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Abstract

To solve a stochastic linear evolution equation numerically, �nite dimensional approxima-

tions are commonly used. For a good approximation, one might end up with a sequence of

ordinary stochastic linear equations of high order. To reduce the high dimension for practical

computations, we consider the singular perturbation approximation as a model order reduc-

tion technique in this paper. This approach is well-known from deterministic control theory

and here we generalize it for controlled linear systems with Lévy noise. Additionally, we dis-

cuss properties of the reduced order model, provide an error bound, and give some examples

to demonstrate the quality of this model order reduction technique.

1 Introduction

Model order reduction (MOR) is of major importance in the �eld of deterministic control theory.
It is used to save computational time by replacing large scale systems by systems of low order
in which the main information of the original system should be captured. Such kind of high
dimensional problems occur for example after the special discretization of a PDE which can be
used to model chemical, physical or biological phenomena. A particular MOR scheme is balanced
truncation (BT) assuming asymptotic stability of the original system. The idea is to balance the
system such that one creates a system where the dominant reachable and observable states are
the same. Afterwards, the di�cult to observe and di�cult to reach states are truncated. This was
considered �rst in Moore [13]; Antoulas [1] or Obinata, Anderson [14] for a thorough treatment of
the topic.
Since many phenomena in natural sciences contain uncertainties, it is natural to extend PDE
models by adding a noise term. This leads to stochastic PDEs (SPDEs) which are studied, e.g.,
in Da Prato, Zabczyk [5] and in Prévôt and Röckner [16] for the Wiener case. Peszat, Zabczyk
consider more general equations with Lévy noise in [15], where the solutions may have jumps.
Again, SPDEs can be reduced to large scale ordinary SDEs by a semi-discretization. A possibility
to do that is the Galerkin method which is for example investigated in Grecksch, Kloeden [8],
Hausenblas [10], Jentzen, Kloeden [11] and Redmann, Benner [17]. For that reason, generalizing
model order reduction techniques to stochastic systems can easily be motivated. Inspired by this
application, balanced truncation is considered for SDEs with Wiener noise in Benner, Damm [2]
and for systems with Lévy noise by Benner, Redmann in [4]. Benner and Redmann additionally
pointed out the bene�t of BT in the �eld of SPDEs in detail by applying it to particular examples,
see [4] and [17].
An alternative method to obtain a reduced order model (ROM) is the singular perturbation
approximation (SPA), see Liu, Anderson [12] and Fernando, Nicholson [7] for deterministic linear
systems. Rather than setting all truncated states to zero as in BT, they are assumed constant
which allows to solve for them and thus include this information in the di�erential equation for the
remaining states. This has the advantage of a zero steady-state error, a property often important in
applications. The SPA also exists for bilinear systems. For that framework, we refer to Hartmann
et al. [9].
In this paper, we generalize the work of Liu and Anderson to linear systems with Lévy noise. In
Section 2, we motivate the SPA for stochastic systems and derive the ROM which coincides with
the deterministic case ROM if N = 0. Next, in Section 3, we analyze the properties of the ROM.
First, we consider the stability of the reduced system. We show that it is mean square stable and
discuss why the ideas from Benner et al. [3] cannot be adopted in order to prove the preservation
of mean square asymptotic stability. Additionally, we state the remaining part to complete the
proof of mean square asymptotic stability for the ROM. Besides the stability analysis of the ROM,
we investigate the reachability and observability in the reduced model by the SPA. Therefore, we
repeat the concepts used in Benner, Damm [2] and Benner, Redmann [4] and show, by an example,
that one can lose the complete reachability and observability in the ROM even if one starts with
a completely reachable and observable original model which is in contrast to the deterministic
case. In Section 4, we assume to have a ROM that preserves the mean square asymptotic stability
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which is vital for the existence of the error bound we provide in that section. This error bound
we obtain by modifying the coe�cients of the ROM in order to have the same structure as in the
original system. The modi�ed matrices coincide with the ones that are used in the bilinear case
by Hartmann et al. [9]. Furthermore, from that error bound, we can point out the cases in which
we have a good approximation by the SPA. Finally, in Section 5, we compare BT and the SPA by
reducing a large scale system we get from a special discretization of a second order SPDE with
Poisson noise. There, we see that SPA can be better if one considers the underlying equations on
a larger time interval. We present a second example, which we generate randomly, to illustrate
further advantages of the SPA.

2 SPA

LetM be a scalar and square integrable Lévy process with mean zero de�ned on a �ltered probabil-
ity space (Ω,F , (Ft)t≥0,P).1 In addition we assume M to be (Ft)t≥0-adapted and the increments
M(t+ h)−M(t) to be independent of Ft for t, h ≥ 0. We consider the following equations:

dX(t) = [AX(t) +Bu(t)]dt+NX(t−)dM(t), X(0) = x0 ∈ Rn, (1)

Y (t) = CX(t), t ≥ 0,

where A, N ∈ Rn×n, C ∈ Rp×n, B ∈ Rn×m and X(t−) := lims↑tX(s). With L2
T we denote the

space of all (Ft)t≥0-adapted (cadlag) processes v with values in Rm, which are square integrable
with respect to P⊗ dt. The norm in L2

T is given by

‖v‖2L2
T

:= E
∫ T

0

vT (t)v(t)dt = E
∫ T

0

‖v(t)‖22 dt,

where we de�ne the processes v1 and v2 to be equal in L2
T if they coincide almost surely with

respect to P ⊗ dt. Further, we assume the control u ∈ L2
T for every T > 0. Below, the solution

of (1) at time t ≥ 0 with initial condition x0 ∈ Rn and given control u is always denoted by
X(t, x0, u). We assume

E ‖X(t, x0, 0)‖22 → 0 (2)

for t → ∞ and x0 ∈ Rn. This concept of stability is also used in [2] and is necessary to de�ne
(in�nite) Gramians, which are the solutions of the generalized Lyapunov equations (3) and (4)
below.

Theorem 2.1. The following are equivalent:

(i) The homogeneous equation (u ≡ 0) of (1) is asymptotically mean square stable.

(ii) There exists a matrix P > 0, such that

ATP + PA+NTPNE
[
M2(1)

]
< 0.

(iii) The eigenvalues of
(
In ⊗A+A⊗ In +N ⊗N · E

[
M2(1)

])
have negative real parts.

Especially, condition (iii) implies the stability of A, that is σ (A) ⊂ C−.

Proof. With Proposition 3.2 in [4] the proof is similar to the Wiener case. Therefore, we refer to
Theorem 3.6.1 in [6] where these results are proven for equations with Wiener noise.

1We assume that (Ft)t≥0 is right continuous and that F0 contains all P null sets.
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We assume that the system (1) is balanced, meaning that solutions of the following generalized
Lyapunov equations are diagonal and equal

ATΣ + ΣA+NTΣNE
[
M2(1)

]
= −CTC, (3)

AΣ + ΣAT +NΣNTE
[
M2(1)

]
= −BBT , (4)

where Σ = diag(σ1, . . . , σn) with σ1 ≥ . . . ≥ σn > 0. We introduce the following partitions

Σ =

[
Σ1

Σ2

]
, A =

[
A11 A12

A21 A22

]
, N =

[
N11 N12

N21 N22

]
, C =

[
C1 C2

]
and B =

[
B1

B2

]
,

where Σ1, A11, N11 ∈ Rr×r, C1 ∈ Rp×r and B1 ∈ Rr×m. Using the partition X =

(
X1

X2

)
, the

idea of balanced truncation is to select the �rst r rows in equation (1) and to neglect X2 which
means that we set X2 = 0. This yields a reduced order model with coe�cients (A11, N11, C1, B1).
A detailed motivation regarding BT in the stochastic case one can �nd in [2] and [4]. From [3]
we know that balanced truncation preserves asymptotic stability also in the stochastic case if
σr 6= σr+1:

σ
(
Ir ⊗A11 +A11 ⊗ Ir +N11 ⊗N11 · E

[
M2(1)

])
⊂ C−. (5)

The same is true for the truncated part meaning

σ
(
In−r ⊗A22 +A22 ⊗ In−r +N22 ⊗N22 · E

[
M2(1)

])
⊂ C−. (6)

From the properties (5) and (6) we can also conclude that A11 and A22 are invertible.

The method we introduce below is called singular perturbation approximation (SPA) with a more
general idea of setting the symbolic derivative dX2

dt equal to zero instead. We obtain a system(
dX1(t)

0

)
=

([
A11 A12

A21 A22

](
X1(t)
X2(t)

)
+

[
B1

B2

]
u(t)

)
dt+

[
N11 N12

N21 N22

](
X1(t−)
X2(t−)

)
dM(t), (7)

Y (t) =
[
C1 C2

](X1(t)
X2(t)

)
, t ≥ 0,

where we assume x0 = 0 below. From the second line in (7), we obtain

0 =

∫ t

0

A21X1(s) +A22X2(s) +B2u(s)ds+

∫ t

0

N21X1(s−) +N22X2(s−)dM(s), (8)

such that an Ito integral equals an ordinary integral which is a strange situation, since the ordinary
integral is di�erentiable and the Ito integral is not in general. We de�ne the process S(t) =∫ t

0
a(s)ds+

∫ t
0
b(s)dM(s), where a(s) := A21X1(s) +A22X2(s) +B2u(s) and b(s) := N21X1(s−) +

N22X2(s−) and determine the mean of the stochastic di�erential of ST (t)S(t), t ≥ 0. For that
reason, we introduce an Ito product formula stated for example in Corollary 2.4 in [4]:

ST (t)S(t) =

∫ t

0

dST (s)S(s) +

∫ t

0

ST (s)dS(s) +

n−r∑
i=1

[Si, Si]t,

with [Si, Si]t being the quadratic variation part of the i-th component of S. Inserting the di�er-
ential of S and using the property

E

[
n−r∑
i=1

[Si, Si]t

]
=

∫ t

0

E
[
bT (s)b(s)

]
ds E

[
M2(1)

]
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from Section 2.4 in [4] yields

E
[
ST (t)S(t)

]
= E

[∫ t

0

aT (s)S(s)ds

]
+ E

[∫ t

0

ST (s)a(s)ds

]
+

∫ t

0

E
[
bT (s)b(s)

]
ds E

[
M2(1)

]
,

Setting S ≡ 0 provides

0 =

∫ t

0

E
[
bT (s)b(s)

]
ds E

[
M2(1)

]
= E

∥∥∥∥∫ t

0

b(s)dM(s)

∥∥∥∥2

2

,

which implies
∫ t

0
b(s)dM(s) = 0 P-a.s. If we apply this to equation (8), we get

X2(t) = −(A−1
22 A21X1(t) +A−1

22 B2u(t)). (9)

By inserting this in the �rst line in equation (7), we have

X1(t) =

∫ t

0

ĀX1(s) + B̄u(s)ds+

∫ t

0

N̄X1(s−) + B̄0u(s−)dM(s) (10)

and

Ȳ (t) = C̄X1(t) + D̄u(t),

where

Ā = A11 −A12A
−1
22 A21, B̄ = B1 −A12A

−1
22 B2, N̄ = N11 −N12A

−1
22 A21, C̄ = C1 − C2A

−1
22 A21,

B̄0 = −N12A
−1
22 B2 and D̄ = −C2A

−1
22 B2.

Remark. (i) The SPA yields a reduced order model (10) which has a di�erent structure than
the original model (1), meaning that we obtained a system in which the output equation is
controlled and the control in the state equation is disturbed by Lévy noise. If we use this
ROM, we have to restrict ourselves to controls with existing left limits u(t−), t ≥ 0, in
order to have equation (10) well de�ned. Since we prefer a ROM having the same shape like
the original model we will often emphasize the case (B̄, B̄0, D̄) = (B1, 0, 0) which we get by
setting B2 = 0 in equation (9).

(ii) If we set (B̄, B̄0, D̄) = (B1, 0, 0), we precisely obtain the matrices that are recommended for
the SPA in the bilinear case in [9].

3 Properties of the ROM

In this section, we discuss properties of the ROM which we obtain by the SPA. In the �rst
subsection, we state the �rst steps how to prove the asymptotic mean square stability of the ROM.
Unfortunately, this proof is not complete but our conjecture is that this property is preserved.
In the second subsection, we point out that starting with a completely observable and reachable
original system, one can lose these properties in the ROM.

3.1 Preservation of (asymptotic) mean square stability

We multiply A−T from the left and A−1 from the right hand side in equation (3) and get

ΣÃ+ ÃTΣ + ÑTΣÑE
[
M2(1)

]
= −C̃T C̃, (11)

where Ã = A−1, Ñ = NA−1 and C̃ = CA−1. It can be shown easily that using these transformed
coe�cients Ã and Ñ instead of A and N does not e�ect the asymptotic mean square stability. By
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equation (4), the corresponding dual equation is

(AΣAT )ÃT + Ã(AΣAT ) + Ñ(AΣAT )ÑTE
[
M2(1)

]
= −BBT . (12)

The reason to consider the matrices Ã and Ñ is the following equivalence between its left upper
blocks and the reduced order model coe�cients:

σ
(
Ir ⊗ Ã11 + Ã11 ⊗ Ir + Ñ11 ⊗ Ñ11 · c

)
⊂ C− ⇔ σ

(
Ir ⊗ Ā+ Ā⊗ Ir + N̄ ⊗ N̄ · c

)
⊂ C−

with c = E
[
M2(1)

]
. Since one can show that

Ã =

[
Ā−1 −A−1

11 A12(A22 −A21A
−1
11 A12)−1

−A−1
22 A21Ā

−1 (A22 −A21A
−1
11 A12)−1

]
,

we have Ã11 = Ā−1, Ñ11 = N̄Ā−1. So, proving asymptotic mean square stability in the ROM is
now transformed into the following problem:
Starting with a system with coe�cients Ã and Ñ , show that this property is preserved if one
truncates the system, i.e. one chooses the reduced order coe�cients Ã11 and Ñ11.
The main di�culty is the fact that this system is not balanced since the solution of equation (12)
is neither diagonal nor it coincides with the one from equation (11). For that reason, the ideas
that are used for the stability analysis of BT in [3] (see Sections 4.3 � 4.5) cannot be applied.
In the deterministic case, where N = 0, the dual equation (12) is obtained by pre- and post-
multiplying equation (4) with A−1 and A−T which in that case yields a balanced system, see [12].
Unfortunately, this does not work in the more general framework N 6= 0 because we would get
A−1N instead of the desired matrix Ñ = NA−1. We could state the desired result then under the
assumption that A and N commute, which could at least partially prove the conjecture.

Since the solution of equation (11) is in diagonal form, we can adopt at least a few arguments
from [3] which we state in the proof of the lemma below.

Lemma 3.1. The reduced order models with the coe�cients (Ã11, Ñ11) or (Ā, N̄) are mean square
stable, i.e.

σ
(
Ir ⊗ Ã11 + Ã11 ⊗ Ir + Ñ11 ⊗ Ñ11 · c

)
⊂ C− (13)

and

σ
(
Ir ⊗ Ā+ Ā⊗ Ir + N̄ ⊗ N̄ · c

)
⊂ C−,

where c = E
[
M2(1)

]
.

Proof. We use a suitable partition of Ã, Ñ , C̃, Σ and obtain the following equation for the left
upper block of (11):

Σ1Ã11 + ÃT11Σ1 + ÑT
11Σ1Ñ11 · c = −C̃T1 C̃1 − ÑT

21Σ2Ñ21 · c, (14)

with Ñ21 = (N21 − N22A
−1
22 A21)Ā−1 and C̃1 = C̄Ā−1. Consequently, by Corollary 3.2 in [3], we

obtain property (13). With the same argument, it also holds

σ
(
Ir ⊗ Ā+ Ā⊗ Ir + N̄ ⊗ N̄ · E

[
M2(1)

])
⊂ C−,

since by pre- and post-multiplying (14) with ĀT and Ā, we get

ĀTΣ1 + Σ1Ā+ N̄TΣ1N̄ · c = −C̄T C̄ − (N21 −N22A
−1
22 A21)TΣ2(N21 −N22A

−1
22 A21) · c.
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Using Theorem 3.1 in [3], we obtain

α(K) := max {<(λ) : λ ∈ σ(K)} ∈ σ(K)

with K = Ir ⊗ Ã11 + Ã11 ⊗ Ir + Ñ11 ⊗ Ñ11 · c. By (13) it remains to show that 0 6∈ σ(K) to get
the desired asymptotic mean square stability. This we summarize as follows:

Conjecture 3.2. The reduced order model with coe�cients (Ā, N̄) is asymptotically mean square
stable, i.e. 0 6∈ σ(K).

The result in Conjecture 3.2 is theoretically important for the existence of the error bound we
state in Section 4. Practically, it is easy to check if zero is an eigenvalue of K or not since the
reduced order dimension r is usually small.

3.2 Observability and reachability in the ROM

We introduce the fundamental solution of the state equation (1) as an Rn×n-valued process Φ
satisfying

dΦ(t) = AΦ(t)dt+NΦ(t−)dM(t), Φ(0) = In t ≥ 0.

Now, we can introduce the observability Gramian Q =
∫∞

0
E
[
ΦT (s)CTCΦ(s)

]
ds and the reacha-

bility Gramian P =
∫∞

0
E
[
Φ(s)BBTΦT (s)

]
ds which exist by assumption (2). Q solves equation

(3) and P ful�lls (4). That is proven in Section 3 in [4]. Here, we are in a balanced situation
which means that

P = Q = Σ = diag(σ1, . . . , σn).

We know that system (1) is completely observable if and only if the Gramian Q is positive de�nite,
see Section 3.2 in [4]. Since the reachability concept for system (1), used in Section 3.1 in [4],
neglects the information that is contained in N , it is not surprising that P can only provide partial
information about the reachability of a state x ∈ Rn. To be more precise, if x is reachable, then
x ∈ imP but the other direction is not true. So, it is necessary to introduce the deterministic

Gramian PD =
∫∞

0
eAtBBT eA

T t dt. Following [4] again, system (1) is completely reachable if and
only if PD > 0. This is analogous to the deterministic case, where the results are stated in [1].
Since the ROM (10) has a di�erent structure than the original model one might think that the
Gramian of the ROM has to be de�ned di�erently in order to characterize observability and
reachability of the system. We will see soon that the additional matrices B̄0 and D̄ have no
impact in that context. In order to discuss this property we repeat the concepts of observability
and reachability of the ROM:

dX1(t) = [ĀX1(t) + B̄u(t)]dt+ [N̄X1(t−) + B̄0u(t−)]dM(t), X1(0) = x̄0, (15)

Ȳ (t) = C̄X1(t) + D̄u(t). (16)

Since the observation concept is considered in the uncontrolled case (u ≡ 0), the matrix D̄ does
not enter in the following de�nition.

De�nition 3.3. An initial state x̄0 is called observable if the corresponding observation energy is
positive: ∥∥C̄X1(·, x̄0, 0)

∥∥2

L2 := E
∫ ∞

0

∥∥C̄X1(t, x̄0, 0)
∥∥2

2
dt > 0.

Since we have C̄X1(t, x̄0, 0) = C̄Φ̄(t)x̄0, t ≥ 0, it follows∥∥C̄X1(·, x̄0, 0)
∥∥2

L2 = x̄T0 QRx0
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with QR := E
∫∞

0
Φ̄T (t)C̄T C̄Φ̄(t)dt. Here, Φ̄ denotes the fundamental solution of the ROM.

Hence, the ROM is completely reachable if and only if QR > 0. Below, we distinguish between the
solution of (15) for general B̄0 which we denote by X1(t, x̄0, u) and X0

1 (t, x̄0, u), t ≥ 0, denoting
the solution of (15) in case B0 = 0. Now, we de�ne reachable average states.

De�nition 3.4. A state x̄ is called reachable on average (from zero) if there is a time T > 0 and
a control function u ∈ L2

T , such that we have

E [X1(T, 0, u)] = x̄.

Applying the expectation on both sides of equation (15) and using the property that the Ito
integral has mean zero yields that the functions E [X1(t, x̄0, u)] and E

[
X0

1 (t, x̄0, u)
]
, t ≥ 0, are

both solutions of the ODE

Ẋ1(t) = ĀX1(t) + B̄E[u(t)], X1(0) = x̄0, t ≥ 0.

Hence, both expected values coincide, such that the matrix B̄0 can be completely neglected in the
reachability concept. Setting B0 = 0 provides a system having the same form like the original
model (1). Consequently, we know that the ROM (15) is completely reachable if and only if

PD,R :=
∫∞

0
eĀt B̄B̄T eĀ

T t dt > 0. The next example shows that starting with a completely
observable and completely reachable system does not mean that the ROM has these properties as
well.

Example 3.5. We de�ne a system (1) with E
[
M2(1)

]
= 1 and coe�cients

(A,B,C,N) =

− 17
2 8 8
−8 −20 −20
−8 −20 − 41

2

 ,

0
0
1

 ,
(
0 0 1

)
,

 1 4 4
−4 2 2
−4 2 2

 ,

which is asymptotically mean square stable. In addition, we have a balanced system since for the
solution of the equations (3) and (4) it holds P = Q = diag(2, 1, 1). Consequently, it is also
completely observable. The complete reachability we obtain by PD > 0. The corresponding one
dimensional ROM has the coe�cients

(Ā, B̄, B̄0, C̄, D̄, N̄) = (−117

10
, 0, 0, 0, 2,−3

5
).

Since there is no control in the state equation of the ROM and the output of the uncontrolled ROM
is identically zero, the reduced order system is neither completely reachable nor completely observ-
able. Of course, this also holds for the modi�ed ROM, where one sets (B̄, B̄0, D̄) := (B1, 0, 0) =
(0, 0, 0).

The fact that reachability and observability are not necessarily preserved by the SPA is not sur-
prising since analogous observations are made for BT in [4].

4 Error bound

In this section, we provide an error bound for the case (B̄, B̄0, D̄) = (B1, 0, 0) and x0 = 0. In the
error bound below, the matrix PR := E

∫∞
0

Φ̄(t)B1B
T
1 Φ̄T (t)dt enters. For its existence we assume

that the mean square asymptotic stability is preserved in the ROM. This means that

0 6∈ σ
(
Ir ⊗ Ā+ Ā⊗ Ir + N̄ ⊗ N̄ · E

[
M2(1)

])
, (17)

which we know from Section 3.1. Condition (17) is usually easy to check since the reduced order
dimension r is small.
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Following the arguments in Section 4.2 in [4], the error of the SPA is bounded as follows:

sup
t∈[0,T ]

E
∥∥Y (t)− Ȳ (t)

∥∥
2
≤
(
tr
(
CΣCT

)
+ tr

(
C̄PRC̄

T
)
− 2 tr

(
CPGC̄

T
)) 1

2 ‖u‖2L2
T
, (18)

where

APG + PGĀ
T +NPGN̄

TE
[
M2(1)

]
= −BBT1 ,

ĀPR + PRĀ
T + N̄PRN̄

TE
[
M2(1)

]
= −B1B

T
1 .

Below, we specify this bound to emphasize the cases in which the SPA performs well.

Theorem 4.1. If the ROM is asymptotically mean square stable, then

tr
(
CΣCT

)
+ tr

(
C̄PRC̄

T
)
− 2 tr

(
CPGC̄

T
)

= tr(2Σ2((N22PG,2 +N21PG,1)(N21 −N22A
−1
22 A21)T c− (A22PG,2 +A21PG,1)(A−1

22 A21)T ))

+ tr(Σ2(B2B
T
2 − (N21 −N22A

−1
22 A21)PR(N21 −N22A

−1
22 A21)T c)),

where PG,1 are the �rst r and PG,2 the last n − r rows of PG, c = E
[
M2(1)

]
and Σ2 =

diag(σr+1, . . . , σn).

Proof. The right lower block of (3) satis�es

AT22Σ2 + Σ2A22 +NT
22Σ2N22c+NT

12Σ1N12c = −CT2 C2. (19)

If we multiply (3) with A−T from the left hand side and select the left and right upper block of
this equation, we obtain

Σ1 + Ā−T (Σ1A11 −AT21A
−T
22 Σ2A21 + N̄TΣ1N11c+ (N21 −N22A

−1
22 A21)TΣ2N21c) = −Ā−T C̄TC1,

Ā−T (Σ1A12 −AT21A
−T
22 Σ2A22 + N̄TΣ1N12c+ (N21 −N22A

−1
22 A21)TΣ2N22c) = −Ā−T C̄TC2.

and thus

ĀTΣ1 + Σ1A11 −AT21A
−T
22 Σ2A21 + N̄TΣ1N11c+ (N21 −N22A

−1
22 A21)TΣ2N21c = −C̄TC1, (20)

Σ1A12 −AT21A
−T
22 Σ2A22 + N̄TΣ1N12c+ (N21 −N22A

−1
22 A21)TΣ2N22c = −C̄TC2 (21)

Furthermore, using (4) one can conclude

A11Σ1 + Σ1A
T
11 +N11Σ1N

T
11c+N12Σ2N

T
12c = −B1B

T
1 (22)

and

A22Σ2 + Σ2A
T
22 +N22Σ2N

T
22c+N21Σ1N

T
21c = −B2B

T
2 . (23)

From [
A11 A12

A21 A22

] [
PG,1
PG,2

]
+

[
PG,1
PG,2

]
ĀT +

[
N11 N12

N21 N22

] [
PG,1
PG,2

]
N̄T c = −

[
B1B

T
1

B2B
T
1

]
we also know that

A11PG,1 +A12PG,2 + PG,1Ā
T +N11PG,1N̄

T c+N12PG,2N̄
T c = −B1B

T
1 , (24)

A21PG,1 +A22PG,2 + PG,2Ā
T +N22PG,2N̄

T c+N21PG,1N̄
T c = −B2B

T
1 . (25)
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We de�ne E :=
(
tr
(
CΣCT

)
+ tr

(
C̄PRC̄

T
)
− 2 tr

(
CPGC̄

T
)) 1

2 and obtain

E2 = tr

([
C1 C2

] [Σ1

Σ2

] [
CT1
CT2

])
+ tr

(
C̄PRC̄

T
)
− 2 tr

([
C1 C2

] [PG,1
PG,2

]
C̄T
)

= tr(C2Σ2C
T
2 + C1Σ1C

T
1 + C̄PRC̄

T − 2C1PG,1C̄
T − 2C2PG,2C̄

T ).

Using equation (21) yields

tr(−C2PG,2C̄
T ) = tr(−C̄TC2PG,2)

= tr(Σ1A12PG,2 −AT21A
−T
22 Σ2A22PG,2 + N̄TΣ1N12PG,2c+ (N21 −N22A

−1
22 A21)TΣ2N22PG,2c)

= tr(A12PG,2Σ1 −AT21A
−T
22 Σ2A22PG,2 +N12PG,2N̄

TΣ1c+ (N21 −N22A
−1
22 A21)TΣ2N22PG,2c).

By equation (24) we obtain

tr(−C2PG,2C̄
T ) = tr(−AT21A

−T
22 Σ2A22PG,2 + (N21 −N22A

−1
22 A21)TΣ2N22PG,2c)

− tr((B1B
T
1 + PG,1Ā

T +A11PG,1 +N11PG,1N̄
T c)Σ1).

Using equation (20), we have

tr(PG,1Ā
T +A11PG,1 +N11PG,1N̄

T c)Σ1) = tr(ĀTΣ1 + Σ1A11 + N̄TΣ1N11c)PG,1)

= − tr(C̄TC1PG,1 + (N21 −N22A
−1
22 A21)TΣ2N21PG,1c− (A−1

22 A21)TΣ2A21PG,1)

and hence,

E2 = tr(C2Σ2C
T
2 + C1Σ1C

T
1 + C̄PRC̄

T )− 2 tr(B1B
T
1 Σ1)

+ 2 tr(−(A−1
22 A21)TΣ2A22PG,2 + (N21 −N22A

−1
22 A21)TΣ2N22PG,2c)

+ 2 tr((N21 −N22A
−1
22 A21)TΣ2N21PG,1c− (A−1

22 A21)TΣ2A21PG,1).

Thus,

E2 = tr(Σ2(CT2 C2 − 2(A22PG,2 +A21PG,1)(A−1
22 A21)T )

+ tr(2Σ2(N22PG,2 +N21PG,1)(N21 −N22A
−1
22 A21)T c))

+ tr(C1Σ1C
T
1 + C̄PRC̄

T − 2B1B
T
1 Σ1). (26)

By de�nition, the Gramians PR and QR satisfy

ĀTQR +QRĀ+ N̄TQRN̄c = −C̄T C̄ (27)

and

ĀPR + PRĀ
T + N̄PRN̄

T c = −B1B
T
1 , (28)

such that one can conclude tr(C̄PRC̄
T ) = tr(BT1 QRB1) from inserting (27) into tr(C̄PRC̄

T ).
Consequently,

tr(C1Σ1C
T
1 + C̄PRC̄

T − 2B1B
T
1 Σ1) = tr(C1Σ1C

T
1 −B1B

T
1 Σ1) + tr(BT1 (QR − Σ1)B1).

Inserting equation (22) provides

tr(−B1B
T
1 Σ1) = tr(A11Σ1Σ1 + Σ1A

T
11Σ1 +N11Σ1N

T
11cΣ1 +N12Σ2N

T
12cΣ1)

= tr(Σ1Σ1A11 + Σ1A
T
11Σ1 + Σ1N

T
11Σ1N11c+N12Σ2N

T
12Σ1c)

= − tr(Σ1C
T
1 C1)− tr(Σ1N

T
21Σ2N21c) + tr(N12Σ2N

T
12Σ1c).
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So, it holds

tr(C1Σ1C
T
1 −B1B

T
1 Σ1) = tr(N12Σ2N

T
12Σ1c)− tr(Σ1N

T
21Σ2N21c).

From (19) it follows

tr(Σ2N
T
12Σ1N12c) = tr(−Σ2(AT22Σ2 + Σ2A22 +NT

22Σ2N22c+ CT2 C2))

= tr(−Σ2(Σ2A
T
22 +A22Σ2 +N22Σ2N

T
22c+ CT2 C2)).

Using (23) yields

tr(Σ2N
T
12Σ1N12c) = tr(Σ2(N21Σ1N

T
21c+B2B

T
2 − CT2 C2)),

such that

tr(C1Σ1C
T
1 −B1B

T
1 Σ1) = tr(Σ2(B2B

T
2 − CT2 C2)).

Below, we analyze the term tr(BT1 (QR − Σ1)B1). First, notice that the following holds:

ĀTΣ1 + Σ1Ā+ N̄TΣ1N̄c = −C̄T C̄ − (N21 −N22A
−1
22 A21)TΣ2(N21 −N22A

−1
22 A21)c.

With (27) we thus know that

ĀT (QR − Σ1) + (QR − Σ1)Ā+ N̄T (QR − Σ1)N̄c (29)

= (N21 −N22A
−1
22 A21)TΣ2(N21 −N22A

−1
22 A21)c.

Applying the equations (28) and (29) yields

tr(BT1 (QR − Σ1)B1) = − tr((ĀPR + PRĀ
T + N̄PRN̄

T c)(QR − Σ1))

= − tr(PR((QR − Σ1)Ā+ ĀT (QR − Σ1) + N̄T (QR − Σ1)N̄c))

= − tr(PR(N21 −N22A
−1
22 A21)TΣ2(N21 −N22A

−1
22 A21)c).

We apply these results to (26) and obtain

E2 = tr(2Σ2((N22PG,2 +N21PG,1)(N21 −N22A
−1
22 A21)T c− (A22PG,2 +A21PG,1)(A−1

22 A21)T ))

+ tr(Σ2(B2B
T
2 − (N21 −N22A

−1
22 A21)PR(N21 −N22A

−1
22 A21)T c)).

The error bound representation in Theorem 4.1 depends on Σ2 which contains the n− r smallest
Hankel singular values σr+1, . . . , σn of the original system. In case these values are small, the
reduced order model obtained by the SPA is of good quality.

5 Comparison between balanced truncation and singular
perturbation approximation

In this section, we compare BT which is discussed in [4] and the SPA which we consider in this
paper. The aim is to point out the cases, when the SPA is better to motivate the practical
relevance of this method. We start with an example which we obtain by discretizing an SPDE
in the spatial component and afterwards we state a random example to illustrate further e�ects.
Both examples are not in the balanced form already but balancing these systems can be done
easily by the procedure stated in Section 4 in [4].
The numerical experiments are run on a desktop computer with a dual-core Intel Pentium processor
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E5400 and 3GB RAM. All algorithms are implemented and executed in MATLAB 7.14.0.739
(R2012a) running on Ubuntu 10.04.1 LTS.

5.1 SPDE example

To compare BT and the SPA we use an example created in [17]. There, a second order SPDE
with Lévy noise is considered and approximated by a large scale system of ordinary SDEs.

Example 5.1. The lateral displacement of an electricity cable impacted by wind can be modeled
by

∂2

∂t2
X(t, ζ) + 2

∂

∂t
X(t, ζ) =

∂2

∂ζ2
X(t, ζ) + e−(ζ−π2 )2 u(t) + 2 e−(ζ−π2 )2 X(t−, ζ)

∂

∂t
M(t)

for t ∈ [0, T ] and ζ ∈ [0, π]. Here, M(t) = −(N(t) − t) with (N(t))t≥0 being a Poisson process
with parameter 1. The boundary and initial conditions are

X(0, t) = 0 = X(π, t) and X(0, ζ),
∂

∂t
X(t, ζ)

∣∣∣∣
t=0

≡ 0.

The output is an approximation for the position of the middle of the string

Y (t) =
1

2ε

∫ π
2 +ε

π
2−ε

X(t, ζ)dζ,

where ε > 0.

We introduce the following approximating SDE with state space dimension n, initial condition
X (0) = 0 and output Yn:

dX (t) = [AX (t) +Bu(t)] dt+NX (s−)dM(s), Yn(t) = CX (t), t ≥ 0, (30)

where

• A = diag
(
E1, . . . , En

2

)
with E` =

(
0 `
−` −α

)
,

• B = (bk)k=1,...,n with

b2`−1 = 0, b2` =

√
2

π

〈
e−(·−π2 )2 , sin(`·)

〉
H
,

• N = (nkj)k,j=1,...,n with

n(2`−1)j = 0, n(2`)j =

{
0, if j = 2v,
4
πv

〈
sin(`·), e−(·−π2 )2 sin(v·)

〉
H
, if j = 2v − 1,

for j = 1, . . . , n and v = 1, . . . , n2 ,

• the output matrix C is given by CT = (ck)k=1,...,n with

c2` = 0 and c2`−1 =
1√

2π`2

[
cos
(
`
(π

2
− ε
))
− cos

(
`
(π

2
+ ε
))]

,

where we assume n to be even, ` = 1, . . . , n2 and H = L2 ([0, π]).

Following the arguments in [17] this approximation is meaningful, since

E |Yn(t)− Y (t)|2 → 0
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for n → ∞ and t ≥ 0. Now, we �x the dimension of (30) to n = 1000. The uncontrolled state
equation is asymptotically mean square stable (see [17]) which means that

E ‖X (t, x0, 0)‖22 → 0

for t→∞ and any initial condition such that we can apply balanced truncation and the singular
perturbation approximation, respectively below. We consider the deviation between Yn and the
outputs of the ROMs via BT and via the SPA in the norm on the left hand side of (18). We

insert particular normalized control functions u1(t) =
√

2
π1[0,π2 ](t) and u2(t) =

√
8
π 1[0,π2 ](t)w(t)

(t ∈ [0, π]), where w is a Wiener process. The exact errors and the error bound E1 of BT we
take from [17] and we additionally determine these values for the SPA, where E2 denotes the
corresponding error bound stated in Theorem 4.1. Furthermore, we set (B̄, B̄0, D̄) = (B1, 0, 0).

Dim. ROM BT Exact Error (u = u1) BT Exact Error (u = u2) Bound E1
40 1.4484 · 10−6 1.1182 · 10−6 4.0103 · 10−5

20 7.2173 · 10−6 8.5996 · 10−6 1.2695 · 10−4

10 5.1396 · 10−5 3.8038 · 10−5 3.6395 · 10−4

5 5.2740 · 10−4 4.3632 · 10−4 2.3446 · 10−3

3 0.0113 8.6287 · 10−3 0.0380

Dim. ROM SPA Exact Error (u = u1) SPA Exact Error (u = u2) Bound E2
40 2.0858 · 10−6 1.8654 · 10−6 4.1799 · 10−5

20 8.3989 · 10−6 1.0239 · 10−5 1.2808 · 10−4

10 5.6005 · 10−5 3.9154 · 10−5 3.4039 · 10−4

5 6.4096 · 10−4 6.5180 · 10−4 2.3876 · 10−3

3 0.0183 0.0148 0.0629

From the numerical results above we see that BT is slightly better than the SPA on a time interval
[0, π]. We are also interested in the long run behavior of the system (30). Therefore, we increase
the length of the time interval and consider (30) on [0, 8.5π] next and repeat the procedure. This
is done due to the expected zero steady-state error that is known for the deterministic case. Again,

we use normalized controls ũ1(t) =
√

2
8.5π1[0, 8.5π2 ](t) and ũ2(t) =

√
8

8.5π1[0, 8.5π2 ](t)w(t) (t ∈ [0, 8.5π])

and obtain better results for the SPA for growing dimensions of the ROM.

Dim. ROM Error SPA (u = ũ1) Error BT (u = ũ1) Error SPA (u = ũ2) Error BT (u = ũ2)

20 6.0324 · 10−6 1.1826 · 10−5 5.0916 · 10−6 8.0841 · 10−6

10 2.5374 · 10−5 3.6819 · 10−5 2.7988 · 10−5 4.1106 · 10−5

6 8.1671 · 10−5 1.0461 · 10−4 7.5523 · 10−5 9.3595 · 10−5

5 7.2951 · 10−4 6.7156 · 10−4 9.5126 · 10−4 8.1803 · 10−4

3 0.0195 0.0106 0.0154 0.0100

Below, we would like to compare di�erent outputs visually. Since the reduced order models of BT
and the SPA are quite accurate it is not possible to distinguish between the trajectories. For that
reason, we create a random example in the next section.

5.2 Random example

Here, we consider an example of the form (30) with Wiener noise which we generate as follows:
We set the state space dimension of the original model to n = 500, the reduced order system
dimension to r = 2 and

A = JDJ−1

12



with

D = −diag(10 abs(randn(n, 1)))− 2In and J = randn(n),

where we use �randn('state',1)� for D and �randn('state',2)� for J . The matrices B, C, N are also
random and generated by

B = randn(n, n), C = randn(1, n) and N = rand(n)/100,

where we use �rand('state',1)� for N , �rand('state',3)� for B and �rand('state',4)� for C. One can
check numerically that there is a positive de�nite solution X to

ATX +XA+NTXN = −I.

By Theorem 2.1 this mean that the system is asymptotically mean square stable. We insert the
controls ui (i = 1, . . . , n) on [0, 12]

ui(t) =

{
ki if t ∈ [0, 2] ∪ [5, 7]

0 else,

where the ki are randomly generated constants. In Figure 1 we visualize a trajectory of the output

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

Time t

Figure 1: Output Y (ω, ·) of the original system

of the original model and in Figure 2 we compare the pointwise error of BT with the pointwise
error of the SPA for a particular trajectory. If the graph in Figure 2 is above the red line, then the
SPA is better. From the two plots we observe that the SPA is a better approximation if the output
curve is �at. In this case, it seems to be a good assumption to suppose certain state components
to be constant (symbolic derivative dX2

dt = 0, see (7)), whereas BT provides a smaller error, where
the slope of the output is big.

6 Conclusions

We generalized the singular perturbation approximation for stochastic systems with noise processes
having jumps as an alternative to balanced truncation. In particular, we focused on a linear
controlled state equation driven by a Lévy process which is asymptotically mean square stable and
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−10

0

10

Time t

Figure 2: |Y (ω, ·)− YBT (ω, ·)| − |Y (ω, ·)− YSPA(ω, ·)|

equipped with an output equation. We showed that the reduced order model is mean square stable,
but the question of preserving the asymptotic mean square stability is still open. Additionally,
we demonstrated the possibility to lose complete observability and reachability, we provided an
error bound for the singular perturbation approximation of Lévy driven systems and pointed out
the cases in which the approach is good. Finally, we compared balanced truncation and the
singular perturbation approximation for stochastic systems. We applied it in the context of the
numerical solution of linear controlled SPDEs with Lévy noise and to a random example. There,
we emphasized the advantages of using the singular perturbation approximation.
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