rnt×nt . (63)

We note here that

Kt = (Int ⊗ L) + (C ⊗M) = Int ⊗

[
N∑
i=0

Gi ⊗ K̂i

]
+ (C ⊗G0 ⊗M), (64)

where K̂0 = M + τK0, K̂i = τKi, i = 1, . . . , N. The matrix C ∈ Rnt×nt comes from
the implicit Euler discretization and is given by

C =


0
−1 0

. . .
. . .

−1 0

 ,
and Int is an identity matrix of dimension nt. The use of other temporal discretizations
is, of course, possible. The Crank-Nicholson scheme, for instance, can be written in a
similar way. Moreover,

N = Int ⊗G0 ⊗M, M2 = D ⊗G0 ⊗M. (65)

Hence, each of the block matrices Kt,N ,M1 and M2 belongs to RJPnt×JPnt , since
Gi ∈ RP×P , i = 0, . . . , P − 1, and M,Ki ∈ RJ×J , i = 0, . . . , N. So, the overall
coefficient matrix in (61) is of dimension 3JPnt × 3JPnt.

As can be seen from (64), for instance, the time-dependent problem leads to an ad-
ditional Kronecker product. Indeed, although the low-rank solver presented in the sta-
tionary case reduces storage problems in large-scale simulations, the low-rank factors
become infeasible in higher dimensions. Further data compression can, fortunately, be
achieved with more advanced high-dimensional tensor product decompositions. To-
gether with preconditioned MINRES, we henceforth solve the linear system discussed
in this section using an elegant and robust tensor format called Tensor Train (TT)
format which was introduced in [20]. To that end, we proceed next to Section 3.1 to
give an overview of the TT format.

3.1 Solving the optimality systems from the unsteady problem

First, we recall that a tensor y := y(i1, . . . , id), ik = 1, . . . , nk is an n1× n2× . . .× nd
multi-dimensional array, where the integers n1, n2, . . . , nd are called the mode sizes
and d is the order of y. The tensor y admits a tensor train decomposition or TT-
format [20, 7] if it can be expressed as

y(i1, . . . , id) = y1(i1)y2(i2) · · ·yd(id),
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where yk(ik) is an rk−1 × rk matrix for each fixed ik, 1 ≤ ik ≤ nk. Moreover, the
numbers rk are called the TT-ranks, whereas yk(ik) are the cores of the decomposition.
More precisely, yk(ik) is a three-dimensional array, and it can essentially be treated

as an rk−1 × nk × rk array with elements yk(αk−1, nk, αk) = y
(k)
αk−1,αk(ik). Here, the

boundary conditions r0 = rd = 1 are imposed on the decomposition to make the
matrix-by-matrix products a scalar. The decomposition can be expressed in index
form as

y(i1, . . . , id) =

r1...rd−1∑
α1...αd−1=1

y1(α0, n1, α1)y2(α1, n2, α2) · · ·yd−1(αd−1, nd, αd), (66)

where α0 = αd = 1. It turns out that TT-decomposition yields a low-rank format for
tensors as it is derived by a repeated application of low-rank approximation [20]. To
see this [8], let

i2 · · · id = i2 + (i3 − 1)n2 + · · ·+ (id − 1)n2n3 · · ·nd−1. (67)

Then, by regrouping of indices, one can rewrite y as a matrix Y1 ∈ Rn1×n2···nd with
Y1(i1, i2 · · · id) = y(i1, . . . , id). Thus, applying a low-rank SVD to the matrix Y1 yields

Y1 ≈ U1Σ1V
T
1 , U1 ∈ Rn1×r1 , V1 ∈ Rn2···nd×r1 .

The first factor U1 is of moderate dimension and can be stored as y
(1)
α1 (i1) = U1(i1, α1),

where α1 = 1, . . . , r1. The remaining matrix Σ1V
T
1 depends on α1 and i2 · · · id. Next,

we regroup these indices as follows

Y2(α1i2, i3 · · · id) = Σ1(α1, α1)V T1 (α1, i2 · · · id),

and compute the next SVD:

Y2 ≈ U2Σ2V
T
2 , U2 ∈ Rr1n2×r2 , V2 ∈ Rn3···nd×r2 .

Again, U2 can be reshaped to a 3D tensor y
(2)
α1,α2(i2) = U2(α1i2, α2) of moderate

size, and the decomposition also applied to Σ2V
T
2 . Proceeding in this manner, one

eventually obtains the TT format:

y(i1, . . . , id) =

r1...rd−1∑
α1...αd−1=1

y(1)
α1

(i1)y(2)
α1,α2

(i2) · · ·y(d−1)
αd−2,αd−1

(id−1)y(d)
αd−1

(id), (68)

with the total storage of at most dnr2 memory cells, where rk ≤ r, nk ≤ n. In partic-
ular, if r is small, then this requirement is much smaller than the storage of the full
array, nd. A similar construction can be made for discretized operators in high dimen-
sions. To this end, consider a matrix A = A(i1 · · · id, j1 · · · jd) ∈ R(n1···nd)×(n1···nd). We
decompose A as follows:

A(i1 · · · id, j1 · · · jd) ≈
R1...Rd−1∑
β1...βd−1=1

A
(1)
β1

(i1, j1)A
(2)
β1,β2

(i2, j2) · · ·A(d)
βd−1

(id, jd), (69)
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which is consistent with the Kronecker product A = A(1) ⊗A(2) in the case d = 2 and
R1 = 1, and allows a natural multiplication with (68) returning the result in the same
format.

As pointed out in [7], the TT-format is stable in the sense that one can always find
the best approximation of tensors computed via a sequence of QR and SVD decompo-
sitions of auxiliary matrices. The TT-decomposition algorithm is implemented in the
TT-toolbox [21] and comes with a number of basic linear algebra operations, such as
addition, subtraction, matrix-by-vector product, etc. Unfortunately, these operations
lead to prohibitive increase in the TT-ranks. Thus, one necessarily has to truncate (or
round) the resulting tensor after implementing each of the operations. This enhances
the efficiency of the method when used with any standard iterative method such as
MINRES. We point out that although solving the KKT system in TT-format (and, in
general, with low-rank solvers) introduces further error in the simulation due to the
low-rank truncations, the relative tolerance of the truncation operator can be so tight-
ened that the error will become negligible. This is investigated in [2] for a low-rank
conjugate gradient iterative solver; see also e.g. [7, 8] for TT iterative solvers.

We remark here that there are, of course, other tensor formats such as canonical,
hierarchical and Tucker formats which could be used to represent tensors [12] and
hence solve our linear systems. However, our choice of TT-format (or TT toolbox)
is due to its relative elegance and convenience in implementation. The details of
its implementation are found in [21]. A comprehensive overview of low-rank tensor
decompositions can be found in [12] and the references therein. In our numerical
experiments, we use preconditioned MINRES, together with the TT toolbox, to solve
the linear system (61).

3.2 Preconditioning the optimality system

As in the case of the optimality system associated with the stationary model problem,
we need a good preconditioner to solve (61). To this end, we will proceed as before
and rewrite the saddle point system (61) as

A =

[
τM1 0

0 τβM2

]
, B = [−Kt τN ], (70)

in the notation of (33). Next, we are interested in a block diagonal preconditioner to
approximate (61). More precisely, we seek a preconditioner of the form

P̂ =

 A1

A2

Ŝ

 ,
where the blocks A1 ≈ τD⊗Gα⊗M and A2 ≈ τβD⊗G0⊗M, and as we noted before,
both approximations could be accomplished by applying a Chebyshev semi-iteration
on the mass matrix M in the blocks. The matrices D,G0 and Gα are easy to invert
since they are diagonal matrices. Moreover, Ŝ is an approximation to the (negative)
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Schur complement St = BA−1BT , that is,

St :=
1

τ
KtM−1

1 KTt +
τ

β
NM−1

2 N T . (71)

As in the time-independent case, we consider the following approximation of the
Schur complement:

Ŝ =
1

τ

(
Kt + M̂u

)
M−1

1

(
Kt + M̂u

)T
, (72)

where M̂u is again determined via the ‘terms-matching’ procedure so that both the
first and second terms in St and Ŝ are matched, but the cross terms in Ŝ are ignored;
that is, we have

M̂uM−1
1 M̂u =

τ2

β
NM−1

2 N T ,

from which we deduce that M̂u = γN , with γ = τ
√

1+α
β , by using a similar arguments

as before, so that

Ŝ =
1

τ

(
Kt + τ

√
1 + α

β
N
)

︸ ︷︷ ︸
:=Ẑ

M−1
1

(
Kt + τ

√
1 + α

β
N
)T

. (73)

Moreover, as in the stationary case, we have the following result regarding the eigen-
values of the preconditioned Schur complement Ŝ−1St.

Theorem 5. Let α ∈ [0,+∞). Then, the eigenvalues of Ŝ−1St satisfy

λ(Ŝ−1St) ⊂
[

1

2(1 + α)
, 1

)
, ∀α <

(√
κ(K) + 1√
κ(K)− 1

)2

− 1, (74)

where K =
∑N
i=0Gi ⊗Ki.

Proof. Let Int := I, and observe first from (64) that we can rewrite Kt as

Kt = (I + C)⊗ (G0 ⊗M) + I ⊗ τ
N∑
i=0

(Gi ⊗Ki) = J0 ⊗M+ τI ⊗K, (75)

where

J0 = I + C =


1
−1 1

. . .
. . .

−1 1

 ,
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and K, the coefficient matrix of the stationary forward problem, is positive definite.
Now, using (43), (45), (62), (65), we see that

M1 = D ⊗Mα

= D ⊗MEα
= (D ⊗M)(I ⊗ Eα)

= M2Fα = FαM2,

where Fα = I ⊗ Eα. Next, define the matrix X by

X := (D ⊗ I)M−1/2
2 KM−1/2

2 = D1/2J0D
−1/2 ⊗ I + τI ⊗M−1/2KM−1/2.

Note then that X is similar to J0⊗ I + τI ⊗M−1K. Moreover, from (71) and (73), we
see that Ŝ−1St is similar to[

(D ⊗ I)M−1/2
2 ŜM−1/2

2 (D ⊗ I)
]−1 [

(D ⊗ I)M−1/2
2 StM−1/2

2 (D ⊗ I)
]

=[
βXF−1

α X T + τ2(1 + α)F−1
α +

√
β(1 + α)

(
XF−1

α + F−1
α X T

)]−1 (
βXF−1

α X T + τ2I
)
.

Now, consider the Raleigh quotient

R(x) :=
xT
[
βXF−1

α X T + τ2I
]
x

xT
[
βXF−1

α X T + (1 + α)F−1
α +

√
β(1 + α)

(
XF−1

α + F−1
α X T

)]
x
.

But then,

XF−1
α +F−1

α X T = D1/2(J0 + JT0 )D−1/2 ⊗ E−1
α + τI ⊗M−1/2(KE−1

α + E−1
α K)M−1/2.

Since the matrix D1/2(J0 + JT0 )D−1/2 is the sum of two positive definite matrices, it
is therefore positive definite. Besides, by Proposition 1, one gets

KE−1
α + E−1

α K � 0, ∀α <

(√
κ(K) + 1√
κ(K)− 1

)2

− 1.

It follows that XF−1
α + F−1

α X T � 0. Furthermore, it is easy to check that both
XF−1

α X T and F−1
α are also positive definite. Hence, using (44), we obtain

R(x) ≤
xT
[
βXF−1

α X + τ2(1 + α)F−1
α

]
x

xT
[
βXF−1

α X T + (1 + α)F−1
α +

√
β(1 + α)

(
XF−1

α + F−1
α X T

)]
x
< 1.

from which we deduce that λmax := maxR(x) < 1.
The proof of λmin := minR(x) ≥ 1

2(1+α) follows similar arguments as in the second

part of the proof of Theorem 3, with C and Eα replaced, respectively, by X and Fα.
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Remark 1. Note that, using similar arguments as in Theorem 4, we can as well
characterize the spectrum of the preconditioned KKT system in the unsteady case, if
we define A as the global coefficient matrix and P0 as

P0 =

[
A 0

0 Ŝ

]
,

where A and Ŝ are given by (70) and (73), respectively.

It turns out that, if we specifically use Legendre polynomials and piecewise linear (or
bilinear) approximation in the SGFEM discretization of the SOCPs considered herein,
then the following result proved by Powell and Elman enables us to further bound the
parameter α in Theorem 5 above.

Proposition 2. [25, Lemma 3.7] Let the matrices Gk in (27) be defined using nor-
malized Legendre polynomials in uniform random variables on a bounded symmetric
interval [−ν, ν], and suppose that piecewise linear (or bilinear) approximation is used
for the spatial discretization, on quasi-uniform meshes. Let (λi, ϕi) be the eigenpairs
associated with the N -term KLE of the random field aN . Then κ(K) ≤ Φ/Ψ, where
Φ = c2E(a) + η and Ψ = c1h

2E(a)− η, with

η = c2σaC
max
n+1

N∑
i=1

√
λi||ϕi(x)||∞,

where Cmax
n+1 is the maximal root of the Legendre polynomial of degree n+ 1, σa is the

standard deviation of the random field a, h is the spatial discretization parameter, and
c1 and c2 are constants independent of h,N, and n.

We can now state the following result.

Corollary 1. Let α ∈ [0,+∞). Then, the spectrum of Ŝ−1St satisfies

λ(Ŝ−1St) ⊂
[

1

2(1 + α)
, 1

)
, ∀α < µ̃2 − 1, (76)

where µ̃ =
1+p+2

√
p

p−1 , p 6= 1 and p =
√

Φ/Ψ, with Φ and Ψ as defined in Proposition 2.

Proof. The proof is a direct consequence of Proposition 2 and Theorem 5.

Next, as the approximation Ŝ is impractical, we proceed next to derive its practical
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version. Now, observe from (64), (65) and (73) that

Ẑ := Kt + γN
= [(Int ⊗ L) + (C ⊗M)] + γ(Int ⊗M)

= Int ⊗ [L+ γM] + (C ⊗M)

= Int ⊗

[(
G0 ⊗ (M + τK0) + τ

N∑
i=1

Gi ⊗Ki

)
+ γ(G0 ⊗M)

]
+ (C ⊗M)

= Int ⊗

[
G0 ⊗ ((1 + γ)M + τK0) + τ

N∑
i=1

Gi ⊗Ki

]
+ (C ⊗M)

= Int ⊗

[
G0 ⊗ Y + τ

N∑
i=1

Gi ⊗Ki

]
+ (C ⊗G0 ⊗M), (77)

where Y = (1 + γ)M + τK0. Hence, using similar arguments as in Section 2.1 we can
now approximate Ẑ using

Ẑ0 := (Int ⊗G0 ⊗ Y) + (C ⊗G0 ⊗M). (78)

In practice, we approximate Ŝ by applying a multigrid process nt times instead of the
inverse of Y in each of the diagonal blocks of Ẑ0 and its transpose.

4 Numerical experiments

In this section, we present some numerical results. The numerical experiments were
performed on a Linux machine with 80 GB RAM using MATLAB R© 7.14 together
with a MATLAB R© version of the AMG code HSL MI20 [4]. We implement each of the
mean-based preconditioners Z0 and Ẑ0 as given, respectively, by (51) and (78) using
one V-cycle of AMG with symmetric Gauss-Seidel (SGS) smoothing to approximately
invert K̃0. We remark here that we apply the method as a black-box in each experiment
and the set-up of the approximation to K̃0 only needs to be performed once. Unless
otherwise stated, in all the simulations, MINRES is terminated when the relative
residual error, measured in the Euclidean norm, is reduced to tol = 10−5. Note that
tol should be chosen such that the truncation tolerance ε ≤ tol; otherwise, one would
be essentially iterating on the ‘noise’ from the low-rank truncations, as it were. In
particular, we have chosen herein ε = 10−8.

First, we present our simulations for the cost functional (7) constrained by the
steady-state diffusion equation as given by (16). The random input a is characterized
by the covariance function

Ca(x,y) = σ2
a exp

(
−|x1 − y1|

`1
− |x2 − y2|

`2

)
, ∀(x,y) ∈ [−1, 1]2.

The forward problem has been extensively studied in, for instance, [25]. The eigenpairs
(λj , ϕj) of the KL expansion of the random field a are given explicitly in [11]. In the
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simulations, we set the correlation lengths `1 = `2 = 1 and the mean of the random
field E[a] = 1.

Next, we investigate the behavior of the solvers (low-rank MINRES and TT-MINRES)
for different values of the stochastic discretization parameters J, P, σa as well as α and
β. Moreover, we choose ξ = {ξ1, . . . , ξN} such that ξj ∼ U [−1, 1], and {ψj} are N -
dimensional Legendre polynomials with support in [−1, 1]N . The spatial discretization
uses Q1 spectral elements. In the considered unsteady SOCP example (that is, in
Section 3), the resulting linear systems were solved for time T = 1.

LR-Minres # iter (t) # iter (t) # iter (t) # iter (t)
HHH

HHP
J

481 1985 8065 32513

β = 10−2

20 25 (32.8) 25 (115.4) 27 (250.5) 29 (736.6)
84 25 (119.7) 27 (380.4) 27 (582.2) 29 (1619.6)
210 25 (141.6) 27 (392.8) 27 (594.69) 29 (1673.9)

β = 10−3

20 21 (25.7) 21 (113.8) 25 (260.9) 25 (666.8)
84 21 (128.9) 23 (363.7) 25 (607.6) 25 (1438.1)
210 21 (145.6) 23 (385.5) 25 (600.8) 25 (1471.8)

β = 10−4

20 19 (8.2) 21 (17.4) 23 (67.4) 23 (618.3)
84 19 (18.8) 21 (42.5) 23 (229.7) 23 (1313.7)
210 19 (19.6) 21 (44.9) 23 (576.9) 23 (1450.0)

β = 10−5

20 17 (19.6) 17 (84.8) 21 (223.7) 21 (578.3)
84 17 (99.9) 19 (306.4) 21 (520.7) 21 (1217.2)
210 17 (115.4) 19 (313.63) 21 (515.6) 23 (1322.6)

Table 1: Results of simulations showing the total number of iterations from low-
rank preconditioned MINRES and the total CPU times (in seconds) with
α = 1, β ∈ {10−2, 10−3, 10−4, 10−5}, σa = 0.1, and selected spatial (J) and
stochastic (P ) degrees of freedom.

PPPPPPPPP
J(h)

481
(

1
24

)
1985

(
1
25

)
8065

(
1
26

)
32513

(
1
27

)
20 (N = 3, n = 3) 28, 860 119, 100 483, 900 1, 950, 780
84 (N = 6, n = 3) 121, 212 500, 220 2, 032, 380 8, 193, 276
210 (N = 6, n = 4) 303, 030 1, 250, 550 5, 080, 950 20, 483, 190

Table 2: Dimension of global coefficient matrix A in (30); here dim(A) = 3JP.

Moreover, our target (or desired state) in both models is the stochastic solution of the
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forward model with right hand side 1 and zero Dirichlet boundary conditions1.
Tables 1, 3, 4, and 5 show the results from the low-rank preconditioned MINRES for

the model constrained by stationary diffusion. In Table 2 we give the total dimensions
of the KKT systems in (30) for various discretization parameters used to obtain the
results in Tables 1. The dimensions range between 28, 000 and 20 million.

LR-Minres # iter (t) # iter (t) # iter (t)

P 20 84 210

dim(A) = 3JP 119, 100 500, 220 1, 250, 550

β = 10−3 19 (96.4) 21 ( 336.0) 21 (347.93)
β = 10−4 17 (86.3) 19 ( 302.6) 19 (305.64)
β = 10−5 15 (77.4) 17 ( 273.6) 17 (283.24)

Table 3: Results of simulations showing the total number of iterations from low-rank
preconditioned MINRES and the total CPU times (in seconds) with α =
0, β ∈ {10−3, 10−4, 10−5}, σa = 0.1, and J = 1985 (h = 1

25 ) spatial degrees
of freedom, and dimension of the KKT matrix A solved.

LR-Minres # iter (t) # iter (t) # iter (t) # iter (t)
HHH

HHP
J

481
(
h = 1

24

)
1985

(
h = 1

25

)
8065

(
h = 1

26

)
32513

(
h = 1

27

)
σa = 0.01

20 17 (7.4) 19 (16.7) 19 (53.4) 21 (544.8)
84 17 (17.0) 19 (39.0) 19 (190.0) 21 (1190.0)
210 17 (18.4) 19 (40.4) 19 (470.0) 21 (1230.2)

σa = 0.4

20 33 (13.8) 37 (28.0) 41 (115.3) 43 (1049.8)
84 35 (33.8) 41 (84.5) 45 (447.0) 47 (2610.4)
210 41 (41.9) 47 (98.4) 47 (782.3) 55 (3161.1)

Table 4: Results showing the effect of significant decrease (σa = 0.01) and increase
(σa = 0.4) in the standard deviation of the random input a on the low-rank
preconditioned MINRES with α = 1, β = 10−4 and selected spatial (J) and
stochastic (P ) degrees of freedom.

We have solved the linear systems using our proposed block-diagonal preconditioner,
together with the approximation S1 for the Schur complement as given by (41) and
(51). We observe first, from Table 1, that our preconditioner is robust with respect
to the discretization parameters. Herein, h is the spatial mesh size. Moreover, as

1Note that this is not an ’inverse crime’ as the right-hand side of the forward model used is deter-
ministic, unlike in the state equation.
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illustrated in Table 4, it performs relatively better if the standard deviation σa of the
random input is smaller than when it is increased. Nonetheless, the preconditioner
still maintains its robustness in {0.01, 0.4}. For σa > 0.5, we can no longer guarantee
the positive-definiteness of the matrix K corresponding to the forward problem [25].

The results in Tables 1, 4, and 5 were obtained with α = 1, whereas those in
a Table 3 were computed with α = 0. We have reported in Table 5 the values of
the tracking term and the cost functional for α = 1 and σa = 0.1. As expected, the
tracking term gets smaller and smaller as the regularization parameter β decreases, and
the cost functional also decreases accordingly converging, respectively, to 1.2 × 10−4

and 2.5× 10−4.

β 10−2 10−4 10−6 10−10

||y − ȳ||2L2(D)⊗L2
ρ(Γ) 5.1× 10−3 1.8× 10−4 1.2× 10−4 1.2× 10−4

J (y, u) 1.4× 10−2 4.2× 10−4 2.5× 10−4 2.5× 10−4

Table 5: Tracking term and the cost functional in the steady-state model for different
values of β and with α = 1, σa = 0.1, J = 1985 (h = 1

25 ), P = 84 (N =
6, n = 3).

Figure 1: The mean (left) and variance (right) of the target using low-rank precondi-
tioned MINRES for the steady-state model with σa = 0.1, J = 1985 (h =
1
25 ), P = 84 (N = 6, n = 3).

Figure 1 shows the mean and the variance of the target function, whereas Figures 2
and 3, respectively, depict the statistics for the state and control functions computed
with α = 1. Here, we see that the mean of the state visually coincides with the mean of
the desired state. However, as anticipated, the variance of the state is reduced. When
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we set α = 0, we observe that the solver recovers both the mean and variance of the
state as illustrated in Figure 4. This observation, together with the results in Table 3,
further confirms the robustness of our preconditioner for α ∈ {0, 1}.

Figure 2: The mean (left) and variance (right) of the state using low-rank precondi-
tioned MINRES for the steady-state model with α = 1, β = 10−2, σa =
0.1, J = 1985 (h = 1

25 ), P = 84 (N = 6, n = 3) and truncation tolerance ε =
10−8.

Next, we present in Table 6 our simulation results for the unsteady diffusion con-
strained model as discussed in Section 3. Here, for α ∈ {0, 1} and different val-
ues of β, we show the outputs of our simulations showing the total CPU times and
the total number of iterations from preconditioned MINRES in TT-format. Also,
DoF=J ·P · nt is the size of each of the 9 block matrices in A. That is, the optimality
matrix A is of dimension 3DoF. In particular, we have done the computations with
J = 1985 (h = 1

25 ), P = 56 (N = 5, n = 3), σa = 0.1, and different numbers of total
time steps nt.

As in the steady-state case, we see from Table 6 that TT-MINRES, when used
together with our mean-based preconditioner as given by (72) and (78) is quite robust,
but in general yields fewer iterations for α = 0 than for α = 1. We remark here that
we used a smaller tolerance tol = 10−3 in the unsteady case because MATLAB R© took
more time because of the rapid the growth of TT-ranks. Although not reported here,
we also got robust two-digit TT-MINRES iterations when we used tol = 10−5.
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Figure 3: The mean (left) and variance (right) of the control using low-rank precon-
ditioned MINRES for the steady-state model with α = 1, β = 10−2, σa =
0.1, J = 1985 (h = 1

25 ), P = 84 (N = 6, n = 3) and truncation tolerance ε =
10−8.

TT-Minres # iter (t) # iter (t) # iter (t)

nt 25 26 28

dim(A) = 3JPnt 10, 671, 360 21, 342, 720 85, 370, 880

α = 1, tol = 10−3

β = 10−5 6 (285.5) 6 (300.0) 8 (372.2)
β = 10−6 4 (77.6) 4 (130.9) 4 (126.7)
β = 10−8 4 (56.7) 4 (59.4) 4 (64.9)

α = 0, tol = 10−3

β = 10−5 4 (207.3) 6 (366.5) 6 (229.5)
β = 10−6 4 (153.9) 4 (158.3) 4 (172.0)
β = 10−8 2 (35.2) 2 (37.8) 2 (40.0)

Table 6: Results of simulations of the model with time-dependent diffusion constraint
showing the total number of iterations from preconditioned MINRES in TT-
format and the total CPU times (in seconds) for selected parameter values
and degrees of freedom.

5 Conclusions and outlook

In this paper, we have derived and implemented block-diagonal Schur complement-
based preconditioners for linear systems arising from the SGFEM discretization of the
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Figure 4: The mean (left) and variance (right) of the state using low-rank precondi-
tioned MINRES for the steady-state model with α = 0, β = 10−4, σa =
0.1, J = 1985 (h = 1

25 ), P = 84 (N = 6, n = 3) and truncation tolerance ε =
10−8.

stochastic optimal control problems constrained by either stationary or time-dependent
PDEs with random inputs. Moreover, we analyzed the spectra of the derived precondi-
tioners. Our approach to the solution of the KKT linear systems entails a formulation
that solves the systems at once (for all time steps in the unsteady case). This strat-
egy leads, more often than not, to a large system that cannot be solved using direct
solvers. However, combining our proposed preconditioners with the low-rank solvers
considered herein have proven efficient in accomplishing the tasks.

Although the TT-MINRES works quite well for the time-dependent problem consid-
ered in this paper, the rapid growth of the TT-ranks is not a trivial issue. In a related
work, we are currently exploiting some capabilities of the TT toolbox to minimize the
rank growth and hence make the solver a lot more efficient.
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