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Abstract

In this paper, we extend our clustering-based model order reduction method for
multi-agent systems with single-integrator agents to the case where the agents
have identical general linear time-invariant dynamics. The method consists of the
Iterative Rational Krylov Algorithm, for finding a good reduced order model, and
the QR decomposition-based clustering algorithm, to achieve structure preserva-
tion by clustering agents. Compared to the case of single-integrator agents, we
modified the QR decomposition with column pivoting inside the clustering algo-
rithm to take into account the block-column structure. We illustrate the method
on small and large-scale examples.
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1 Introduction

The study of consensus and synchronization for multi-agent systems has received con-
siderable attention in the recent years [1, 2, 3]. In brief, multi-agent systems are
network systems that can consist of a very large number of simple and identical sub-
systems, called agents. This motivates research on clustering-based model order re-
duction (MOR) methods that would reduce the large network, simplifying analysis,
simulation, and control, while preserving consensus and synchronization properties.

We have developed a clustering-based MOR method applicable to multi-agent sys-
tems with single-integrator agents [4]. Here, we generalize this method to multi-agent
systems where agents have identical, but general, linear time-invariant (LTI) dynamics.

There are several published papers related to the work presented here. The pa-
per [5] extends the clustering-based MOR method based on θ-reducible clusters from
[6] to networks of second-order subsystems, but not more general subsystems. The
controller-Hessenberg form is the basis of the extended method and the H∞-error
bound. The authors of [7] propose a clustering method for networks of identical pas-
sive subsystems, although it is limited to networks with a tree structure. The refer-
ence [8] extends the expression for the H2-error due to clustering from [9] to a class of
second-order physical network systems, when almost equitable partitions are used.

The outline of this paper is as follows. In Section 2 we introduce the necessary
topics. We explain the more general clustering method in Section 3 and demonstrate
it on a few examples in Section 4. We conclude with Section 5.

2 Preliminaries

2.1 Multi-Agent Systems

We define a multi-agent system over an undirected, weighted, connected graph G =
(VG, EG, AG) with the set of vertices VG = {1, 2, . . . , nn}, the set of edges EG and the
adjacency matrix AG = [aij ] ∈ Rnn×nn . First, in every vertex of the graph we define
an agent

ẋi(t) = Axi(t) +Bzi(t),

yi(t) = Cxi(t),

with its state xi(t) ∈ Rna , input zi(t) ∈ Rma , and output yi(t) ∈ Rpa , for i ∈
{1, 2, . . . , nn}. Matrices A, B, and C are real matrices of the appropriate size and
they are identical for all the agents, but they can be arbitrary (later, we will constrain
this choice to guarantee the stability or synchronization of the multi-agent system).
Since we will be interested in agents communicating over a graph, where they will use
outputs from neighboring agents as inputs, we can assume w.l.o.g. that the number of
outputs pa is equal to the number of inputs ma.

Next, we define the inputs of individual agents, consisting of a coupling term and
an external input to some agents called leaders. Let VL = {v1, v2, . . . , vmn

} ⊆ VG be
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the set of leaders. Then we define the input of the ith agent as

zi(t) :=

{∑nn

j=1 aij(yj(t)− yi(t)) + uk(t), if i = vk,∑nn

j=1 aij(yj(t)− yi(t)), otherwise,

where uk(t) ∈ Rma is the kth external input, for k ∈ {1, 2, . . . ,mn}. We could use a
more general coupling rule

K

nn∑
j=1

aij(yj(t)− yi(t)),

with some matrix K, but later we see that redefining the matrix C as KC achieves
the same. Therefore, we can use the coupling rule without K.

Defining

x(t) :=


x1(t)
x2(t)

...
xnn(t)

 and u(t) :=


u1(t)
u2(t)

...
umn

(t)

 ,
we find that the dynamics of the multi-agent system is

ẋ(t) = (Inn
⊗A− L⊗BC)x(t) + (M ⊗B)u(t), (1)

where L ∈ Rnn×nn is the Laplacian matrix of the graph G and M ∈ Rnn×mn is defined
component-wise by

[M ]ij :=

{
1, if i = vj ,

0, otherwise.

Then x(t) ∈ Rnnna is the state of the multi-agent system and u(t) ∈ Rmnma is the
input. Additionally, we define the output of the multi-agent system as

y(t) =
(
W

1
2RT ⊗ Ina

)
x(t), (2)

where R and W are the incidence and edge weights matrices of the graph G. As in
[9], the output is the vector of weighted differences of agents’ states across the edges.

The input and output matrices M ⊗ B and W
1
2RT ⊗ Ina

can be changed without
significant influence on the analysis and the clustering method we propose. On the
other hand, the dynamics matrix Inn

⊗A−L⊗BC motivates clustering-based MOR.

2.2 Model Order Reduction via Projection

Petrov-Galerkin projection is a general framework for MOR techniques. Numer-
ous methods, including balanced truncation and moment matching (see [10] for an
overview), belong to the class of Petrov-Galerkin projection methods.
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Let

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(3)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, be an arbitrary LTI system of order n.
Then, Petrov-Galerkin projection consists of choosing two full-rank matrices Vr,Wr ∈
Rn×r, for some r < n, and defining a reduced order model (ROM) of order r by

WT
r Vr

˙̂x(t) = WT
r AVrx̂(t) +WT

r Bu(t),

ŷ(t) = CVrx̂(t).
(4)

Note that multiplying Vr and Wr on the right by nonsingular matrices gives us an
equivalent LTI system for the ROM. Therefore, the ROM is defined by ImVr and
ImWr, the subspaces generated by the columns of Vr and Wr.

2.3 Projection-Based Clustering

Let π = {C1, C2, . . . , Crn} be a partition of the vertex set VG. The characteristic
matrix of the partition π is the matrix P (π) ∈ Rnn×rn defined by

[P (π)]ij :=

{
1, if i ∈ Cj ,

0, otherwise,

for all i ∈ {1, 2, . . . , nn} and j ∈ {1, 2, . . . , rn} [9]. Analogously to [9] for single-
integrator agents, we define the Petrov-Galerkin projection matrices

Vr = P (π)⊗ Ina
,

Wr = P (π)
(
P (π)TP (π)

)−1 ⊗ Ina
,

which achieve clustering for multi-agent systems with general linear dynamics. To see
this, notice that the ROM is then

˙̂x(t) =
(
Inn ⊗A−

(
PTP

)−1
PTLP ⊗BC

)
x̂(t)

+
((
PTP

)−1
PTM ⊗B

)
u(t),

ŷ(t) =
(
W

1
2RTP ⊗ Ina

)
x̂(t),

(5)

where we use a shorter notation P := P (π). Paper [9] shows that the matrix

L̂ :=
(
PTP

)−1
PTLP

is the Laplacian matrix of a directed, symmetric, connected graph, on which the re-
duced multi-agent system is defined. In this sense, the network structure is preserved
in the ROM.
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2.4 Stability and Synchronization

The paper [11] analyzes the stability and synchronization of systems such as (1). The
system (1) is said to be stable if the matrix Inn ⊗ A − L ⊗ BC is Hurwitz, as is the
usual definition. It is shown that the matrix Inn ⊗A−L⊗BC is Hurwitz if and only
if A− λBC is Hurwitz for every eigenvalue λ of L.

The system (1) is said to be synchronized if xi(t) − xj(t) → 0 as t → ∞, for
all i, j ∈ {1, 2, . . . , nn} and for all initial conditions when the input u is zero. This
condition is clearly equivalent to the output stability, where the output represents the
discrepancies among the agents, such as (2). The following Lemma (Lemma 4.2 in
[11]) gives the necessary and sufficient condition for synchronization.

Lemma 1 Let G be a connected graph. Then the system (1) is synchronized if and
only if A− λBC is Hurwitz for all positive eigenvalues λ of L.

Here, we are interested in synchronized multi-agent systems and how to preserve
the synchronization in the ROM using clustering. Using Cauchy’s interlacing theorem
(as was done in [9]), it can be seen that the matrix L̂ has a simple zero eigenvalue and
that the other eigenvalues are positive and lie between the positive eigenvalues of L.
From Lemma 1, we see that it is necessary and sufficient that A−λBC is Hurwitz for
every positive eigenvalue of L̂ for the ROM (5) to be synchronized.

Now we find a sufficient condition for preserving synchronization, independent of
the partition used. If there is an open interval (α, β), 0 6 α < β 6 ∞, such that
A− λBC is Hurwitz for all λ ∈ (α, β) and that (α, β) contains all positive eigenvalues
of L, then the original system (1) and all the ROMs (5) are synchronized. In the
case that α = 0 and β < ∞ is arbitrary, we can move all the positive eigenvalues of
L inside the interval (0, β) by scaling down all the weights in the graph, which is a
simple method to ensure synchronization of the original systems and the ROMs.

One interesting example of an agent is the undamped oscillator, given by the ma-
trices

A =

[
0 1
−k 0

]
, B =

[
0
1

]
, C =

[
c1 c2

]
.

It is easy to check that A is not Hurwitz, but that A− λBC is Hurwitz for all λ > 0
if k > 0, c1 > 0, and c2 > 0. Therefore, in this case α = 0 and β =∞.

3 Clustering Method

3.1 H2-Optimal Model Order Reduction

In Section 2.2, we introduced Petrov-Galerkin projection as a general MOR framework,
without explaining how to choose good projection matrices Vr and Wr. Here, we
formulate the H2-optimal MOR problem and refer to an efficient method for solving
it.
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The H2-norm ‖·‖H2
is defined for any stable, strictly proper transfer function H by

‖H‖2H2
=

1

2π

∫ ∞
−∞
‖H(iω)‖2F dω,

where ‖·‖F is the Frobenius norm. Let here H and Ĥ denote the transfer functions of
the LTI system (3) and its ROM (4). The H2-optimal MOR problem is

min
Vr,Wr∈Rn×r

‖H − Ĥ‖H2
,

which is known to be intractable. The Iterative Rational Krylov Algorithm (IRKA)
finds a local optimum efficiently, and it often finds the global optimum [12].

3.2 H2-Suboptimal Clustering

In [4], we proposed an H2-suboptimal clustering MOR method for multi-agent systems
with single-integrator agents. The method combines IRKA and a QR decomposition-
based clustering algorithm (introduced in [13]).

We apply the clustering algorithm to the Petrov-Galerkin projection matrices ob-
tained from IRKA. The motivation for this comes from the constraint ImVr = ImP (π)
that the ROM needs to satisfy. An equivalent constraint is Vr = P (π)Z for a nonsin-
gular Z. Looking at a simple example for P (π):

P (π) =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

 ,

we find that

Vr = P (π)Z =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1


z1z2
z3

 =


z1
z2
z2
z3
z3
z3

 ,

where zi ∈ R1×3, i ∈ {1, 2, 3}, are the rows of Z. From this we see that the rows of Vr
are equal if and only if the corresponding agents are in the same cluster. This implies
the idea to cluster the rows of Vr obtained from IRKA. Furthermore, the rows of Z are
linearly independent, which motivates using QR decomposition with column pivoting
on V T

r . This clustering algorithm was introduced in [13] and is given in Algorithm 1.
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Algorithm 1 Clustering using QR decomposition with column pivoting [13, 4]

Input: Matrix Vr ∈ Rn×r of rank r
Output: Partition π such that ImP (π) ≈ ImVr

1: V T
r P = QR

2: R =
[
R11 R12

]
, R11 ∈ Rr×r and R12 ∈ Rr×(n−r)

3: X = R−111 R12

4: Y = P
[
Ir X

]T
= [yij ] ∈ Rn×r

5: Find a partition π = {C1, C2, . . . , Cr} such that i ∈ Cj if and only if j =
arg maxk |yik|

6: Return π

Algorithm 2 QR decomposition with column pivoting for matrices with block-
columns

Input: Matrix X ∈ Rnl×nk of full rank, where n, k, l ∈ N and l < k
Output: Orthogonal matrix Q, upper-triangular matrix R, and permutation ma-
trix P such that XP = QR

1: Denote X =
[
X1 X2 · · · Xk

]
, where Xi ∈ Rnl×n

2: Find a block-column Xi with the largest Frobenius norm and swap it with X1

3: Perform QR decomposition with column pivoting on X1, i.e. find an orthogonal
Q1, an upper-triangular R1, and a permutation matrix such that X1P1 = Q1R1

4: Multiply all the block-columns in X on the right by PT
1

5: Multiply X on the left by QT
1

6: Repeat the procedure for X(n + 1 : nl, n + 1 : nk), which computes the matrices
Qi, Ri, and Pi, for i ∈ {2, 3, . . . , l}

7: ReturnQ = Q1Q2 · · ·Ql, R = X, and P with all the column permutations recorded

Now we try to see if the same reasoning can give us a clustering method for multi-
agents systems with general agents. Using the same example as before, we have

Vr = (P (π)⊗ Ina
)Z =


Ina

0 0
0 Ina 0
0 Ina 0
0 0 Ina

0 0 Ina

0 0 Ina


Z1

Z2

Z3

 =


Z1

Z2

Z2

Z3

Z3

Z3

 ,

where Zi ∈ Rna×3na , i ∈ {1, 2, 3}, are the block-rows of Z. Here, we conclude that
the block-rows of Vr determine the clusters. This motivates us to modify the method
in 1 such that it clusters the block-rows of Vr. We see that we need to modify the
QR decomposition algorithm with column pivoting used in line 1 of Algorithm 1,
since applying column permutations can break the block-column structure we found
in [(P (π)⊗Ina

)Z]T . Therefore, we have to limit the possible column permutations that
are performed on V T

r . This modified method is presented in Algorithm 2. Additionally,
in line 5 of Algorithm 1, the absolute value needs to be replaced by a matrix norm
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Figure 1: Example of a multi-agent system defined on an undirected, weighted, con-
nected graph. Vertices 6 and 7 are leaders. [9]

of the na × na blocks in Y and the indices i, j, k should represent the positions of the
blocks.

We proved in [4] that Algorithm 1 is of linear complexity in the number of agents and
quadratic in the number of clusters. Since the QR decomposition is computationally
the most expensive part, we conclude that same is true for general agents, except
that it is also of cubic complexity in the order of the agent, since Vr is of the size
nnna× rnna. Therefore, if agents are large-scale systems, it is sensible to apply MOR
to agents. We will not consider agent reduction here, but it is an interesting problem
for future work.

4 Numerical Examples

4.1 Small-Scale Example

We use the example from [9], shown in Figure 1, except that the agents are undamped
oscillators:

A =

[
0 1
−1 0

]
, B =

[
0
1

]
, C =

[
1 1

]
.

Therefore, the multi-agent system (1), (2) has n = nnna = 10 · 2 = 20 states, m =
mn ·ma = 2 · 1 = 2 inputs, and p = 30 outputs.

Let us fix the number of clusters to rn = 5. Thus, the reduced order is r = rnna = 10.
IRKA converges to a ROM of order r in under 30 iterations, with the relative H2-error
of 7.149 · 10−3. Block-row clustering of the projection matrix Vr generated by IRKA
returns the partition

{{1}, {2, 3, 4, 8, 9, 10}, {5}, {6}, {7}},
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where the corresponding ROM produces the relative H2-error of 0.2130. The H2-
optimal partition with five clusters (there are 42 525 partitions of the set {1, 2, . . . , 10}
with five clusters) is

{{1, 2, 3, 4}, {5, 8}, {6}, {7}, {9, 10}},

with the relative H2-error of 0.1395.
Since all the multi-agent systems here are synchronized and not stable, we had to

remove unstable states, which are also unobservable, before computing the H2-norms.
We can see that {1⊗e1,1⊗e2} spans the unstable subspace of I⊗A−L⊗BC, where
1 is a vector of ones and e1, e2 ∈ R2 are canonical vectors. Therefore, we find that the
following sparse projection matrices Vstab,Wstab ∈ Rn×(n−2)

Vstab =

I0
0

 , Wstab =

 I
−1T ⊗ eT1
−1T ⊗ eT2


remove unstable states.

4.2 Large-Scale Example

We randomly generated an undirected, unweighted, connected graph using the fol-
lowing Python 2.7.10 code (with NetworkX 1.10, NumPy 1.10.4, and SciPy 0.16.1
modules)

import networkx as nx

G = nx.powerlaw_cluster_graph (1000, 2, 0.5, seed =0)

L = nx.laplacian_matrix(G)

where the Holme-Kim algorithm [14] is utilized. The resulting graph has 1000 vertices
and 1996 edges. We decided for the multi-agent system with the dynamics in (1),
where the agents are undamped oscillators as in the previous example and the leaders
are the first three agents. For the output, we chose the vector of states of the fourth
and fifth agents. Thus, the number of states, inputs, and outputs are n = 2000, m = 3,
and p = 4.

We notice here that the unstable states are observable. Therefore, to apply IRKA,
we need to remove the unstable states. We achieve this using sparse projection ma-
trices Vstab,Wstab ∈ Rn×(n−2) defined above. Let VIRKA,WIRKA ∈ R(n−2)×r denote
the projection matrices computed by IRKA. Instead of applying the clustering algo-
rithm to VstabVIRKA, where the last two rows are always zero, we computed the SVD
decomposition of [

VstabVIRKA WstabWIRKA

]
and applied the clustering algorithm to the first r left singular vectors, since they span
the dominant r-dimensional subspace.

We observed that IRKA does not converge (in under 100 iterations) and even returns
unstable ROMs for larger reduced orders. Despite this, we noticed that using two
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Figure 2: Relative H2-errors when clustering a multi-agent system with 1000 agents.

iterations of IRKA already returns a good partition and that using more iterations
does not significantly improve the H2-error associated with the resulting partition.
Figure 2 reports relative H2-errors due to clustering for different numbers of clusters.
All H2-norms are computed with respect to the stable parts.

5 Conclusion

We presented an extension of our method, combining IRKA and a clustering algorithm,
for clustering-based MOR of multi-agent systems where agents have identical general
LTI dynamics. Heuristically, it appears that this method finds a partition close to the
optimal. We demonstrated this on a small-scale example, where the obtained partition
results in the H2-error of the same order of magnitude as the optimal. Furthermore,
we showed that this method is applicable to multi-agent systems with a large number
of agents of small to medium order. We illustrated this on a large-scale example with
1000 agents of second order. A theoretical explanation that shows when the algorithm
finds a partition close to optimal remains an open problem for future work. Combining
the clustering method with the MOR of agents is an interesting problem for future
work.
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