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Abstract

This paper improves the inexact Kleinman-Newton method by incorporating
a line search and by systematically integrating the low-rank structure resulting
from ADI methods for the approximate solution of the Lyapunov equation that
needs to be solved to compute the Kleinman-Newton step. A convergence result
is presented that tailors the convergence proof for general inexact Newton meth-
ods to the structure of Riccati equations and avoids positive semi-definiteness
assumptions on the Lyapunov equation residual, which in general do not hold for
low-rank approaches. On a test example, the improved inexact Kleinman-Newton
method is seven to twelve times faster than the exact Kleinman-Newton method
without line search; the addition of the line search to the inexact Kleinman-
Newton method alone can reduce computation time by up to a factor of two.

1 Introduction

We present improvements of the inexact Kleinman-Newton method for the solution of
large-scale continuous algebraic Riccati equations (CARE)

R(X) = CTC +ATX +XA−XBBTX = 0 (1.1)

with C ∈ Rp×n, A ∈ Rn×n, X = XT ∈ Rn×n, B ∈ Rn×r, and p + r � n. The
algorithmic improvements consist of incorporating a line search and of systematically
integrating the low-rank structure resulting from ADI methods for the approximate
solution of the Lyapunov equation

(A(k))TX(k+1) +X(k+1)A(k) = −CTC −X(k)BBTX(k), (1.2)

where
A(k) = A−BBTX(k),

which has to be approximately solved in the k-th iteration. The paper is motivated by
the recent work of Feitzinger et al. [10] who propose and analyze inexact Kleinman-
Newton methods without line search, by Benner and Byers [3] who incorporate line
search into the exact Kleinman-Newton method, and by the recent work of Benner
et al. [4, 6] on algorithmic improvement of low-rank ADI methods. We improve on
[10] by adding a line search and systematically integrating the low-rank structure
resulting from ADI methods into the algorithm. The convergence result in [10] makes
positive semi-definiteness assumptions on the Lyapunov equation residual that are in
general not valid when the Lyapunov equation is solved using ADI. Our convergence
result follows that of general inexact Newton methods, but uses the structure of Riccati
equations. We add the inexact solution of the Lyapunov equation to [3] and incorporate
the low-rank structure.

On a test example resulting from the finite difference approximation of an LQR
problem governed by an advection diffusion equation, our improved inexact Kleinman-
Newton method is seven to twelve times faster than the exact Kleinman-Newton
method without line search. The addition of the line search to the inexact Kleinman-
Newton method alone can reduce computation time by up to a factor of two, although,
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as already observed in [3], in our experiments the line search is used at most in the
first two iterations.

The paper is organized as follows. In the next section we recall a basic existence and
uniqueness result for symmetric positive semi-definite stabilizing solution of the CARE
(1.1). Section 3 introduces the inexact Kleinman-Newton method with line search and
presents the basic convergence result. The basic ingredients of the ADI methods that
are needed for this paper are reviewed in Section 4. Section 5 discusses the efficient
computation of various quantities like Newton residual using the low-rank structure.
As a result, computational cost of our overall algorithm is proportional to the total
number of ADI iterations used; in comparison the cost of other components, such as
execution of the line search, are negligible. Finally, we demonstrate the contributions of
the various improvements on the overall performance gains in Section 6. As mentioned
before, in our numerical tests, our improved inexact Kleinman-Newton method is seven
to twelve times faster than the exact Kleinman-Newton method without line search.

Notation. Throughout the paper we consider the Hilbert space of matrices in Rn×n
endowed with the inner product 〈M,N〉 = tr

(
MTN

)
=
∑n
i,j=1MijNij and the cor-

responding (Frobenius) norm ‖M‖F = (〈M,M〉)1/2 = (
∑n
i,j=1M

2
ij)

1/2. Furthermore,
given real symmetric matrices M,N we write M � N if and only if M −N is positive
semi-definite, and M � N if and only if M −N is positive definite.

2 The Riccati Equation

We recall an existence and uniqueness result for the continuous Riccati equation (1.1).

Definition 1 Let A ∈ Rn×n, B ∈ Rn×r, and C ∈ Rp×n. The pair (A,B) is called
stabilizable if there exists a feedback matrix K ∈ Rn×r such that A − BKT is stable,
which means that A − BKT has only eigenvalues in the negative half complex plane
C−. The pair (C,A) is called detectable if (AT , CT ) is stabilizable.

Notice that (A,B) is stabilizable if and only if (A,BBT ) is stabilizable and (C,A)
is detectable if and only if (CTC,A) is detectable.

Assumption 2 The matrices A ∈ Rn×n, B ∈ Rn×r, and C ∈ Rp×n are given such
that (A,B) is stabilizable and (C,A) is detectable.

If Assumption 2 holds, there exists a unique symmetric positive semi-definite solution
X(∗) of the CARE (1.1) which is also the unique stabilizing solution. This follows from
Theorems 8.5.1 and 9.1.2 (see also p. 244) in [16].

Furthermore, it can be shown that all symmetric positive semi-definite solutions of
the CARE (1.1) are stabilizing.

Theorem 3 If Assumption 2 holds, every symmetric solution X(∗) � 0 of the CARE
(1.1) is stabilizing.

Proof. Let X = XT � 0 solve the CARE (1.1). We show that A−BBTX is stable
by contradiction.
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Assume that µ is an eigenvalue of A− BBTX with Re (µ) > 0 and let v ∈ Cn\{0}
be a corresponding eigenvector. The CARE (1.1) can be written as

(A−BBTX)TX +X(A−BBTX) = −CTC −XBBTX. (2.1)

Multiply (2.1) with vT from left and v from the right. The left-hand side of (2.1) yields

2 Re (µ) vTXv ≥ 0, since X = XT � 0,

and the right-hand side of (2.1) yields

−vTCTCv − vTXBBTXv ≤ 0, since CTC � 0 and XBBTX � 0.

Hence, left- and right-hand sides of (2.1) multiplied by vT from left and v from the
right are equal to zero that is vTXv = 0 and vTCTCv + vTXBBTXv = 0 which
yields Cv = 0 and BTXv = 0. Since (A − BBTX)v = µv, v is an eigenvector of A
with eigenvalue µ and Re (µ) > 0.

The Hautus-Popov Test for Detectability [13, p. 80-8] states that (C,A) is detectable
if and only if Ax = λx, x 6= 0 and Re (λ) ≥ 0 implies Cx 6= 0. Thus, the existence
of v 6= 0 and Re (µ) > 0 with Av = µv contradicts the detectability of (C,A) by the
Hautus-Popov test.

�

3 The Inexact Kleinman-Newton Method with Linear
Search

This section introduces the inexact Kleinman-Newton method with line search and
gives a convergence result. The fundamental ideas are identical to what is well known
for inexact Newton methods, see, e.g., Kelley [14, Sec. 8.2], but are tailored to the struc-
ture of the Riccati equations. The presentation of the basic algorithm in Section 3.1
combines ideas from general inexact Newton methods, from Kleinman-Newton with
inexactness, see, e.g., Feitzinger et al. [10], and Kleinman-Newton with line search,
see, e.g., Benner and Byers [3]. In Section 3.3, we will show that the assumptions
made in Feitzinger et al. [10], to ensure convergence of the inexact Kleinman Newton
method, are in general not valid if low-rank Lyapunov solvers are used to compute the
inexact Kleinman-Newton step, and we will present an alternative convergence result
that follows more closely that of general inexact Newton methods.

3.1 Derivation of the Method

We want to compute the symmetric, positive semi-definite, stabilizing solution X(∗)

of the CARE (1.1). The operator R : Rn×n → Rn×n defined in (1.1) is twice Féchet
differentiable with derivatives given by

R′(X)N = (A−BBTX)TN +N(A−BBTX), (3.1a)

R′′(X)(N1, N2) = −N1BB
TN2 −N2BB

TN1. (3.1b)
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Since R is quadratic in X, the 2nd order Féchet derivative is independent of X and
R(Y ) can be expressed via a Taylor series as

R(Y ) = R(X) +R′(X)(Y −X) +
1

2
R′′(X)(Y −X,Y −X). (3.2)

The CARE (1.1) can be solved using Newton’s method, which in this context is
referred to as the Kleinman-Newton method [15]. Given an approximate symmetric
solution X(k) of (1.1), the new Kleinman-Newton iterate is given by

R′(X(k))X(k+1) = R′(X(k))X(k) −R(X(k)). (3.3)

Equation (3.3) is the Lyapunov equation (1.2). Instead of solving (3.3) for the new
iterate, one could solve R′(X(k))S(k) = −R(X(k)) for the step S(k) = X(k+1) −X(k).
While the latter equation may be favorable in cases where the Lyapunov equation
is solved using direct methods (see, e.g., [3, p. 101]), (3.3) is favorable when the
Lyapunov equation is solved inexactly using iterative methods. The right hand side
can be written as −GGT , where G = [CT | X(k)B] ∈ Rn×(p+r), which, as we will
see later, is important when the Kleinman-Newton method is combined with low-
rank approximation methods. Expressions of R(X(k)) which lend themselves to the
application of low-rank approximation methods, and which are equal to R(X(k)) in
the exact Kleinman-Newton method, fail when used in an inexact Kleinman-Newton
method as shown in Feitzinger et al. [10].

If Assumption 2 holds, then the special structure of R allows one to prove global
convergence of the Kleinman-Newton method: If the initial iterate X(0) is symmetric
and stabilizing, then the Kleinman-Newton method is well defined (i.e., (1.2) has a
unique solution), and the iterates generated by the Kleinman-Newton method converge
with a q-quadratic convergence rate, and satisfy X(1) � X(2) � . . . � X(∗) � 0; see,
e.g., Kleinman [15] or Lancester and Rodman [16, Sec. 9.2].

Even though the Kleinman-Newton method exhibits global convergence, it was ob-
served by Benner and Byers [3] that a line search improves its efficiency. Especially
in the first iteration of the Kleinman-Newton method the residual may increase dra-
matically if no line search is used. For large scale problems the Newton equation (the
Lyapunov equation) (3.3) is solved iteratively, and the residual error in the Lyapunov
equation has to be controlled appropriately to ensure convergence. We integrate the
inexact solution of (3.3) and a line search into the Kleinman-Newton method. As we
have mentioned before, the fundamental ideas are identical to what is well known for
inexact Newton methods, see, e.g., Kelley [14, Sec. 8.2].

Given a symmetric X(k) ∈ Rn×n and α > 0, ηk ∈ (0, 1) we compute a symmetric
step S(k) ∈ Rn×n with∥∥∥R′(X(k))S(k) +R(X(k))

∥∥∥
F
≤ ηk

∥∥∥R(X(k))
∥∥∥
F

(3.4)

and then compute the next iterate

X(k+1) = X(k) + λkS
(k),
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where the step size λk > 0 such that the sufficient decrease condition∥∥∥R(X(k) + λkS
(k)
)∥∥∥

F
≤ (1− λkα)

∥∥∥R(X(k)
)∥∥∥

F
(3.5)

is satisfied and the step size λk is not unnecessarily small.
If we define the Newton step residual

R′(X(k))S(k) +R(X(k)) = L(k+1), (3.6)

then (3.4) reads ∥∥∥L(k+1)
∥∥∥
F
≤ ηk

∥∥∥R(X(k))
∥∥∥
F
. (3.7)

Using the definition (1.1), (3.1a), and

X̃(k+1) = X(k) + S(k),

the equation (3.6) is equivalent to

(A(k))T X̃(k+1) + X̃(k+1)A(k) = −X(k)BBTX(k) − CTC + L(k+1) (3.8a)

and the new iterate is

X(k+1) = (1− λk)X(k) + λkX̃
(k+1). (3.8b)

The Riccati residual at X(k+1) = X(k) + λkS
(k) can be expressed using (3.2) and

(3.6) as

R(X(k) + λkS
(k)) = R(X(k)) + λkR′(X(k))S(k) +

λ2
k

2
R′′(X(k))(S(k), S(k))

= (1− λk)R(X(k)) + λkL
(k+1) − λ2

kS
(k)BBTS(k). (3.9)

Therefore, if ηk ≤ η̄ < 1 and α ∈ (0, 1− η̄), then (3.7) and (3.9) imply

‖R(X(k) + λS(k))‖F
≤ (1− λ)‖R(X(k))‖F + λ‖L(k+1)‖F + λ2‖S(k)BBTS(k)‖F

≤ (1− λ+ λη̄)‖R(X(k))‖F + λ2 ‖S(k)BBTS(k)‖F
‖R(X(k))‖F

‖R(X(k))‖F

≤ (1− αλ)‖R(X(k))‖F

for all λ with

0 < λ ≤ (1− α− η̄)
‖R(X(k))‖F

‖S(k)BBTS(k)‖F
. (3.10)

In particular the sufficient decrease condition (3.5) is satisfied for all λk with (3.10).
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Algorithm 1 Inexact Kleinman-Newton Method with Line Search

Input: A, B, C, stable initial iterate X(0), tolNewton > 0, η̄ ∈ (0, 1) and α ∈ (0, 1− η̄).
Output: Approximate solution of the CARE (1.1).
1: for k = 0, 1, . . . do
2: if ‖R(X(k))‖ ≤ tolNewton then
3: Return X(k) as an approximate solution of the CARE (1.1).
4: end if
5: Set A(k) =

(
A−BBTX(k)

)
, G =

[
CT |X(k)B

]
.

6: Select ηk ∈ (0, η̄].

7: Compute an approximate solution X̃(k+1) of the Lyapunov equation such that

(A(k))T X̃(k+1) + X̃(k+1)A(k) = −GGT + L(k+1)

and ‖L(k+1)‖F ≤ ηk‖R(X(k))‖F .

8: Set S(k) = X̃(k+1) −X(k).
9: Compute λk > 0 such that ‖R(X(k) + λkS

(k))‖F ≤ (1− λkα)‖R(X(k))‖F .
10: Set X(k+1) = X(k) + λkS

(k).
11: end for

In the actual computation of the step size λk we use (3.9) which implies that

f(λ) = ‖R(X(k) + λS(k))‖2F (3.11)

= (1− λ)2α(k) + λ2β(k) + λ4δ(k) + 2λ(1− λ)γ(k) − 2λ2(1− λ)ε(k) − 2λ3ζ(k)

is a quartic polynomial with

α(k) = ‖R(X(k)‖2F , δ(k) = ‖S(k)BBTS(k)‖2F ,
β(k) = ‖L(k+1)‖2F , ε(k) = 〈R(X(k)), S(k)BBTS(k)〉,
γ(k) = 〈R(X(k)), L(k+1)〉, ζ(k) = 〈L(k+1), S(k)BBTS(k)〉.

(3.12)

The derivative is f ′(λ) = 〈R(X(k) +λS(k)),−R(X(k)) +L(k+1)−2λS(k)BBTS(k)〉. In
particular, using the Cauchy–Schwarz inequality and (3.7), we find f ′(0) < 0, which
again confirms that S(k) is a decent direction.

Remark 4 If the current iterate X(k) is symmetric positive semi-definite, if the so-
lution X̃(k+1) of (3.8a) is symmetric positive semi-definite, and if λk ∈ (0, 1], then

X(k+1) = X(k) + λk(X̃(k+1) −X(k)) is also symmetric positive semi-definite.

The basic inexact Kleinman-Newton method with line search is summarized in Al-
gorithm 1.

3.2 Line Search

There are many possibilities to compute a step size λk that satisfies the sufficient
decrease condition (3.5). We review two. In both cases, the representation (3.11) of
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the Riccati residual as a quartic polynomial can be used for the efficient implementation
of the respective procedure.

3.2.1 Armijo Rule

Given β ∈ (0, 1), the Armijo rule in its simplest form selects λk = β`, where ` is the
smallest integer such that the sufficient decrease condition (3.5) is satisfied. See Kelley
[14, Sec. 8.2] for more details. Since the sufficient decrease condition (3.5) is satisfied
for all step sizes with (3.10) and ` is the smallest integer such that λk = β` satisfies
(3.5), the step size λk generated by the Armijo rule satisfies

λk > β(1− α− η̄)
‖R(X(k))‖F

‖S(k)BBTS(k)‖F
.

3.2.2 Exact Line Search

Equation (3.11) shows thatR(X(k)+λS(k)) is quadratic in λ. Hence, minλ>0 ‖R(X(k)+
λS(k))‖2F corresponds to the minimization of a the quartic polynomial (3.11). For the
Kleinman-Newton method with exact Lyapunov equation solves, L(k+1) = 0, the ex-
act line search is analyzed by Benner and Byers [3]. In particular, they show that
there is a local minimum λk ∈ (0, 2], and that if A(k) is stable and X(k+1) is com-
puted with a step length λk ∈ (0, 2], then A(k+1) is also stable. The proof in [3] that
λ 7→ ‖R(X(k) + λS(k))‖F has a local minimum in (0, 2] can be extended under addi-
tional conditions on L(k+1). Furthermore, it seems that the proof in [3] that A(k+1)

is stable can be extended under some definiteness assumptions on L(k+1), similar to
those made by Feitzinger et al. [10]. However, as we will show below, these definiteness
assumptions typically do not hold in the low-rank case. Since there is always a step
size λk ∈ (0, 1] that satisfies the sufficient decease condition, see (3.10), we minimize
λ 7→ ‖R(X(k) + λS(k))‖F over [0, 1].

3.3 Convergence

Feitzinger et al. [10] extend the convergence results for the Kleiman-Newton method
with step size λk = 1 to the inexact case, provided the Lyapunov residual L(k+1)

satisfies certain positive semi-definiteness assumptions. We summarize these results
next. The first result establishes the well-posedness of the inexact Kleiman-Newton
method.

Theorem 5 ([10, Thm. 4.3]) Let X(k) be a symmetric and positive semi-definite
such that A−BBTX(k) is stable and

L(k+1) � CTC (3.13)

holds. Then

(i) the iterate X(k+1) = X̃(k+1) of the inexact Kleiman-Newton method with step-
size λk = 1 is well defined, symmetric and positive semi-definite,
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(ii) and the matrix A−BBTX(k+1) is stable.

The next theorem presents a convergence result for the inexact Kleiman-Newton
method.

Theorem 6 ([10, Thm. 4.4]) Let Assumption 2 be satisfied and let X(0), symmetric
and positive semi-definite, be such that A−BBTX(0) is stable. Let (3.13) hold for all
k ∈ N, and let X(k) be the iterates of the inexact Kleiman-Newton method with step
size λk = 1. If

0 � L(k+1) � (X(k+1) −X(k))BBT (X(k+1) −X(k)) (3.14)

hold for all k ∈ N, then the iterates of inexact Kleinman-Newton method (3.8) with
step size λk = 1 satisfy

(i) limk→∞X(k) = X∞ and 0 � X∞ � · · · � X(k+1) � X(k) � · · · � X(1),

(ii) (A−BBTX∞) is stable and X∞ is maximal solution of R(X∞) = 0,

(iii) ‖X(k+1) −X∞‖F ≤ c‖X(k) −X∞‖2F , k ∈ N.

We will use the low-rank ADI method to approximately solve the Lyapunov equation.
This means that in our algorithm L(k+1), X(k), and other matrices are low-rank. We
will show that in this case the definiteness assumptions (3.13) and (3.14) typically do
not hold.

If the ADI iteration is used to solve the Lyapunov equation (3.8a), then L(k+1) =
WWT = FCTC FT , where F is a matrix with spectrum inside the unit ball. More
precisely, we will see in Section 4 that F is a real invertible analytic matrix function
depending on AT and on {q}nADI

i=1 as defined in (4.6). The next Theorem shows that
the assumption (3.13) is not fulfilled, in general, if one uses an ADI method to solve
the Lyapunov equation (3.8a).

Theorem 7 Let L(k+1) = FCTC FT with F, where F is a matrix with spectrum inside
the unit ball. The condition L(k+1) � CTC implies range

(
FCT

)
⊂ range

(
CT
)
.

Proof. First we show by contradiction that if M,N are symmetric positive semi-
definite matrices with M � N , then ker (M) ⊂ ker (N) and range (N) ⊂ range (M).
In fact, if there exists v ∈ ker (M) with v /∈ ker (N), then vTMv−vTNv = −vTNv < 0.

Hence, range (M)
⊥

= ker (M) ⊂ ker (N) = range (N)
⊥

and, consequently, range (N) ⊂
range (M).

Application of this general result with M = CTC and N = L(k+1) gives the desired
statement.

�

Our convergence proof follows that of inexact Newton methods, see, e.g., Kelley
[14, Sec. 8.2]. First, we prove ‖R(X(k))‖F → 0 and then we use the structure of the
Riccati equations to argue convergence of {X(k)}. In particular, Benner and Byers [3,
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Lem. 6] prove that if (A,B) is controllable and {R(X(k))} is bounded, then {X(k)} is
also bounded. Since controllability of (A,B) implies stabilizability of (A,B), the as-
sumption of controllability is stronger than Assumption 2. Guo and Laub [11] removed
the controllability assumption and showed that if (A,B) is stabilizable, {R(X(k))} is
bounded, and the matrices A(k) are stable, then {X(k)} is also bounded.

The papers [15] on exact Kleinman-Newton, [3] on Kleinman-Newton with line
search and [10] on inexact Kleinman-Newton contain proofs that the matrices A(k)

corresponding to the iterates X(k) are stable, provides that A(0) is stable. This implies
the unique solution of the Lyapunov equation (1.2) and, therefore, the well-posedness
of the respective method. Since the definiteness assumption in [10, Thm. 4.3] typically
does not hold in the low-rank case, there is no result yet on the well-posedness of the
inexact Kleinman-Newton method and we have to assume existence of X̃(k+1) such
that (3.8a) and (3.7) are satisfied.

Theorem 8 Let Assumption 2 be satisfied and assume that for all k there exists a
symmetric positive semi-definite X̃(k+1) such that (3.8a) and (3.7) are satisfied.

(i) If the step sizes are bounded away from zero, λk ≥ λmin > 0 for all k, then
‖R(X(k))‖F → 0.

(ii) If, in addition to (i), the pair (A,B) is controllable, and X(k) � 0 for all k ≥ K,
then X(k) → X(∗), where X(∗) � 0 is the unique stabilizing solution of the CARE.

(iii) If, in addition to (i), the matrices A(k) are stable for k ≥ K, and X(k) � 0 for
all k ≥ K, then X(k) → X(∗), where X(∗) � 0 is the unique stabilizing solution of the
CARE.

Proof. (i) The first part is a standard line search argument. The sufficient decrease
condition (3.5) implies

‖R(X(0))‖F ≥ ‖R(X(0))‖F − ‖R(X(K+1))‖F

=

K∑
k=0

‖R(X(k))‖F − ‖R(X(k+1))‖F ≥
K∑
k=0

λkα‖R(X(k))‖F ≥ 0.

Taking the limit K →∞ and using λk ≥ λmin > 0 implies ‖R(X(k))‖F → 0.
(ii) If (A,B) is controllable and since {R(X(k))} is bounded, then, by [3, Lem. 6],

{X(k)} is also bounded. Hence, {X(k)} has a converging subsequence. For any con-
verging subsequence limj X

(kj) � 0 and 0 = limj ‖R(X(kj))‖F = ‖R(limj X
(kj))‖F .

Since the symmetric positive semi-definite solution to the CARE (1.1) is unique and
stabilizing, every converging subsequence of {X(k)} has the same limit X(∗). There-
fore, the entire sequence converges.

(iii) If the matrices A(k) are stable for k ≥ K and {R(X(k))} is bounded, [11,
Lem. 2.3] guarantees that {X(k)} is bounded. Thus, we can proceed as in (ii).

�

Remark 9 If the step size λk ∈ (0, 1], then X(k) � 0 for all k, see Remark 4.
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As it is well known for inexact Newton methods, see, e.g., Kelley [14, Sec. 8.2], the
specific choice of the forcing parameter ηk in (3.4) determines the rate if convergence.
In particular, if ηk → 0 the inexact Kleinman Newton method converges superlinearly
(under the assumptions of Theorem 8) and if ηk = O(‖R(X(kj))‖F ) the convergence
is quadratic.

4 ADI Method

To compute the new iterate X(k+1) within the Kleinman-Newton method one has to
solve the Lyapunov equation (1.2). In this section we review the basic ingredients of
the ADI method [8, 17] and recent [6], [5] algorithmic improvements. To simplify the
notation we drop the index k and write this equation in a more general form as

FTX +XF = GGT (4.1)

with G =
[
CT |X(k)B

]
∈ Rn×(p+r) and F = (A−BBTX(k))T ∈ Rn×n.

The basic ADI iteration computes a low-rank solution factor Z such that ZZH ≈ X
is the approximated solution of the Lyapunov equation (4.1); see, e.g., [8]. There, one
uses a certain number of ADI shifts {q1, . . . , q`} ∈ C− to iteratively build up Z. In
each step a new block V` of the solution is computed via

V1 = (F + q1I)−1G, (4.2a)

V` = (V`−1 − (q` + q`−1)(F + q`I)−1V`−1) ∀` ≥ 2 (4.2b)

such that after ` steps Z can be defined as

Z =
[√
−2 Re (q1)V1, . . . ,

√
−2 Re (q`)V`

]
∈ Cn×(`·(p+r)). (4.3)

The equation (4.2b) can be written as

V` = (I − (q` + q`−1)(F + q`I)−1)V`−1

= (F − q`−1I)(F + q`I)−1V`−1

∀` ≥ 2.

Considering the fact that (F ± qI) and (F + q̂I)−1 commute for all q, q̂ ∈ C\Λ(F ), V`
can be defined explicitly as

V` =

∏̀
j=2

(F − qj−1I)(F + qjI)−1

 (F + q1I)−1G.

By regrouping these products, Benner et al. introduced a novel low-rank residual

10



formulation for ADI [5] as follows:

V` = (F + q`I)−1

`−1∏
j=1

(F − qjI)(F + qjI)−1

G

︸ ︷︷ ︸
=:W`−1

, (4.4a)

W` = (F − q`I)V` =
∏̀
j=1

(F − qjI)(F + qjI)−1G (4.4b)

that can be written implicitly with W0 = G as

V` = (F + q`I)−1W`−1,

W` = (F − q`)(F + q`I)−1W`−1

= (I − 2 Re (q`) (F + q`I)−1)W`−1

= W`−1 − 2 Re (q`)V`,

∀` ≥ 1

such that Z can be build up using the definition (4.3) and X ≈ ZZH ∈ Rn×n is the
approximate solution of (1.2).

Using this slightly changed formulation, that is mathematically equivalent to the
original algorithm in [8, 17], Benner et al. show in [5] that the Lyapunov residual after
ADI step ` can be written as

L` = FZZT + ZZTF +GGT = W`W
T
` ∈ Rn×n (4.5)

with W` ∈ Cn×(p+r). Furthermore, Benner and colleagues showed that

rank (L) = rank (W ) ≤ rank (G)� n.

Using the low-rank structure L` = W`W
T
` together with the commonly known result

that the eigenvalues σ(W`W
T
` ) \ {0} = σ(WT

` W`) \ {0}, see, e.g., [12, Theorem 1.32],
leads to an efficient way to compute and accumulate the Lyapunov residual and its
norm to control the accuracy of the ADI iteration [5].

Exploiting the fact that the ADI shifts usually occur either as a real number q` ∈ R−
or as a pair of complex conjugate numbers q` ∈ C−, q`+1 = q`, Benner et al. introduced
a reformulated low-rank ADI iteration in [4, 6], where the low-rank solution factor
Z ∈ Rn×(`·(p+r)) and the low-rank Lyapunov residual factor W` ∈ Rn×(p+r) are real
valued by construction such that the residual can be written as

W` = FG ∈ Rn×(p+r) (4.6)

with F(F, q1, . . . , q`) a real and analytical matrix function depending on F and the
ADI shifts q`. For more details regarding these ADI modifications we refer to [4, 5, 6]
and the references therein. Summarizing, these innovations yield the real low-rank
ADI method Alg. 2 [6].

Remark 10 For unstable matrices A an initial feedback has to be found to ensure the
convergence of the ADI method (see, e.g., [2]) such that condition (3.7) can be fulfilled
as it is described in, e.g., [1] and the references therein.
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Algorithm 2 real low-rank ADI method [6]

Input: F,G, tolADI, shifts q` ∈ C−.
Output: Z such that ZZT ≈ X solves Eq. (4.1).
1: Set ` = 1, Z = [ ], W0 = G.
2: while ‖WT

`−1W`−1‖F > tolADI do
3: Solve V = (F + q`I)−1W`−1.
4: if Im (q`) = 0 then
5: W` = W`−1 − 2q`V

6: Ṽ =
√
−2q` V

7: else
8: γ` = 2

√
−Re (q`), δ` = Re (q`) / Im (q`)

9: W`+1 = W`−1 + γ2
` (Re (V ) + δ` Im (V ))

10: Ṽ =
[
γ` (Re (V ) + δ` Im (V )) | γ`

√
(δ2
` + 1) Im (V )

]
11: ` = `+ 1
12: end if
13: Z =

[
Z | Ṽ

]
14: ` = `+ 1
15: end while

5 Low-Rank Residual Newton-ADI Method

Using Algorithm 2 as the inner loop to solve the Lyapunov equations in Line 5 of
Algorithm 1, we arrive at an algorithm for the Kleinman-Newton method, where the
low-rank structure can be used to efficiently compute residuals and the quartic function
(3.11) that arises in the line search computation.

As we have seen in the previous section, the Lyapunov residual is

L
(k+1)
` = W

(k+1)
` (W

(k+1)
` )T ,

where ` is the iteration counter in the inner ADI iteration and W
(k+1)
` ∈ Rn×(p+r).

Since ‖L(k+1)
` ‖2F is the sum of the squares of the eigenvalues of L

(k+1)
` and

σ(W
(k+1)
` (W

(k+1)
` )T ) \ {0} = σ((W

(k+1)
` )TW

(k+1)
` ) \ {0}, the norm ‖L(k+1)

` ‖2F can
be efficiently computed by solving a small (p+ r)× (p+ r) eigenvalue problem.

5.1 Norm of the Difference of Outer Products

Let W ∈ Rn×m and K ∈ Rn×p with m+p� n be generic matrices. We frequently need
to compute Forbenius or 2-norms of the difference WWT −KKT . This can be done
efficiently using the indefinite low-rank factorization WWT −KKT = UDUT ∈ Rn×n,
where

U =
[
W K

]
and D =

[
Im 0
0 −Ip

]
.
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For the spectrum we have σ(UDUT ) \ {0} = σ(UTUD) \ {0} (see, e.g., [12, Theorem
1.32]). Since UTUD is a small (m+p)×(m+p) matrix, its spectrum can be computed
efficiently and we can use

‖WWT −KKT ‖2 = max{|λ| : λ ∈ σ(WWT −KKT )} = max{|λ| : λ ∈ σ(UTUD)},

‖WWT −KKT ‖2F =
∑

λi∈σ(WWT−KKT )

λ2
i =

∑
λi∈σ(UTUD)

λ2
i .

Notice that since UTUD is not symmetric, max{|λ| : λ ∈ σ(UTUD)} 6= ‖UTUD‖2
and

∑
λi∈σ(UTUD) λ

2
i 6= ‖UTUD‖2F .

5.2 Low-Rank Riccati Residual and Feedback Accumulation

Recall that X̃(k+1) = X(k) + S(k). Consider

S(k)B = X̃(k+1)B −X(k)B =: K̃(k+1) −K(k) =: ∆K̃(k+1) ∈ Rn×r, (5.1)

which defines the change of the feedback K corresponding to the trial solution X̃(k+1)

of (3.8a).
The key ingredient to use the line search idea efficiently for large-scale problems are

the low-rank formulations of the Lyapunov and Riccati residuals. Recall from (4.5)
that

L(k+1) = W (k+1)(W (k+1))T (5.2a)

and assume that

R(X(k)) = W (k)(W (k))T −∆K(k)(∆K(k))T = U (k)D(U (k))T (5.2b)

with

D =

[
Ir+p 0

0 −Ir

]
and U (k) =

[
W (k) |∆K(k)

]
∈ Rn×(2r+p). (5.2c)

For k = 0 and X(0) = 0 (5.2) holds with W (0) = CT and ∆K(0) = 0. We call a factor-
ization of the form (5.2b) an indefinite low-rank factorization (compare Section 5.1).
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If one uses (5.2) and the feedback change (5.1), than (3.9) implies

R(X(k+1)) = R(X(k) + λkS
(k))

= (1− λk)U (k)D(U (k))T + λkW
(k+1)(W (k+1))T − λ2

k∆K̃(k+1)
(

∆K̃(k+1)
)T

= (1− λk)
(
W (k)(W (k))T −∆K(k)(∆K(k))T

)
+ λkW

(k+1)(W (k+1))T

− λ2
k∆K̃(k+1)

(
∆K̃(k+1)

)T
=

[ [√
(1− λk)W (k) |

√
λW (k+1)

] [√
(1− λk)∆K(k) |λk∆K̃(k+1)

] ]

×
[
I(s+1)(p+r) 0

0 −I(s+1)r

]

×

[ [√
(1− λk)W (k) |

√
λkW

(k+1)
] [√

(1− λk)∆K(k) |λk∆K̃(k+1)
] ]T

, (5.3)

where s ∈ {0, 1, . . . , } is the number of times immediately before the kst iteration the
step size was less than one, λk−s−1 = 1, λk−s < 1, λk < 1. See below for more details.

If λk = 1, then X(k+1) = X̃(k+1), ∆K(k+1) = ∆K̃(k+1) and (5.3) simplifies to

R(X(k+1)) = R(X̃(k+1))

= W (k+1)(W (k+1))T −∆K(k+1)(∆K(k+1))T =: U (k+1)D(U (k+1))T (5.4)

with U (k+1) =
[
W (k+1) |∆K(k+1)

]
, which is of the form (5.2b). If λk ∈ (0, 1), we can

redefine

W (k+1) ←
[√

(1− λk)W (k) |
√
λkW

(k+1)
]
∈ Rn×(s+1)(p+r),

∆K(k+1) ←
[√

(1− λk)∆K(k) |λk∆K̃(k+1)
]
∈ Rn×(s+1)r,

D ←
[
I(s+1)(p+r) 0

0 −I(s+1)r

]
.

After this redefinition, (5.4) holds. Notice that if λk < 1 the sizes of W (k+1) and
∆K(k+1) grow. Their sizes depend on the number s of times immediately before the
kst iteration the step size was less than one, λk−s−1 = 1, λk−s < 1, λk < 1.

The representation (5.4) can be used to compute the Riccati residual ‖R(X(k) +
λkS

(k))‖F in dependence of λk efficiently (see Section 5.1). It is important to mention
that we need to keep U (k) ∈ Rn×((s+1)(2r+p)) to perform the line search; it is not
sufficient to just keep ‖R(X(k))‖F .

The trial iterate X̃(k+1) is computed by Algorithm 2 iteratively and, consequently,
K̃(k+1) = X̃(k+1)B can already be computed during the execution of Algorithm 2. Let
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` be the iteration counter in Algorithm 2. We have

K̃
(k+1)
` = X̃

(k+1)
` B =

[
Ṽ1 . . . Ṽ`

]
Ṽ

T
1
...

Ṽ T`

B
 =

∑̀
j=1

Ṽj(Ṽ
T
j B)

= K̃`−1 + Ṽ`(Ṽ
T
` B) (K̃0 = 0).

If we define ∆K̃
(k+1)
0 = −K(k), then

∆K̃
(k+1)
` = K̃

(k+1)
` −K(k) = K̃

(k+1)
`−1 + Ṽ`(Ṽ

T
` B)−K(k) = ∆K̃

(k+1)
`−1 + Ṽ`(Ṽ

T
` B).

Thus, the feedback change can be assembled efficiently during the ADI. The low-rank
Riccati residual factor for the k + 1th Riccati step after ` ADI steps can be written

as U
(k+1)
` = [W` | ∆K̃

(k+1)
` ] ∈ Rn×(2r+p). The Riccati residual norm ‖R(X

(k+1)
` )‖F

can be computed easily during the ADI iteration by computing the eigenvalues of the

small matrix (U
(k+1)
` )TU

(k+1)
` D, see Section 5.1.

5.3 Low-Rank Line Search Implementation

To compute the step size as discussed in Section 3.2 to large-scale problems, we need
to compute the the quartic polynomial (3.11). We can compute the coefficients defined
in (3.12) efficiently.

The coefficient α(k) = ‖R(X(k)‖2F can be computed using (5.2b) (see Section 5.1).
Similarly, β(k) = ‖L(k+1)‖2F = ‖W (k+1)(W (k+1))T ‖2F can be computed efficiently as
show at the beginning of this section. Instead of using eigenvalues, we can use the
property tr (MN) = tr (NM) and, for symmetric matrices M , tr

(
M2
)

=
∑
i,j(Mij)

2,
and compute

β(k) = ‖W (k+1)(W (k+1))T ‖2F = tr
(
W (k+1)(W (k+1))TW (k+1)(W (k+1))T

)
= tr

(
(W (k+1))TW (k+1)(W (k+1))TW (k+1)

)
= ‖(W (k+1))TW (k+1)‖2F .

Similarly, with ∆K̃(k+1) = S(k)B ∈ Rn×r,

δ(k) = ‖∆K̃(k+1)(∆K̃(k+1))T ‖2F = ‖(∆K̃(k+1))T∆K̃(k+1)‖2F .
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Application of trace identities give

γ(k) = 〈R(X(k)), L(k+1)〉 = tr
(
U (k)D(U (k))TW (k+1)(W (k+1))T

)
= tr

(
(U (k))TW (k+1)(W (k+1))TU (k)D

)
= tr

([
(W (k))TW (k+1)

(∆K(k))TW (k+1)

] [
(W (k+1))TW (k) | − (W (k+1))T∆K(k)

])
=
∑
i,j

[
(W (k))TW (k+1)

(∆K(k))TW (k+1)

]
ij

[
(W (k))T (W (k+1))
−(∆K(k))TW (k+1)

]
ij

=
∑
i,j

((
(W (k))TW (k+1)

)
ij

)2

−
∑
i,j

((
∆K(k))TW (k+1)

)
ij

)2

and, analogously,

ε(k) = 〈R(X(k)), S(k)BBTS(k)〉 = tr
(
U (k)D(U (k))T∆K̃(k+1)(∆K̃(k+1))T

)
=
∑
i,j

((
(W (k))T∆K̃(k+1)

)
ij

)2

−
∑
i,j

((
(∆K(k))T∆K̃(k+1)

)
ij

)2

.

Finally,

ζ(k) = 〈L(k+1), S(k)BBTS(k)〉 = tr
(
W (k+1)(W (k+1))T∆K̃(k+1)(∆K̃(k+1))T

)
=
∑
i,j

((
(W (k+1))T∆K̃(k+1)

)
ij

)2

.

After choosing λk appropriately, the next iterate X(k+1) (3.8b) and the feed-
back K(k+1) can be computed. Using a low-rank ADI method (see Section 4), the

low-rank approximations of the previous iterate X(k) = Z(k)(Z(k))T and X̃(k+1) =

Z̃(k+1)
(
Z̃(k+1)

)T
as low-rank approximation of the solution of (3.8a) are used.

X(k+1) = X(k) + λkS
(k) = (1− λk)X(k) + λkX̃

(k+1)

= (1− λk)Z(k)
(
Z(k)

)T
+ λkZ̃

(k+1)
(
Z̃(k+1)

)T
=
[√

1− λk Z(k) |
√
λk Z̃

(k+1)
] [√

1− λk Z(k) |
√
λk Z̃

(k+1)
]T
. (5.5)

K(k+1) = X(k+1)B = (1− λk)X(k)B + λkX̃
(k+1)B

= (1− λk)K(k) + λkK̃
(k+1). (5.6)

Notice that the size of Z(k) and Z̃(k+1) depends on the number of ADI steps that
are needed to solve (3.8a). Although (5.5) might be very large, it is important to
mention that it only needs to be computed at the end of the Newton iteration, because
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the previous iterate X(k) enters the right-hand side of (3.8a) only as product with
the input matrix B from the right. This means one only needs the inexpensively
accumulated feedback K(k+1) = X(k+1)B in Eq. (5.6) to proceed with the Newton
iteration. Furthermore, typically, a line search will only be necessary in the first one
or two Newton steps, so that (5.5) might never be used after the first few iterations

and instead simply X(k+1) = Z̃(k+1)(Z̃(k+1))T .

5.4 Complete Implementation

We conclude this section with a summary of the resulting algorithm and some com-
ments on the line search and the convergence of the inexact Kleinman-Newton method
with line search.

Remark 11 1. The step size λk = 1 is accepted if after reaching the condition

(3.7) at ADI step ` it holds that ‖R(X
(k+1)
` )‖ ≤ (1− α)‖R(X(k))‖.

One could perform line search in every Newton step. We have observed that
in some examples this can slightly reduce the number of Newton steps , but the
cost of the line search computation increases, since the Riccati low-rank residual
factor grows significantly as shown in (5.3), and computational cost associated
with this growth can destroy the gains due to saving of a Newton iteration.

2. We also perform a line search when

a) Before reaching the condition (3.7) the actual step ` ≥ 2 yields

‖L`‖F > ‖L1‖F ,

i.e., the norm of the Lyapunov residual exceeds the norm of the initial Lya-
punov residual.

b) The number of ADI steps ` exceeds the maximal number of allowed ADI
steps without reaching the condition (3.7).

If conditions 2a or 2b are observed, it indicates that the ADI methods does not
converge, e.g., because the matrix A(k) is not stable. Although condition (3.7) is
violated, we perform a line search, since the cost of its execution is small, and
accept X(k+1) = X(k) + λkS

(k) if condition (3.5) is fulfilled.

3. If the line search method determines a λk that is too small (currently we use
λkα ≤ 10−16) we switch to an ‘exact’ Kleinman-Newton method, i.e., we use
Algorithm 1 with ADI Algorithm 2 with tolerance tolADI = 10−1tolNewt as the
inner solver. Since we cannot guarantee stability of A(k) it is not guaranteed
that the ADI Algorithm 2 converges. If we observe that ADI Algorithm 2 does
not converge, we restart the entire process using the ‘exact’ Kleinman-Newton
method as described above. During the ‘exact’ Kleinman-Newton scheme, the
algorithm switches back to the inexact scheme as soon as the Riccati residual
shows the expected convergence behavior.
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Algorithm 3 inexact Kleinman-Newton-ADI method with line search

Input: A,B,C, initial feedback K(0), tolNewt, η̄ > 0.
Output: K(k+1) (optional: Z(k+1) such that Z(k+1)(Z(k+1))T is a stabilizing approx-

imate solution of the CARE (1.1)).

1: Set k = 0, res
(0)
Newt = ‖CTC +K(0)

(
K(0)

)T ‖.
2: while

(
res

(k)
Newt > tolNewt · res

(0)
Newt

)
do

3: Set A(k) =
(
AT −K(k)BT

)
, G =

[
CT |K(k)

]
.

4: Compute ADI shifts {q`}
nmax,ADI

`=1 ∈ C− and choose ηk ∈ (0, η̄].
5: Set ` = 1, W0 = G, ∆K0 = −K(k) (optional Z = [ ]).

6: while
(
‖W`W

T
` ‖F > ηkres

(k)
Newt

)
do

7: V =
(
A(k) + q`I

)−1
W`−1

8: if Im (q`) = 0 then
9: W` = W`−1 − 2q` V

10: Ṽ =
√
−2q` V

11: ∆K` = ∆K`−1 + Ṽ
(
Ṽ TB

)
12: else
13: γ = 2

√
−Re (q`), δ = Re (q`) / Im (q`)

14: W`+1 = W`−1 + γ2(Re (V ) + δ Im (V ))

15: Ṽ =
[
γ (Re (V ) + δ Im (V )) | γ

√
(δ2 + 1) Im (V )

]
16: ` = `+ 1

17: ∆K` = ∆K`−2 + Ṽ
(
Ṽ TB

)
18: end if
19: (optional Z =

[
Z | Ṽ

]
20: U` = [W` |∆K`]
21: ` = `+ 1
22: end while
23: if ‖U`DUT` ‖F > (1− α)res

(k)
Newt then

24: Choose λk ∈ (0, 1) using Armijo or exact line search.
25: ∆K`−1 = λk∆K`−1

26: W (k+1) =
[√

1− λkW (k) |
√
λkW

(k+1)
]

27: ∆K(k+1) =
[√

1− λk∆K(k) |∆K`−1

]
28: U (k+1) =

[
W (k+1) |∆K(k+1)

]
29: (optional Z(k+1) =

[√
1− λkZ(k) |

√
λkZ

]
)

30: else
31: W (k+1) = W`, ∆K(k+1) = ∆K`−1

32: U (k+1) = U`
33: (optional Z(k+1) = Z)
34: end if
35: K(k+1) = K(k) + ∆K`−1

36: res
(k+1)
Newt = ‖U (k+1)D

(
U (k+1)

)T ‖F
37: k = k + 1
38: end while
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We note that in the numerical example studies in the next section, the ADI Algo-
rithm 2 always reached the required tolerance, i.e., condition (3.7) was always achieved,
and the line search was always successul.

The inexact Kleinman-Newton method with line search and a real low-rank ADI
method as inner solve is summarized in Algorithm 3. The residual R(X̃(k+1)) =

U
(k+1)
` D(U

(k+1)
` )T is accumulated during the ADI iteration. In practice the factor U

of the indefinite low-rank decomposition of the Riccati residual in lines 20, 28, and 32
is never assembled explicitly since norm computation and line search directly use W
and ∆K.

6 Numerical experiments

We demonstrate the performance of our method on a numerical examples that was also
used, e.g., by Feitzinger et al. [10]. Consider the infinite dimensional optimal control
problem

Minimize
1

2

∫ ∞
0

(
γ̃

∫
Ω

x̃(ξ, t)dξ

)2

+ u2(t) dt,

subject to
∂x̃

∂t
(ξ, t) = ∆x̃(ξ, t) + 20

∂z

∂ξ2
(ξ, t) + 100x̃(ξ, t) + f(ξ)u(t), ξ ∈ Ω, t > 0,

x̃((ξ, t)) = 0, ξ ∈ ∂Ω, t > 0,

with Ω = (0, 1)× (0, 1), γ̃ > 0, and

f(ξ) :=

{
100 0.1 < ξ1 < 0.3, 0.4 < ξ2 < 0.6

0 else.

We use a finite difference method with upwinding on a uniform grid with mesh size
h = 1/(n+ 1). The spatial discretization of the objective function is

γ̃

∫
Ω

x̃(ξ, t)dξ ≈ γ̃ h2
n∑

i,j=1

xij(t) = γ̃ h2eTnx(t) = γCx(t),

where xij(t) ≈ x̃((ih, jh), t), i, j = 1, . . . , n, γ = 10γ̃ h2, and C = [0.1, . . . , 0.1]. The
rescaling of γ̃ to γ is used to arrive at the same matrix C used in [10]. After this
spatial discretization we obtain the linear quadratic control problem

Minimize
1

2

∫ ∞
0

y(t)T y(t) + u2(t) dt, (6.1a)

subject to ẋ(t) = Ax(t) +Bu(t), t > 0, (6.1b)

y(t) = γCx(t), t > 0, (6.1c)

with A ∈ Rn2×n2

, B,CT ∈ Rn2×1, x(t) ∈ Rn2

, u(t) ∈ R, and y(t) ∈ R.
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Table 1: Performance of the various Kleinman-Newton-ADI methods. The inex-
act Kleinman-Newton-ADI with forcing parameter ηk = 0.9‖R(X(k−1))‖F
(quadratic) outperforms the other algorithm choices, especially for γ > 1.
The line search can lead to significant savings, especially for γ > 1, although
the step size is less than one only in at most the first two iterations.

(a) Comparison for γ = 100

Method # Newt. # ADI # LS

exact tolADI = 10−13 6 556 no LS
5 524 1

inexact
superlinear

5 58 no LS
5 58 0

quadratic
6 54 no LS
6 54 0

(b) Comparison for γ = 102

Method # Newt. # ADI # LS

exact tolADI = 10−13 15 825 no LS
10 677 2

inexact
superlinear

13 230 no LS
9 137 1

quadratic
8 83 no LS
5 66 1

(c) Comparison for γ = 104

Method # Newt. # ADI # LS

exact tolADI = 10−13 28 987 no LS
16 720 2

inexact
superlinear

25 505 no LS
15 287 2

quadratic
24 286 no LS
9 140 1

The matrix A is stable and, therefore, for this LQR problem (6.1) Assumption 2 is
satisfied. It is a basic result, see, e.g., [18], that u∗(t) = −BTXx∗(t) minimizes the
cost functional (6.1a) with X as solution of the CARE (1.1).

For γ = 1 the LQR problem (6.1) is equivalent to the example in [10]. A γ � 1
increases the effect that ‖R(X(1))‖F � ‖R(X(0))‖F . We use the mesh size h =
1/(n+ 1) with n = 23, as in [10], and we consider γ = 1, 102, 104. The ADI shifts are
computed following the V -shifts idea in [7].

We apply the Kleinman-Newton-ADI method either ‘exactly’ or inexactly. In the
latter case we either use the forcing parameter ηk in (3.4) given by ηk = 1/(k3 + 1)
or by ηk = 0.9‖R(X(k))‖F . The first choice leads to superlinear convergence, while
the second results in quadratic convergence (under the assumptions of Theorem 8).
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In all cases the Kleinman-Newton-ADI is stopped when the normalized residual
‖R(X(k))‖/‖CTC‖ drops below tolNewt = 10−12. In the ‘exact’ Kleinman-Newton-
ADI method, the ADI tolerance is set to tolADI = tolNewt/10. We apply all methods
without line search (’no LS’), i.e., set λk = 1 in all iterations, and with line search. If
the sufficient decrease condition (3.5) is not satisfied for λk = 1, then we compute a
steps-size by minimizing (3.11) over [0, 1] using the MATLAB® routine fminbnd.

The inexact Kleinman-Newton-ADI with superlinear convergence, ηk = 1/(k3 + 1),
and no line search is comparable to the method proposed in [10], although the ADI
implementation and shift selections are not the same.

The performances of the various Kleinman-Newton-ADI methods are summarized in
Table 1. In Table 1, # Newt. is the total number of (inexact) Newton steps executed
before the stopping criteria ‖R(X(k))‖/‖CTC‖ < tolNewt = 10−12 is satisfied, # ADI
is the total number of ADI iterations executed, and # LS is the total number of times
the step size λk was chosen to be less than one. The entry ’no LS’ indicated that
λk = 1 was set in all iterations.

In all variations of the Kleinman-Newton-ADI method, the execution times are
essentially proportional to the total number of ADI steps performed. Due to the low-
rank structure, the execution times for other algorithm components, such as line search
are negligible compared the execution of one ADI iteration.

Table 1 shows that the inexact Kleinman-Newton method significantly outperforms
the exact version. In our test, the forcing parameter ηk = 0.9‖R(X(k))‖F (quadratic)
led to significantly better performance than the forcing parameter ηk = 1/(k3 + 1)
(superlinear). The differences in performance were the bigger the larger the problem
parameter γ (the weight on the output y). In addition, Table 1 shows that the addition
of a line search can lead to substantial performance gains. Although the steps size λk
was less than one in at most two iterations, the savings in outer Newton and inner
ADI iterations can be significant. Especially when γ = 104, the line search can lead to
computational saving of up to 50%. The line search is active, i.e., λk 6= 1, in at most
the first two iterations.

7 Conclusion

We have presented an efficient implementation of the inexact Kleinman-Newton
method with a low-rank ADI subproblem solver. In our numerical example, the mod-
ifications lead to substantial improvements. On the theoretical side, we presented a
convergence proof which is based on convergence proofs for general inexact Newton
methods. Because of the low-rank case and lack of positive semi-definiteness condi-
tions, like the one in Theorem 5 [10, Thm. 4.3], it is not possible to ensure that all
iterates are stabilizing if the initial iterate is stabilizing. This was not an issue in our
numerical example. We have begun numerical experiments with the computation of
feedback controls for incompressible Navier-Stokes flows, similar to [1], where stability
of iterates can be an issue. A detailed report of these tests, and comparisons with
other large-scale Riccati solvers, like [9, 19], is part of future research.
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